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Motivation for DDROM

• Typical ROMs can work very well, e.g., classical RB, POD, PGD, DMD techniques. However,

training typical ROMs can be very burdensome for decomposable engineering systems:

Require training simulations for the full-system, which is very costly.

If a full-system is based on components that can be assembled in different ways, require
training for each full-system configuration.

• Main idea: a 'divide and conquer' approach that

(1) Constructs reduced basis locally for different components/subdomains of the full-system.

(2) Solve the resulting full-system ROM using ideas from non-overlapping domain decomposition.

Subdomains/components can be trained separately.

Full-system ROMs can be assembled from components in arbitrary ways (i.e., Lego blocks).

Can enforce weak compatibility between subdomains, which mitigates the need for
matching meshes, for example

Applicable to nonlinear systems.

Multiple different solvers that expose different levels of parallelism.



Literature reviews for DDROM

➢Parameterized linear static PDE: Galerkin projection, no hyper-reduction

RDF [lapichino 2016]: parametric BCs on local subdomains (heat conduction)

LRBMS [Ohlberger 2015]: weak constraint with DG (multiscale material homogenization)

SCRBE [Huynh 2013, Huynh 2015]: strong constraint (heat conduction, structural analysis)

RBHM [lapichino 2012]: strong constraint (Stokes equation, cardiovascular network)

RBEM [Maday 2002]: weak constraint with Lagrange multiplier (potential flows analysis)

➢Parameterized nonlinear static PDE: Galerkin projection, hybrid FOM+ROM

[Kerfriden 2013]: strong constraint (nonlinear fracture mechanics)

[Baiges 2013]: strong constraint (Navier-Stokes equation with hyper-reduction)

[Buffoni 2009]: strong constraint (compressible Euler equation)

and many other works.



Key attributes of our proposed methodology

1. Applicable to nonlinear systems.

2. hyper-reduction is enabled.

3. Subdomain LSPG ROMs can be constructed completely independently (i.e., tailored basis,
hyper-reduction).

4. Global problem constructed by exploiting the optimization structure of LSPG ROMs:
formulate a nonlinear least squares problem with Iinear equality constraints associated
with possibly weak compatibility.

5. Weak compatibilitv enables the interface reduced bases to not be perfectly matched. This
implies that no global ROM exists! But it ends up giving the best performance.

6. Different kinds of basis functions on the interfaces of subdomains (port, skeleton, and
intertace) are proposed.

7. The decomposed structure allows for very efficient numerical solvers that can exploit the
localized structure: primal-dual monolithic, primal-dual Schur complement, primal
monolithic, primal Schur complemeni, nonlinear primal solvers.

8. In the online stage, each solver composed of assembly and solving steps. The assembly
step can be done in parallel, while the solving step is done as whole.



Problem settings

Global FOM approximation: r (x) = 0
with residual r : -VI "Rn , state x E

DDFOM re-formulation:
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Define a set of "ports", the jth port is P (j) , compatibility conditions:

[Pii]Txi = [13-ii]Txr, i,l E P(j)
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Reduced order models

DDROM approximation:
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Reduced order models...

Interface basis functions types
"Port" basis function "Skeleton" basis function "Interface" basis function

1. Isolate global snapshots
to ports.

2. Compute separate SVD

for each port to form

port basis functions
(BFs).

3. Stack the port BFs to

form interface BFs.

Constraint types

+ Strong constraint: Ai

+ Weak constraint: Ai

1. Isolate global snapshots to
skeleton DOFs.

2. Compute SVD for the

skeleton DOFs to create

skeleton BFs.

3. Isolate the skeleton BFs to

each subdomain interface.

4. Orthogonalize the above to
form interface BFs.

At

At

.
2 1, . . . , fric2

1. Isolate global
snapshots to

subdomain interface.

2. Compute separate SVD

for each interface to

create interface BFs.

Note: ROM & GNAT offline

is performed separately on
each subdomain



Sequential Quadratic Programming method

Lagrangian:
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Primal-dual monolithic solver

Use Gauss-Newton approximation, one SQP iteration is defined as
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Primal-dual monolithic solver...
where
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Primal-dual monolithic solver...
Algorithm 1: Assembling procedure of
primal—dual monolithic solver

1: Update the ROM state;

2: Compute residuals ri (10ic2 4, 4:0 " i1-) and
Jacobians aaær'n(t•ic2e,(13iF / i1-7),

i
ari (439 / c.2 431: '1-7. /) from each subd omain-aær , t i 

3: Compute all terms in [Stationary
condition] from each subdomain;

4: "Stamping" all terms into big system ;

Algorithm 1: Solving procedure of primal—
dual monolithic solver

5: Solve the big system;

6: Extract search directions pc i 2 , ii : 7 , pA,
7: Update solutions;
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Numerical examples: one online computation

Table 1: Heat equation, 2x2 "fine" configuration. ROM method performance
at point p, = (5.005,5.005) 04, Etrain for one online computation (1 < i < nc2)

constraint type strong

basis function type port skeleton interface

method LSPG LSPG MAT LSPG MATG\AT

energy rate on St 1 — 10-5 1 — 10-5 1 — 10-5 1 — 10-5 1 — 10-5 1 — 10-5
energy rate on Fi 1 — 10-5 1 — 10-5 1 — 10-5 1 — 10-5 1 — 10-5 1 — 10-5
energy rate on ri 1 — 10-12 1 — 10-12 1 — 10-12

rif/nri 2 2 2

relative error 0.0026 0.0012 0.0025 0.0019 0.9912 0.9920
speedup 1.29 2.80 1.29 2.78 1.19 2.60



Numerical examples : DDROM and DDGNAT
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Numerical examples : many online computations

Table 1: Heat equation. ROM method-parameters at point p, = (5.005, 5.005) V

,E-train for many online computations

method LSPG GNAT

energy rate on Qi
energy rate on Fi
energy rate on ri

rif /n'T;
constraint type

BF type

{1 - 10-511- 10-8}
{1- 10-511- 10-8}

{1, 2, 3, 4, 5, strong}
{portBF, skelBF, intfBF}

{1- 10-511- 10-8}
{1- 10-51 1-10-8}

{1-10-6,1- 10-8,1- 10-10,1- 10-12}
{1, 1.5, 2, 4}

{1, 2, 3, 4, 5, strong}
{portBF, skelBF, intfBF}



2x2 fine
config.

Numerical examples : many online computations
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Summary

• Port type: ( ) global problem (don't need weak constraint), but ( ) large # dof.
Expect strong constraints to be best. Otherwise, we get inconsistent solutions
on a port.

• Skeleton type: ideal because ( ) global problem (don't need weak constraint),
and (+) it minimizes effective # dof, but ( ) "not practical". Expect strong
constraints to be best. Otherwise, we get inconsistent solutions on a port.

• Interface type: (+) practical, but ( ) no global problem (need weak constraint).
Expect weak constraints to be best. Otherwise, we may have a very low-
dimensional global problem.
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