This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Domain-decomposition least-squares <

Petrov-Galerkin (DD-LSPG) nonlinear
model reduction

AT e

' . AN M B
L v e - N
I L] 'I o 9" ’ )
t . N
’ ' A ) .
4 | . 3 .
» ‘ ' -

i

L
’ <
’ )
!
~ - - N

Chi Hoang and Kevin Carlberg |

SAND2018-8091C

r' WA DERANTEENT OF
(z)ENERGY NS4

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
Administration under contract DE-NA0003525.



Motivation for DDROM

* Typical ROMs can work very well, e.g., classical RB, POD, PGD, DMD techniques. However,
training typical ROMs can be very burdensome for decomposable engineering systems:

- Require training simulations for the full-system, which is very costly.

- If a full-system is based on components that can be assembled in different ways, require
training for each full-system configuration.

* Main idea: a ‘divide and conquer’ approach that
(1) Constructs reduced basis locally for different components/subdomains of the full-system.
(2) Solve the resulting full-system ROM using ideas from non-overlapping domain decomposition.
+ Subdomains/components can be trained separately.
+ Full-system ROMs can be assembled from components in arbitrary ways (i.e., Lego blocks).

+ Can enforce weak compatibility between subdomains, which mitigates the need for
matching meshes, for example

+ Applicable to nonlinear systems.
+ Multiple different solvers that expose different levels of parallelism.



Literature reviews for DDROM

»Parameterized linear static PDE: Galerkin projection, no hyper-reduction
RDF [lapichino 2016]: parametric BCs on local subdomains (heat conduction)
LRBMS [Ohlberger 2015]: weak constraint with DG (multiscale material homogenization)
SCRBE [Huynh 2013, Huynh 2015]: strong constraint (heat conduction, structural analysis)
RBHM [lapichino 2012]: strong constraint (Stokes equation, cardiovascular network)

RBEM [Maday 2002]: weak constraint with Lagrange multiplier (potential flows analysis)

»Parameterized nonlinear static PDE: Galerkin projection, hybrid FOM+ROM
[Kerfriden 2013]: strong constraint (nonlinear fracture mechanics)

[Baiges 2013]: strong constraint (Navier-Stokes equation with hyper-reduction)

[Buffoni 2009]: strong constraint (compressible Euler equation)

and many other works.



Key attributes of our proposed methodology

Applicable to nonlinear systems.
Hyper-reduction is enabled.

Subdomain LSPG ROMs can be constructed completely independently (i.e., tailored basis,
hyper-reduction).

Global problem constructed by exploiting the optimization structure of LSPG ROMs:
formulate a nonlinear least squares problem with linear equality constraints associated
with possibly weak compatibility.

Weak compatibility enables the interface reduced bases to not be perfectly matched. This
implies that no global ROM exists! But it ends up giving the best performance.

Different kinds of basis functions on the interfaces of subdomains (port, skeleton, and
interface) are proposed.

The decomposed structure allows for very efficient numerical solvers that can exploit the
localized structure: primal-dual monolithic, primal-dual Schur complement, primal
monolithic, primal Schur complement, nonlinear primal solvers.

In the online stage, each solver composed of assembly and solving steps. The assembly
step can be done in parallel, while the solving step is done as whole.
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Problem settings

Global FOM approximation: r(x) =0
with residual 7 : R™ — R™ state & € R"

DDFOM re-formulation:

no
r(x) =) [Pi]"ri(Pz,Pjx), VzecR"
1=1
= Pz cR% , x} := Plz € R", ; := (z, )

Define a set of “ports”, the jth port is P( ) compatibility conditions:

[P"2] = [P]]"a], i,l€ P(j)

nao
'rz-(ar:g-2 mf) =0, 2=1,...,nq subject to Zﬁzw}; =0

79
1=1



Reduced order models
DDROM approximation:

@) 0 r " .
Introduce reduced bases: <I>,§2 c R™: <Pq <I)r R™ *Pi g =1,.

Solution approximation: &; ~ &; = (iQ NF) (‘I)Q i (I)F F)

1 )

mmlmlze 5 ZH’PZ <I>Q Q <I>F P)Hg

(53 ) (m1’ AF

subject to Z A;®r & =0
i=1

DDGNAT approximation:

nao

minimize 1> | ®](Z,®])" Z;ri(®]a], B &) )3

(@28, @] ,..2h ) T

nao
subject to Z Aiifif =0

1=1



Reduced order models...

Interface basis functions types

“Port” basis function “Skeleton” basis function “Interface” basis function
1. Isolate global snapshots | 1. Isolate global snapshots to 1. Isolate global
to ports. skeleton DOFs. snapshots to
2. Compute separate SVD 2. Compute SVD for the subdomain interface.
for each port to form skeleton DOFs to create 2. Compute separate SVD
port basis functions skeleton BFs. for each interface to
(BFs). 3. Isolate the skeleton BFs to create interface BFs.
3. Stack the port BFs to each subdomain interface.
form interface BFs. 4. Orthogonalize the above to
form interface BFs.
Constraint types ) Note: ROM & GNAT offline
+ Strong constraint: A; = A; . is performed separately on

y v=1,...,nq each subdomain
+ Weak constraint: A; = C; A;



Sequential Quadratic Programming method

Lagrangian:
L(ZY, @), By By A) 1= 5 iy 70 (BF 5, @5 ;)13

nQ’? T nNQ’
neo ] A '~ T

Necessary optimality condition (KKT condition):

a ,l./ A A A A
i@ 2)) = ()7 o5 (e @l a]) (@], 2 4]) =0,
L
a /I: A A A A
(@l @) = (@) T (@00, @1 e]) r (@4l #fa]) + (@)7ATA ~0
€L;

nao

Z T .T .
AZ@ZCB,L:O, Z:].,...,TLQ.

