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Gallium Nitride for Power Electronics I{J}I

U Gallium nitride is rapidly becoming an important candidate for
succeeding silicon as a high-power electronics material

p-GaN

U The interest in gallium nitride for optoelectronics has led to
important developments that benefit gallium nitride for power
electronics, e.g. high-quality substrates.

U Gallium nitride possesses a bandgap (3.4 eV) more than 3 times that
of silicon (1.12 eV), allowing it to operate at higher temperatures
than silicon [1]

U Gallium nitride possess a larger critical electric field (3.3 X
10° V/cm) than silicon (0.3 X 10° V/cm) [1] Substrate

O Allows for higher Baliga Figure of Merit
Q BFOM « E3[1]

2
Q BFOM = R 2]
ROTl

[1] Flack, T. et al., Journal of Electronic Materials 45 (2016).

[2] Ohta, H. et al., IEEE Electron Device Letters 36(11), 1180—-1182 (2015).
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Applications

Wind Turbines Ship Propulsion Systems

= iy
Solar Inverters Consumer Electronics Data Centers
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GaN Power Device Architectures
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O Vertical geometries are preferred over lateral geometries for power devices for
two reasons
O Increase the breakdown voltage V,,,- by growing a thicker drift region

O Increase current handling by designing devices with wider lateral
dimensions

O Vertical Junction Field Effect Transistor (VJFET)
O Applying a bias to the gate terminals modifies the depletion region
between the p-GaN regions allowing the modulation of current flowing
through the source and drain.

L Simulations by researchers from Arizona State University demonstrated a
Vertical Cavity JFET achieving V},, = 1260 V and R,,,, = 5.2m{) - cm? for a
drift region of 11 um [3]. Compares well with other devices.

L Performs similarly to a SiC MOSFET by Mitsubishi [4]:
Vgr = 1200V, R,,, = 5 mQ - cm?

[3]1Ji, D. and Chowdhury, S.,IEEE Transactions on Electron Devices 62(8), 2571-2578 (2015).

[4] Miura, N. et al., 2006 IEEE International Symposium on Power Semiconductor Devices and IC’s, 1-4 (2006).
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Concerns on Impurity Incorporation

GV
W1

L GaN devices with complex designs such as JFETs often
require selectively doped regions embedded into the device.
O Such selectively doped regions are achieved by selective etch
then regrowth of the embedded region.
L p-njunctions at these regrowth interfaces show considerable
leakage currents

O Impurity incorporation from shallow dopants oxygen and silicon, or
the deep level acceptor carbon at these regrowth interfaces might be a
factor in the leakage currents.

O Further, studies have shown that different substrate orientations such
as m-plane incorporate impurities differently than c-plane. This is
possibly due to the higher density of nitrogen sites [5-7].

L For that reason, it is important to consider the contribution that non-
basal sidewalls might have to the leakage current.

[5] Fichtenbaum, N. A. et al., Journal of Crystal Growth 310(6), 1124-1131 (2008).
[6] Cruz, S. C. et al., Journal of Crystal Growth 311(15), 3817-3823 (2009).

[7] Browne, D. A. et al., Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 30(4),
041513 (2012).
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Experiment 1-Induction of interfacial impurities
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L How do growth interruptions and re-initiations affect impurity levels?

L How does regrowth affect impurity levels?

L How do growth conditions affect impurity levels?
O No SiH, or Cp,Mg flowed into the chamber
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Experiment 1-Induction of interfacial impurities Y1
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O Secondary ion mass spectrometry (SIMS) profile analyses were performed by EAG Laboratories.

O The largest impurity spikes were due to the outside interruptions followed by the load lock interruption then by the in-
chamber interruption.

O The impurity levels appear to be relatively benign. How do they affect performance?
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Experiment 2 - Effect of interfacial impurities on p-n diodes
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Experiment 2 - Effect of interfacial impurities on p-n diodes I{L]}I
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Experiment 2 — Effect of interfacial impurities on p-n diodes I{J}I
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U The p-n diodes featuring continuous growth and interrupted growths performed relatively similarly.

U The p-n diodes featuring a regrown p-GaN layer experienced high leakage currents both in reverse bias and forward bias before turn on.

U Continuous p-n diodes are the first on m-plane to achieve 300 V.
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Experiment 2 — Effect of interfacial impurities on p-n diodes I{J_}T’I
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O SIMS profile analysis showed the presence of large impurity spike at the p-n junction of the sample with a regrown p-GaN layer.

O C-V measurements revealed a net carrier spike in the sample featuring a regrown p-GaN layer. This suggests the oxygen acting as dopants have created

the spike. We believe the C-V measurements are artificially high due to stray capacitances and are representative of trends rather than absolute carrier
concentrations.

U The main difference between the SIMS profiles is the presence of the impurity spikes in the regrown sample. It could be possible that the large impurity
spikes have a role in the I-V characteristics of the regrown sample.
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Experiment 3 — Effect of wet etch treatment on interfacial impurities and p-n diodes @
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Experiment 3 — Effect of wet etch treatment on interfacial impurities and p-n diodes m
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0 The wet etch treated diodes performed slightly worse than the untreated diodes.

0 The wet etch treated diodes all showed high leakage currents before turn-on in forward bias. However, some untreated
diodes show much less leakage current before turn-on

0 The wet etch treated diodes generally demonstrated higher leakage current in reverse bias than the untreated diodes.
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Experiment 3 — Effect of wet etch treatment on interfacial impurities and p-n diodes I{J}I
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O The SIMS profile analysis between p-n diodes that were continuously grown, possessed an untreated regrown p-
region, and possessed a wet etch treated regrown p-region as shown.

O The analysis comparing the three suggests that the wet etch treatment removed the oxygen and carbon impurity
spikes
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i GV
Conclusion Y1

O In the first experiment, we observed that inducing growth interruptions in which the sample was removed from the chamber and kept in a
nitrogen box for a week produced impurity spikes of concentrations (2.71 X 1017cm™3 — 5.19 x 1017 cm™3) that were 5 to 20 times the
concentration (2.5 X 101® cm™3 — 5.38 x 101® cm™3) of an in-chamber growth interruption lasting 10 minutes depending on growth
conditions.

U In the second experiment, the impurity levels of continuously grown, interrupted, and regrown p-n junctions of diodes were linked to
current-voltage characteristics demonstrating that impurities associated with interrupted growths did not severely impact performance while
the > 1 x 10'° cm™ oxygen and carbon impurity levels associated with regrowth caused p-n diodes to experience elevated leakage currents.

O The third experiment showed that buffered oxide etch treating a sample before a regrown p-GaN layer had removed much of the carbon and
oxygen impurities while adding silicon impurities and was unsuccessful in preventing high leakage currents.

L While a correlation between carbon, oxygen, and silicon impurities and diode performance cannot be uniquely established, we infer that such
impurities might play a role in the higher leakage current of p-n diodes featuring regrown layers.

O Growth and processing techniques for mitigating the negative effects of impurities in regrown junctions will need to be further developed to
realize GaN power devices with embedded p-n junctions.

Funded by the Advanced Research Projects Agency — Energy (ARPA-E), U.S. Department of
Energy under the PNDIODES program directed by Dr. Isik Kizilyalli.
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