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Main Sites
 Albuquerque, New Mexico

 Livermore, California

Activity Locations
 Tonopah, Nevada

 Waste Isolation 
Pilot Plant, Carlsbad, New 
Mexico

 Pantex Plant, Amarillo, Texas

 Kauai, Hawaii

SANDIA HAS FACILITIES 
ACROSS THE NATION



SCIENCE-BASED ENGINEERING KEY TO MISSION SUCCESS 4

Integrating multidisciplinary efforts to advance the science of  the possible 
for Sandia’s missions

Modeling and Simulation 
 High Performance Computing

 Software tools

 Uncertainty Quantification 
(UQ)

Advanced Experimental Capabilities
 Radiation effects

 Engineering environments

 Materials characterization and production

Microelectronics

 Microsystems & Engineering Sciences Applications 
(MESA) Fab

 Development of  advanced semiconductor materials



SANDIA’S NUCLEAR WEAPONS MISSION

 Warhead system integration

 Production

 Non-nuclear component design 
and qualification
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Sandia designs all non-nuclear components

Fundamental science, computer 
models, and unique experimental 
facilities are used to understand, 
predict, and verify weapon systems 
performance.



Enabled by platform and software advances

WE HAVE DELIVERED INCREASING MODEL FIDELITY 6
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MISSION REQUIRES INCREASING SYSTEM FIDELITY

 Optimize performance of  impact fuze in 
various environments

 Use of  ‘virtual builds‘ to explore design 
trade space

 Simulations used to optimize tests

 Simulations provide insight into damage 
that is not experimentally accessible 
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Experiments and simulation work together

100s of virtual builds

1000s of virtual tests

Millions of CPU hours



ACCELERATING DESIGN TO PRODUCTION 8

Design Build Test Produce

Design Build Test Produce

Design Build Test Produce

Iterate

Iterate

Iterate

(b)

 Short turn-around production of  metal parts 
needed

 Metal laser powder bed fusion was used

 Additional material test coupons were 
printed 

 Estimated time and cost savings of  roughly 
60%

316L SS ESD faraday cage 
covers for sounding rocket 
telemetry circuit boards. 
Printed parts (above, right); 
assembled (bottom right).

Modeling/simulation and additive manufacturing can reduce the number and speed of  
design-build-test iterations



ENABLING NOVEL DESIGNS

Impact on Design:

 Topology optimization 
explodes design space

 Take advantage of  new 
materials with unique 
properties

 Enabled by HPC & high 
fidelity mod/sim

 Use additive manufacturing to 
realize organic designs
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Topology optimization using PLATO

PLATO Features:

 Print ready design

 UQ-enabled designs

 Multi-material designs

 Designs with lattice 
metamaterials

 Automated conversion 
back to CAD surfaces

Example: satellite bracket design with 
increased stiffness, 40% weight 
reduction

a -



REAL TIME MULTI-PHYSICS DESIGNS ARE POSSIBLE
10

 GPU enabled solver package

 Optimized for stiffness and 

thermal conductivity

Incorporating the right physics is essential

Mechanical 
Optimization Only

Thermal 
Optimization Only



UQ ENABLES ROBUST DESIGNS
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 Uncertainties in load angle included

 Optimized sampling 

(only 5-15 samples)

 User specified probability density 

function (here for load direction)

90°± 22.5°

Insensitive to naturally occurring load variations
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ADVANCED MATERIAL MODELING NEEDED

 In AM, metals experience extreme 

melting/solidification environments not 

present in traditional manufacturing.

 Understanding and predicting detailed 

thermal/fluid phenomena will lead to 

improved part quality and ultimately 

prediction of  performance.

 Computation is driving process 

development.
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Our vision: born qualified

PerformancePerformance
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TRANSITIONING DESIGNS INTO MISSION SOLUTIONS

 Design parts for extreme mechanical conditions

 Make parts for high-consequence applications

 Validate part performance 

 Perform R&D to improve understanding
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Ensuring repeatability and reliability
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EXTRAORDINARY CONTROL OF SHAPE AND FUNCTIONALITY 14

Example: acoustic metamaterials

Multiphase composite materials designed 
to produce dynamic material properties 
not found in nature

Wave Focusing

Wave Bending Wave Steering

Without 
Shield

With 
Shield

.rr HV mag BEI mode
93 3 10.0 kV 253 x SE

•
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Frequency [Hz] 



VALIDATED MULTISCALE MULTIPHYSICS MODELING

 Parallel attack on interdependent modeling areas

 Powder spreading and flowability

 Melt pool dynamics modeling

 Robust solvers

 Grain morphology estimation based on actual 

build processes
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Required to take full advantage of  AM capabilities

Particle 
packing

Laser Heat 
Input

Partial melt 
& flow

Molten pool 
dynamics

Topology 
Design

Microstructure

Solidification

Property-
Performance

Processing Schematic

Mesoscale Selective Laser Melting  
Part Scale Thermal & Solid 

Mechanics

Part Scale Microstructure

Length Scale (m)
10-6 10-3 1

Powder Spreading 

Mesoscale Texture/Solid 
Mechanics/CX

Critical modeling issues:

 Wide range of  length scales

 Variability of  raw materials

 Physics models are young

 Need new numeric techniques 



LASER ENGINEERED NET SHAPING (LENS®)