1=1
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Primal-dual monolithic solver

Use Gauss-Newton approximation, one SQP iteration is defined as




Primal-dual monolithic solver...

where 5 9
50 2T . (I)Q ri 252 $lal ri (I)Q Q (I)F T (I)Q
el an) = (@) g o (@lel ele) § 5 (@) )
or; or;
H' (a7, 2]) == (80)" (@%@ 2])" o (72!, ]2} ) @]
Oz ox}
or; 0
Hi" (@], a]) = (®])" 5 (@02l @ a])" -+ (@a), @ 2] )®]
ox} ox}
or; 0
HI" (@], &]) = (®])7 o (@a], @[ &) -5 (827, @[ ] ) ®{.
ox} s’
Update Agkﬁz}:#apg, 1=1,...,nq
ﬁj?%{b? il Ckp?, 2 17 , VO



Primal-dual monolithic solver...

Algorithm 1: Assembling procedure of
primal—dual monolithic solver

1: Update the ROM state;
2: Compute residuals r;(®%&}", ®I' &) ) and

1 1

. 8 i Q’\Q F"F
Jacobians =74 (®;'z;", ®; x; ),

2 ~ ) i ~T .
g;% (B3, ®; &, ) from each subdomain;

3: éompute all terms in [Stationary
condition]| from each subdomain;
4. “Stamping” all terms into big system ;

Algorithm 1: Solving procedure of primal—
dual monolithic solver

5: Solve the big system;

6: Extract search directions p?, P, p:
7: Update solutions;




Numerical examples

The FE governing equation:

w2 H1 o pouw 4\ _ : . [Grepl 2007]
Veu + o (eF?" — 1) = 100 sin(27x1 ) sin(27xs) Chaturantabut 20101

K= (:u17:u2) cD = [0017 10]27 |Etrain‘ = 400
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“Coarse” 40x40 elem.

“Fine” 80x80 elem.

2x2 configuration

4x4 configuration
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Numerical examples: one online computation

Table 1: Heat equation, 2x2 “fine” configuration. ROM method performance
at point p = (5.005,5.005) € Zi,ain for one online computation (1 < i < ng)

constraint type strong
basis function type port skeleton interface
method LSPG GNAT LSPG GNAT LSPG GNAT
energy rateon ; || 1—-10"°| 1—-10"° || 1—-10°| 1—-10"° || 1—-10"° | 1—-10°
energy rate on I 1-107®> | 1-10"° ||1-10"°| 1—-10"° || 1—-10"> | 1 —10"°
energy rate on r; 1 —10"12 1 —10"12 1 —-10"12
n?/ny 2 2 2
relative error 0.0026 0.0012 0.0025 0.0019 0.9912 0.9920
speedup 1.29 2.80 1.29 2 TS 1.19 2.60
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Numerical examples : many online computations

Table 1: Heat equation. ROM method-parameters at point u = (5.005, 5.005) ¢
Zirain fOr many online computations

method LSPG GNAT
energy rate on € {1-107°,1—-10"%8} {1-107°,1—-10"%8}
energy rate on I'; {1-10"°,1-10"8} {1-10"°,1-10"8}
energy rate on r; {1-107%1-10"%1-10"1°1-10"12}
n;/n’ {1, 1.5, 2, 4}
constraint type {1, 2, 3, 4, 5, strong} {1, 2, 3, 4, 5, strong}
BF type {portBF, skelBF, intfBF} {portBF, skelBF, intfBF}




Numerical examples : many online computations

10° ‘ 10° , 10° , .
i —+ LSPG-portBF " —+—LSPG-portBF T —+— LSPG-portBF
—+— LSPG-skelBF —+— LSPG-skelBF —+— LSPG-skelBF
10~ 11 —+— LSPG-intfBF 10-1. —+ LSPG-intfBF 1011 —+— LSPG-intfBF

-~ GNAT-portBF |
——- GNAT-skelBF

—-o-GNAT-portBF
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—-—-GNAT-intfBF

-6~ GNAT-portBF
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=
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Summary

 Port type: (+) global problem (don't need weak constraint), but (-) large # dof.
Expect strong constraints to be best. Otherwise, we get inconsistent solutions
on a port.

 Skeleton type: ideal because (+) global problem (don't need weak constraint),
and (+) it minimizes effective # dof, but (-) "not practical". Expect strong
constraints to be best. Otherwise, we get inconsistent solutions on a port.

* Interface type: (+) practical, but (-) no global problem (need weak constraint).
Expect weak constraints to be best. Otherwise, we may have a very low-
dimensional global problem.



THANKS FOR YOUR ATTENTION
QUESTION?



