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Rate Dependent Power Law Hardening: 33 direction
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Motivation

 Engineering environments demand constitutive models that can resolve 
large plastic deformations

 Structural alloys typically have strain rate dependence, temperature 
dependence, and anisotropy

 Often questions to be answered include “when does it break?”

 Objective: develop a program to understand the application environment 
(loading, strain rate, temperature), test materials within and at the bounds of 
that environment, and develop constitutive models to capture the observed 
physical behavior of the data
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Generic engineered system constructed from structural alloys impacting a hard target. Loading 
produces multi-axial states of stress throughout the components with variable strain rates, inducing 
temperature change due to plastic work. 
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Motivation
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PH13-8 sheet, strain rate ~1 s-1
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Structural alloys can generate a significant amount of heat during plastic deformation, even at 
moderate strain rates. 

Courtesy of Bonnie Antoun, Mechanics of Materials, Sandia/CA.



Theoretical and practical considerations

 Material behavior in application environments suggests a plasticity 
formulation that includes a number of physical phenomena: specifically 
temperature dependence, rate dependence, anisotropy, and ultimately 
fracture/failure

 Strive to develop such a formulation as rigorously as possible

 Start with a Helmholtz free energy, and incorporate ideas from continuum 
thermodynamics

 The plasticity solve incorporates ideas from the optimization literature to 
perform an implicit return mapping procedure

 To achieve impact the target is Sandia’s production finite element code 
for solid mechanics, SIERRA-SM, imposing a few constraints in terms of 
thermo-mechanical coupling, etc…

 To achieve impact we are mindful of the trade off between accuracy and 
efficiency

4

Sandia
National
Laboratories



Formulation - plasticity

 Multiplicative decomposition of the deformation gradient

 Isotropic thermal expansion via thermal stretch ratio

 Choice of strain – log strain

 Helmholtz free energy

 Stresses, Mandel and Cauchy
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Formulation - damage
 Historically the computational mechanics group at Sandia/CA has 

explored usage of the void growth model due to Cocks and Ashby

 Additionally we have employed an additive set of terms intended to treat 
shear behavior through void nucleation

 The combination of damage models has successfully been applied to the 
Sandia Fracture Challenges (SFC2, SFC3)
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Implementation/Design

 This work fits in the context of the previous talk, 
i.e. robust integration algorithms for a modular 
set of plasticity models (Scherzinger, Lester)

 High level algorithm
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Verification of rate dependent implementation

Modular plasticity schematic
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Rate Dependent Power Law Hardening: 33 direction
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Examples – Torsion
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Progress in modeling localization

 Mesh contains central band with axial bias to 
ease (symmetrize) process

 Hardening behavior is important
 Small thermal gradients may be important
 Solving thermomechanical problem to 

simulate the localization of deformation
 Interaction between solver + material model

plastic work 
localizes 

balance of energy
redistributes

banded 
localization of 
deformation

Courtesy of and in collaboration with Jay Foulk, Sandia/CA
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Examples – Shear compression

9

undeformed deformed

Full geometry shown, model exploits symmetry along 2 planes

Boundary conditions: fixed (Y) on top, applied velocity (Y) on bottom of 2.54 m/s (100 in/s)
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Examples –Shear compression
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Examples – Shear compression
Isothermal plasticity simulations employing damage evolution

two void 
nucleation 
models are 
studied

isothermal response  
indistinguishable from 
fully coupled simulations
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Examples – Phase Field Fracture

 Hyperplastic model used as a basis for phase field fracture (Stershic, Talamini)
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Visual threshold at � = 0.5

Undeformed View (No visual threshold, zoomed):
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Summary and Future Work

13

 Formulation of an isotropic hardening, rate and temperature dependent 
plasticity model based on a Helmholtz free energy and hyperelastic stress 
relation

 Implemented into SIERRA-SM, production finite element analysis code

 Certain features tested and verified in the context of a broader modular 
plasticity framework

 Next Steps
 Modularization of damage and failure modeling, with and without gradients (phase field)

 Further generalization of temperature dependence

 Addressing Hyperelasticity in the context of anisotropic yield and hardening
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