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| Molecular Simulation of Phyllosilicates

* Phyllosilicates exist as TOT stacked
sheets

« Stacking disorder complicates structural
analysis

« Complex chemistry with |
multicomponent systems, cation
disorder, and vacancies

* Substitutions create a charge imbalance

@ : . _‘ o . ,
’\. ok ’, ‘\,a ( ,, which is satisfied with cations in the
. .‘m 4- . ‘ . ' . ‘ interlamellar layer

J e e ) ‘] * Swelling occurs which requires fully

flexible force fields
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| ClayFF Force Field Past Successes
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 Clayff has successfully modeled interactions, structures, and dynamics in bulk clays at the basal surface
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« But what about clay edges?

Cygan, R.T. et al.; J. Phys. Chem. B 2004, 108, 1255-1266
Teich-McGoldrick, S.L. et. al; J. Phys. Chem. C 2015, 119, 20880
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Binding of organics at clay surfaces
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b. pyrophyllite

Greathouse, J.A. et. al; J. Phys. Chem. C 2017, 121, 2273-22786



Parameters

Surface Energies (J.m?)
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 Surface energies of non-bonded ClayFF vs DFT have errors of up to 30%
« Edge Si-OH bond lengths are underestimated, Al-OH bond lengths are overestimated

Martins, D.M.S. et al.; J. Phys. Chem. C 2014, 118, 27308-27317
Newton, A.G; Sposito, G.; Clays Clay Miner. 2015, 63, 277-289



| Parameters
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 Surfaces in ClayFF are unstable and often “melt” at significantly lower than

expected temperatures

480

Reparametrization of atom charges

original ClayFF modified ClayFF DFT
Charges (e)
H 0.425 0.464
@) —0.871 —1.113
Al 1.575 2.018
Mg 1.050 1438
k (kJ-mol '-rad?)
Mg—O—H 250 53
Surface Energy (kJ-mol ' ‘A7)
[001] 3.81 3.84 2.40
[110] 1.56 3.77 4.24
[100] 3.38 6.26 6.35

Yu, K; Schmidt, J.R.; J. Phys. Chem. C 2014, 115, 1887-1898 |



| Parameters

e These e e '

0.003

£,0.002

0.001

0

380 400 420
Temperature (K)

 Surfaces in ClayFF are unstable and often “melt” at significantly lower than
expected temperatures

« Can we modify the ClayFF force field in way that is easy and consistent with
previous results?

480

Reparametrization of atom charges ;
original ClayFF modified ClayFF DFT
Charges (e)
H 0.425 0.464
O —0.871 —1.113
Al 1.575 2.018
Mg 1.050 1438
k (kJ-mol '-rad?)
Mg—O—H 250 53
Surface Energy (kJ-mol ' A7?)
[001] 3.81 3.84 2.40
[110] 1.56 3.77 4.24
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Yu, K; Schmidt, J.R.; J. Phys. Chem. C 2014, 115, 1887-1898 |



—
— DFT
— ClayFF-orig 5
B S cyrraion. Langle = k(0 — 0)
kvgon = 6 kcal-mol-'-rad-2; kaion = 15 kcal-mol-'-rad-2
— omon = 100°
— Gomon = 110°
— Gomgor = 120°; Goaion = 116°
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« Angle distributions from classical simulations with an angle bending term more
closely match results from DFT simulations ‘

Pouvreau, M. et. al; J. Phys. Chem. C 2017, 121, 14757-14771
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— ClayFF-orig 9
R, S ' ClayFF-MOH: Eangle =k (9 o 90)
448 w kugon = 6 kcal-mol-'rad2; kaiow = 15 kcal-mol-'-rad2

— Gomor = 100°
— Gomon = 110°
— GomgoH = 120°; GoaioH = 116°
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« Angle distributions from classical simulations with an angle bending term more
closely match results from DFT simulations I
* |s this improved structure observable via infrared spectroscopy?

Pouvreau, M. et. al; J. Phys. Chem. C 2017, 121, 14757-14771 I



Theory Ca\cu\atmns
A " ,—‘~~ ” =
structures using DFPT

.\MAM,‘. Sty

I(w) ao(s)es(s)]?
a=1 s=1 =1 ‘
M \/ | Vibrational eigenvector

Cartesian polarizations

"’ Y - m Born effective charge of st atom

OD spectra replaces edge H’s with D’s

 Vibrational spectrum calculated on periodic

1x1x1 unit cell, (010) and (110) faces of pyrophyllite, 1 edge cut on each face

VASP optimized/vibrational frequencies (PAW method, PBESol functional, DFT-D3 VDW corrections)
Deuterate edges to compare to ATR-FTIR experiments where deuteration will only occur at edges
Deuterated spectra are calculated from the protonated optimized structure

Phys. Rev. B 1991, 43, 7231-7242; J. Chem. Phys. 1994, 100, 8537-8539
Rev. Mod. Phys. 2001, 73, 515-562; J. Phys. Condens. Matt. 2010, 22, 265006



. | Pyrophyllite Edges
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The Effect of Deuteration on IR Spectrum
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Pyrophyllite

6x4x4 box created from optimized unit cells (3984
atoms) ‘

ClayFF force field with Al-O-H and Si-O-H angle
bending parameters:

k =15 kcal /mol
Eungte = k(0 —05)* 0,81 —0 — H = 100°

0, Al — O — H =110°
 H/D atoms have different masses but same force field
parameters

 NVT ensemble controlled by Nose-Hoover thermostat
* 10 ns equilibration time
« 5 ns of production run time, vibrational analysis over
1ns
» Infrared Spectrum: I
_ i - —iwt /A Y, o 1 > —zwt t
Iw)= 5 /_ e () - 3E(0)) 1) = 5 /_ e |
M) =S ani) Z qivi(t

Al-O-H: Pouvreau, M. et. al; J. Phys. Chem. C 2017, 121, 14757-14771
Si-O-H: Pouvreau, M. et. al 2017, in prep.



| from Correlation Funct
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. | of Angle Bending Term
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.| IR Spectrum of (110) Pyrophyllite Edge
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| Pyrophyllite Spectrum to Experiments
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| Conclusions

ClayFF angle bending terms improve
simulated clay edge structure
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— ClayFF-orig
ClayFF-MOH:

— Gomon = 100°
— Gomon = 110°
— Gomgon = 120°; Gomion = 116°
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Direct observation of clay edge
improved agreement in clay IR spectrum via IR spectroscopy
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