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Summary

The performance of unconventional resources reservoir is a function of the hydro, mechanical, and chemical properties of
shale formations with compositional and textural heterogeneity across a range of scales. In particular, mechanical
properties (elastic properties, fracture toughness, anisotropy, etc.) are controlled by a variety of geologic variables,
including detrital and authigenic mineralogy, cements, and organic content, and the spatial distribution of these
characteristics. In this work integrated approach of multiscale imaging, mineralogy distribution, nano-indentation, and
numerical simulations is employed to investigate the impact of the micro-lithofacial heterogeneities on pore structure and
mechanical properties for Cretaceous Mancos Shale, a thick mudstone with widespread occurrence across the western
interior of the USA. Detailed petrographic analysis results are mapped to results from axisymmetric compression and
indirect tensile strength testing of this facies at the core-plug scale, and nanoindentation measurements at the micron
scale. As anticipated, there is a marked difference in elastic and failure response in axisymmetric and cylinder splitting
tests relating to loading orientation with respect to bedding or lamination. Shear bands and Mode-I fractures display
contrasting fabric when produced at low or high angles with respect to lamination. Nanoindentation, mineralogy distribution
based on MAPS (Modular Automated Processing System) technique, and high resolution backscattered electron images
show the effect of composition, texture phases, and interfaces of phases on mechanical properties. A range of Young’s
moduli from nanoindentation is generally larger by a factor of 1 to 4 compared to axisymmetric compression results,
showing the important effect of pores, microcracks, and bedding boundaries on bulk elastic response. Together these data
sets show the influence of cement distribution on mechanical response. Variations in micro-lithofacies are first-order
factors in determining the mechanical response of this important Mancos constituent, and are likely responsible for its
success in hydrofracture-based recovery operations as compared to other Mancos lithofacies types. This work allows us to
make more accurate prediction of reservoir performance by developing a multi-scale understanding of mudstone response
to reservoir stimulation efforts.
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Subsurface Energy Activities

= Subsurface energy technologies typically involve the change of fluid
flow, stress, thermal, chemical (aka THMC) status in fractured and
porous media

= Unconventional resources recovery
= Disposal of wastewater and nuclear waste

= Subsurface carbon and compressed gas storage

= Toimprove modern energy activities and reduce adverse risks (e.g.,
induced seismicity and environmental impact), current
understanding of poromechanics, averaging conceptual models
(e.g., cubic law and biot effective stress), and coupled effects on
flow paths needs to be improved

= Mesoscale analysis — linking discrete and complex pore-scale
behavior to continuum (macroscale) reservoir response — is key, yet
remains elusive as a result of the extreme heterogeneity and
resulting scale dependence.

Induced Seismicity Potential in
ENERGY TECHNOLOGIES

NRC, 2013

Controlling Subsurface Fractures and
Fluid Flow: A Basic Research Agenda

DOE Roundtable Report ua s o
e @¢kiERcy
Germuntown, |

Office of Science

DOE BES Report, 2015




Multiscale Heterogeneity in Compositions,
Pore structure, and Mechanical Properties

» Understand how heterogeneity, pores, cracks, flaws etc. contribute to
shale poromechanics over scales and provide physical basis for core-scale
measured deformational and transport constitutive behavior

» Develop novel techniques and workflow for a linked imaging,
experimental, and modeling-based advancement of shale poromechanics

Quartz area, 20 indents Clay-rich area, 64 indents
Load-displacement Load-displacement

ORI




Multiscale characterization of physical, chemical,
and mechanical heterogeneity of nano-porous geomaterials
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Approach

¢ 40 cm diameter core of Mancos Shale
— Interlaminated fine mud, medium/ coarse

mud, and very fine sand
— 1-3 mm laminae
— Parallel lamina, wavy lenticular

lamina, ripple forms, and bioturbation

e Mineralogical and textural

characterization
— Macroscopic
— Optical petrography/microscopy
— Micro-CT
— FIB-SEM
— BSE
— MAPS Mineralogy
e Mechanical tests
— Uni-/Tri-axial compression (1x2")
— Brazilian Test (1x0.5")
— Nanoindentation
e Computational modeling

B Face of XRD
CutA

Tests

< 55 0c
e » Brazilian Tests

[ === ]

Yoon et al. (AAPG, Memoir 2019, in press)
Dewers et al. (AGU, Monograph, 2019, in press)



MAPS Mineralogy

e SEM-based automated mineralogical

measurement, analysis, data integration
— Collection, overlay and re-registration of
multiple images from different modalities
— SEM, SEM-EDS, optical, CL, EBSD
— QEMSCAN measurement algorithms
e Mineral identification
— Spectral matching
— Each pixel — single/multiple minerals
— Elemental substitutions
— Simultaneous mineral element and count maps

