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Rate Dependent Power Law Hardening: 33 direction
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Motivation

= Engineering environments demand constitutive models that can resolve
large plastic deformations

= Structural alloys typically have strain rate dependence, temperature
dependence, and anisotropy

= Often questions to be answered include “when does it break?”

= Objective: develop a program to understand the application environment
(loading, strain rate, temperature), test materials within and at the bounds of
that environment, and develop constitutive models to capture the observed
physical behavior of the data
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Generic engineered system constructed from structural alloys impacting a hard target. Loading
produces multi-axial states of stress throughout the components with variable strain rates, inducing
temperature change due to plastic work.




Motivation L

PH13-8 sheet, strain rate ~1 s
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Structural alloys can generate a significant amount of heat during plastic deformation, even at
moderate strain rates.
Courtesy of Bonnie Antoun, Mechanics of Materials, Sandia/CA.




Theoretical and practical considerations @£z

= Material behavior in application environments suggests a plasticity
formulation that includes a number of physical phenomena: specifically
temperature dependence, rate dependence, anisotropy, and ultimately
fracture/failure

= Strive to develop such a formulation as rigorously as possible

= Start with a Helmholtz free energy, and incorporate ideas from continuum
thermodynamics

=  The plasticity solve incorporates ideas from the optimization literature to
perform an implicit return mapping procedure

= To achieve impact the target is Sandia’s production finite element code
for solid mechanics, SIERRA-SM, imposing a few constraints in terms of
thermo-mechanical coupling, etc...

= To achieve impact we are mindful of the trade off between accuracy and
efficiency
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Formulation - plasticity .

Multiplicative decomposition of the deformation gradient

F=F,Fy, F,=F,F, detF,=1

= |sotropic thermal expansion via thermal stretch ratio
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Formulation - damage .

= Historically the computational mechanics group at Sandia/CA has
explored usage of the void growth model due to Cocks and Ashby
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= Additionally we have employed an additive set of terms intended to treat
shear behavior through void nucleation
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= The combination of damage models has successfully been applied to the
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Implementation/Design

= This work fits in the context of the previous talk,
i.e. robust integration algorithms for a modular
set of plasticity models (Scherzinger, Lester)

= High level algorithm
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Examples — Torsion UL

plastic work banded
localizes localization of
deformation
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balance of energy Progress in modeling localization

redistributes " Mesh contains central band with axial bias to

ease (symmetrize) process

= Hardening behavior is important

= Small thermal gradients may be important

=  Solving thermomechanical problem to
simulate the localization of deformation

= |nteraction between solver + material model

Courtesy of and in collaboration with Jay Foulk, Sandia/CA




Examples — Shear compression .

Boundary conditions: fixed (Y) on top, applied velocity (Y) on bottom of 2.54 m/s (100 in/s)

undeformed deformed

Full geometry shown, model exploits symmetry along 2 planes 9
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Examples — Shear compression UL

|sothermal plasticity simulations employing damage evolution
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Examples — Phase Field Fracture ) &,

= Hyperplastic model used as a basis for phase field fracture (Stershic, Talamini)

Visual threshold at ¢ = 0.5

Undeformed View (No visual threshold, zoomed): 12
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Summary and Future Work (=

= Formulation of an isotropic hardening, rate and temperature dependent
plasticity model based on a Helmholtz free energy and hyperelastic stress
relation

= |mplemented into SIERRA-SM, production finite element analysis code

=  Certain features tested and verified in the context of a broader modular
plasticity framework
= Next Steps

= Modularization of damage and failure modeling, with and without gradients (phase field)
= Further generalization of temperature dependence

= Addressing Hyperelasticity in the context of anisotropic yield and hardening