 Physics of  melt pool is key

 Understanding process parameters is 
critical

 Multiple material constructs are 
possible

Tuning AM process requires sophisticated diagnostics

fiber 
input

camera for closed
loop process control

additional optics port

IR camera port 
for thermal 
imaging

Thermal history during bi-directional 
metal deposition

Laser engineered net shaping (LENS®)304L SS / Cu multi-material thermal 
concentrator

Ti-6Al-4V

Inconel
718

LENS functionally graded materials
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MODELING LENS ADDITIVE MANUFACTURING PROCESS 17

Melt pool controls process results

 Complex phenomena must be modeled 

 energy and mass deposition, heat 

transfer, melt propagation

 3D model physics required

 Model validation experiments needed

Sandia’s Sierra/Aria FEM code Conformal Decomposition 
FEM (CDFEM) allows for evolving mesh

IR Camera

Surface Topology Scan

2-color 
pyrometer

Time = O.00s Temp (K)

3330
2572
1815
1057
300r



NEW COMPUTATIONAL CAPABILITY REQUIRED
18

Computational sub-volume

Part scale

It is prohibitively expensive to perform simulations across 

an entire final part geometry at its native scale due to 

length scale disparities

 Part: centimeter and larger

 Molten Zone: millimeters

 Grains: hundreds of  microns and smaller

Proposed solution

 Material deposition and heat source interaction are localized

 Model material deposition, grain growth, and evolution on 

moving computational sub-volumes

 Capability will scale down memory requirements for 

simulation exponentially to enable true build-scale simulation 

on a desktop 

Focus calculation on regions where grain structure is created

Stainless steel micrograph

1.27nm

(source D.R. Askeland & W.J. Wright)

3rnm

5mm
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WHY IS A MICROSTRUCTURE SIMULATOR IMPORTANT? 

Scan 
direction

Build direction

Simulations EBSD*Simulation of  microstructural 
evolution during fabrication 
will inform:

 Design of  process variables 

 Uncertainty quantification in 

final components produced

Microstructural variations within and between different components 
control variation in engineering properties

20

*L.L. Parimi, G. A. Ravi, D. Clark, M. M. Attallah, 
MATERIALS CHARACTERIZATION 89 (2014) 102-111

T. M. Rodgers, J. D. Madison, V. Tikare,
Computational Materials Science 135 (2017) 78–89



PROCESS PARAMETERS – MICROSTRUCTURE – PERFORMANCE 21

Sierra FEA Thermal Model

SPPARKS 
kMC Model

Coupling with 
SIERRA thermal 

models

Process determines structure

K.L. Johnson, T.M. Rodgers, O.D. Underwood, J.D. Madison, K.R. Ford, S.R. 
Whetten, D.J. Dagel, J.E. Bishop, Comp. Mech., vol. 61, no. 5, (2018) pp. 559-574

Time: 0.00 s

Temperature (K)
3000

-

12323
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MICROSTRUCTURE PREDICTS PERFORMANCE
22

 Processing creates microstructure

 Microstructure controls performance

 Coupling kinetic Monte Carlo 

(SPPARKS) with direct numerical 

simulation of  mechanical behavior 

(SIERRA)

SPPARKS & SIERRA

T. M. Rodgers, J. E. Bishop and J. D. Madison
Modelling Simul. Mater. Sci. Eng. 26 (2018) 055010 

delling and
Simulation in
Materials Science
and En 'wenn

1
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QUALIFIED BY DESIGN 23

Integrated Materials Models:
Evolving with Quantified Uncertainty
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THE FUTURE – UNCERTAINTY QUANTIFICATION 24

Complex sample 
geometry

Structure varies with 
process

Computational predictions still highly variable

2017 Sandia Fracture Challenge

Models that used microstructure information performed best!
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FRACTURE CHALLENGE  PARTICIPANTS 25

Multidisciplinary perspectives
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WHAT WE NEED FOR FUTURE ADVANCES
26

 Sandia’s engineering missions are pushing us in new directions 

 Complex full-system engineering models that span a system’s lifecycle 

 Explicit focus on how humans and computers interact to enable critical decisions

 Adding automation, data-analytics, and intelligence throughout computational simulation 

 See WCCM mini symposia on data science

 But advances in computing overall are also important: 

 Exascale Computing Project—enabling 50x improvement in capability by 2021-23

 Sandia's new ARM-based supercomputer prototype (Astra) helps open the door for future custom hardware 

options

 Neuromorphic and quantum efforts also moving forward

 Diverse partnerships and diverse staff  will help achieve both

New tools to make this work possible now and in the future
a -



HIGH IMPACT DECISIONS REQUIRE HIGH-FIDELITY ANALYSIS 27

The Space Shuttle Columbia accident

 Accident attributed to insulating foam impact on 

the wing leading edge during launch

 Sandia provided NASA with aerodynamic, 

aerothermal, fluid dynamic and foam impact 

analysis

 Numerical simulations of  fluid flow suggested a 

shock-shock interaction increased heating rates in 

the area of  the impact

 Flow inside the wing accentuated the problem

The right physics and right model, at the 

right scale, might have identified a real-

time solution to avoid the accident
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