X: 5978, Y: 60547, 287k counts, lllite-Smectite: 68.63%, lllite:31.37%,

— Measured
lllite-Smectite
lllite

¥ Chamosite
™ Zircon

¥ Sphalerite
™ Fut



Mineralogy Mapping

lon-milling polished Mancos
(1 inch diameter)
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Yellow Box (1.45 x 1.98 cm): BSE @ 1um & MAPS @ 10um
Red box (0.18 x 1.98 cm): BSE @ 0.2um & MAPS @ 2um



Mineralogy Mapping:
Scale/methods dependent
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Mineralogy Mapping:
Scale/methods dependent
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Influence of geological attributes on mechanical
properties
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Conceptual Model of Anisotropic
Layered System
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Axisymmetric Compression Testing
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Axisymmetric Compression Testing

Horizontal slice
through the central
part of sample A. Loaded parallel to bedding (15B)
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Indirect Tension Results

7
—Sample A (6=0°) ]
6 — ——SampleB (6=0°) -
----- Sample C (6=45°) b

55 T1 = = SampleD (6=90°) r - b
= ar
V4 'I‘
% s |
z !
2K : *
=
<C 2 _ (§

1

O == ! ! T

0 0.1 02 0.3
Displacement (mm)
ar
7t =  P:Loading
D: Diameter
t: thickness Na et al.

(JGR 2017)

» fine Mud (fM)

medium Mud (mM)

» course Mud (sM)

» sandy fine Mud

(sfm)

» sandy medium Mud

(smM)

» sandy course Mud

(scM)

» muddy Sand (mS)

R > bioturbation

2 » possible bioturbation
= » planner laminated
MA > ripple laminated
<<= » lenticular laminated



Tensile Strain Distribution
(Digital Image Correlation)
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Numerical Simulations of Brittle Fracturing

= Phase field model for crack <60 %
representation (Heister et al,2015) - ~40 %
= Shale is modeled as two- Stiff J -
constituent brittle materials laye Soft (%)
with stiff and soft layers: 62.5%
= Young’'s Modulus D154
= (Pore pressure)
= (Chemo-mechanical
. 75.0%
coupling) N ! 25.0%
Crack phase
field (o)
40.5%

Differential Equations Analysis
Library.Il (Bangerth et al., 2007; 2013)
DEAL.Il Open Source Finite Fully
Element Library Cracked

0 Phase Field (o) 0.3
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Effective Properties of Heterogeneous

Materials

Transversely isotropic effective medium for elastic parameters (Berryman, 1998)

= Spatial homogenization procedure leads to much simpler crack patterns than

those from the layered isotropic materials

= Crack paths in the effective medium are less tortuous due to (probably)
filtering out mesoscopic information via homogenization

= Smaller surface area created by the fracture process yields the reduced
tortuous crack paths with a diminished amount of energy dissipation

(much higher effective fracture toughness)

(a) Transversely isotropic
(horizontal)

(b) Transversely isotropic
(inclined)

(c) Transversely isotropic
(vertical)

Bulk Energy (J)
o

0 0.05 0.1 0.15
Displacement (mm)

glad
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Displacement (mm)

Transversely
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Na et al.
(JGR 2017)



Nanolndentation

e Depth sensing/instrumented indentation Berkovich
— highly accurate load-displacement record indenter
— Analytical models to determine modulus,
hardness and other mechanical properties using
the load-displacement data

e Analytical concept LOADING
— Purely elastic deformation upon initial unloading
— Contact between a rigid indenter and S| Unosome
homogeneous isotropic elastic half spacing
— Compliance of the sample and indenter tip — e c
springs in series —
— Hardness = load/contact area he For g=1 // \ h,.

— Elastic modulus determined by stiffness (S) heFor €=0.72
DISPLACEMENT, h

POSSIBLE
RANGE FOR

h

e Dynamic Modulus Analysis at nm scale Oliver & Pharr (1992)



Initial Indentation Results

Indentation array: 16 x 16, 20 um spacing
[Hysitron Tribolndenter 900]

Indentation strain rate = 0.1 (Oliver et al., 1997) -
- x . Quartz (Silica)

(current change in displacement/current total disp.) ZEZ=:

Maximum load = 10 mN < e

Zircon

Dolomites
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Monazite
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Ti oxides

BT OTIT

E=5~100 GPa BN
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Multiscale Indentation Testing

Loading-unloading cycle
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Indentation Modulus (GPa)

Multiscale Indentation Testing

Mancos Position A Mancos Position A

Indentation Modulus (GPa)
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Effect of Mineralogy on Mechanical
Properties
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Nanoindentation Impressions

Low-clay percentage samples.
(1&2): surface of pure quartz
and feldspar having higher
values of mechanical
properties such as elastic
modulus and hardness.

(3): dissolution surface of
feldspar

(4-6): grain-to-grain boundary
and edge-of-grain, which have
lower mechanical properties
values.

NOTE: Q=quartz, P=pyrite,
C=carbonate, F=feldspar, and
IL=illite)

Yoon et al. (in prep)



Effect of Compositions and textures on
Mechanical Properties
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ABAQUS FEA

3D Mechanistic Modeling
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Upscaling for Mechanical Properties

Phase field modeling for averaging mechanical properties

Spatial mineralogical mapping with compositional heterogeneity
Development of correlation with nanoindentation results

Evaluation of soft cement or multi-mineral regions on mechanical responses
with various conditions (e.g., defects, layering, anisotropy)
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Velocities of Mancos Shale lithofacies
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Other Ongoing Works



Chemo-mechanical Processes:
Chemical Flooding in Nano-porous Chalk

FIB-SEM
(~10 pm)
Mg

concentration

Chemically
Altered Plasma

zone £ oA R, FIB-SEM

1250 2500

Samples from Nermoen et al., (JGR,2015) Yoon et al. (In prep)



racture Patterns: Borehole Breakout Test

2” diameter




\ar

Permeability Control and
Proppants’ Behavior in Fractures

Fractured
grain

‘ - —
Micro-CT image with proppants in a Load cell#*

fracture

-
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3D printing applications




Multiphysics Simulations

(a) Proppant loading = 0.11 Ib/f?

(b) Proppant loading
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Methane flow in kerogen “tubule”

5 nm = effective

size of pore throat 0.38 nm = one

methane molecule
1.7 nm = one C,,
molecule




Seismic Signal Acquisition and Analysis

Full waveform measurements with AE
and seismic wave
transmission/reflection:

Delineate the stages of crack initiation and
propagation
Use bi-& tri-axial loading conditions and

crack orientations to achieve mixed-mode I- #
[I-11l loading with and without pore pressure

Experimental data will be analyzed in
conjunction with computer simulations:

Identify all possible components of the
signals (body wave, converted modes,
guided modes, etc.)

Interpret the hydraulic properties of
fractures

Develop the relationship between the
interpreted stiffness of the fractures and
fluid flow (w/ micro-CT images)

simulation of fluid-
injection scenarios
(Chang et al., BSSA
2018, JGR & GRL
(under review)
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Multiscale network and flows with ROMs + ML

Horn River Shale Gas (CA) U.S. Major Shale Plays (with UT-BEG)
* International collaboration with Korea « Can we explain and predict future
Gas Corporation (KOGAS) technology shifts and well performance?
» Extensive Reservoir characteristics (3D * How large is the uncertainty around well
seismic data & microseismic data, well performance?
logs (gamma ray, resistivity, sonic, * How should ML algorithms be trained
porosity, etc), core sample analysis) (supervised, un-(or semi-)supervised)?

* Integrated 3D reservoir model &
geomechanical and geophysical model
« Dynamic production data

¢ Production
~ data

Rates { Mok D)
3 ¥ owas
-y
g " fort 4% 5

%

2011-Aug-30  2013-Jan-11  2014-May-28 2015-Oct08 20

" . . Actug « simuleted
Microseismic data

(courtesy from KOGAS)  Ref: Kam et al. (2015, SPE-171611-PA)



Summary

¢ Integrated multiscale imaging and mechanical testing with
numerical simulation provides a robust approach to advancing
our understanding of shale (poro-) mechanical behaviors

e Texture/mineralogical characterization

— Recent advances in mineralogical mapping with high resolution imaging
over the large area

— Multiscale mineralogical and geologic features lead to considerable
heterogeneity of mechanical properties

e Mechanical tests

— Macroscopic and microscopic lithofacies have distinctively different
mechanical properties

— Bulk properties/averaging theory may be misleading as they can
represent averages of mechanically heterogeneous rock

— Microscopic heterogeneity of mechanical properties can control the
spatial distribution of fractures

— This heterogeneity should be taken into account for realistic mechanical

modeling and can scale up by rigorous theoretical and numerical
modeling



Thank Youl!!!



XRD vs. MAPS Mineralogy
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Chemically
Altered
zone
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