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21 Outline

oIntroduction

■U.S. Program Wastes

■Tristructural Isotropic (TRISO) Particle Fuels

■Considerations for TRISO Spent Fuels
•Features, Events, and Processes (FEP)

• Coupled SiC Layer Corrosion and Radionuclide Diffusion
(coauthor Fred Gelbard, SNL)

•Summary and Conclusions
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Spent Nuclear Fuel and High-Level Radioactive
Waste Disposal: The Goal

Deep geologic disposal has been planned
since the 1950s (SNL, 2014 provides
recent analysis of disposal options)

"There has been, for
decades, a worldwide
consensus in the
nuclear technical
community for
disposal through
geological isolation
of high-level waste
(HLW), including
spent nuclear fuel
(SNF)."

"Geological disposal
remains the only
long-term solution
available."

National Research Council, 2001
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4 1 How Repositories Work
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Geologic Disposal in the US: The Reality
DOE-managed SNF and HLW is in Temporary Storage at 5 Sites in 5 States

Hanford
"9,700 Canisters 1Projectedi

TOTAL
"3,175 Canisters (2010)
"19,865-21,365 Canisters Itatal Projected)

[....., 

1
West Valley

275 Canisters pow)

I-ILW at West Valley is
owned by New 'York Slate

Canisters - HLW Canisters for Disposal

Savannah River
-2,900caeištCrš (2010)
-6,300 Canisters (Total Projected)

DOE-Managed
HLW

—20,000 total
canisters

(projected)

DOE-Managed SNF

—2,458 Metric Tons

FSVR TRISO (-23.5 MTHM) M1

Source: Marcinowski, F., "Overview of DOE's Spent
Nuclear Fuel and High-Level Waste," presentation
to the Blue Ribbon Commission on America's
Nuclear Future, March, 25, 2010, Washington, DC.

Hanford

'2,130 MTHM
Defense: -2,102 MTHM

Non-Defense: -27 MTHM

Fort 5t Vrain, CO

Non-Defense: -15

TOTAL
-2,458 MTHM

Defense: -2,149 MTHM
Non-Defense: -309 MTHM

-3,500 DOE Canisters

Idaho

-280 MTMM

Defense: -36 MTHM
Non-Defense: -246 MTHM

MTHM — Metric Tons Heavy Metal

Other Domestic Sites

-2 MTHM

Defense: <1 MTHM
Non-Defense: -2 MTHM

Savannah River

-30 MTHM

Defense: -10 MTHM
Non-Defense: -19 MTHM
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5,580

TRISO
per
compact

TRISO Particle Fuels Overview

iv

TRISO
Particles

3,126
comparts
per
element

(from van den Akker and Ahn, 2013)

Characteristics of TRISO fuel with a LJOx core of radius 250 - 300

Layer

Nominal
Thickness

(Pm)
Purpose/function

porous
pyrolytic
carbon buffer

60 - 95 - allows kernel to swell
- stops recoiling fission products from reaching SiC layer
- provides void volume for gases

inner dense
pyrolytic
carbon (IPyC)

30 - 40 - barrier to gaseous fission products
- slows down metallic fission product transport

Silicon
Carbide (SiC)

25 - 35 - main fission product barrier
- structural support to contain gas pressure

Outer dense
pyrolytic
carbon
(OPyC)

40 - 45 - protects SiC layer from chemical and mechanical damage
- adds to support to contain gas pressure

Sources: Minato et al., (1994); Moonnann, et al., (2001); Nabielek et al., (2010); Fachinger (2006).

°Previous work by van den Akker and Ahn (2013) evaluated releases in
repository setting
• Relies mainly on graphite matrix chemical longevity (oxidation)
• Fuel element graphite
• Individual graphite compacts
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Degradation and Release Mechanisms for
71 TRISO Particles
oCorrosion of SiC and PyC layers
• Using Fachinger et al. (2006) data for various fluids and temperatures

oModels of van den Akker and Ahn (2013) to assess SiC layer rupture
dependent on
• Corrosion rates; 2CAMP•

• Possible protection via outer PyC
• Helium internal pressure buildup
• Statistical variability of SiC strength

oAdditional FEP Considerations
• Degradation mechanisms for graphite matrix (elements and compacts)
• Seismic disruption: (compacts likely more durable than elements)
• Porosity/permeability evolution over time — advective pathways

• Diffusive release through graphite matrix
• Compare to lifetimes 106 — 108 yrs

• Condition of particles (e.g., location of radionuclides; Demkowicz et al., 2017)

oDiffusion of radionuclides through particles (Gelbard, 2002)
• Diffusivities not readily available for SiC
• Sensitivity study of diffusion compared to SiC layer corrosion
• Coupled diffusion and corrosion of SiC layer
• Kinetic models used to estimate/assess magnitude of diffusivities

_,•Q!O VAISPI Er -Pf1,1
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8 SiC layer corrosion lifetimes for TRISO fuel
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II Repositories:

• >90 °C for 100's
to —1500 yrs
• Lack of water in
WP to corrode SiC

• <50 °C —103 to
104 yrs

Temperature (C)

•SiC layer corrosion data for different brines indicate:
• At 90 °C the 354m layer would last —7000 years (average at constant T )
• At 25 °C the would layer last —100,000 years (average at constant T )

oEstimated layer lifetime will depend on thermal evolution
• Uncertainties: corrosion rate, thermal history, hydrologic condition (-104 to 105 years)
• Pyrolitc carbon layer protection may add to lifetime (-106 years; van den Akker and Ahn, 2013)
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Example radionuclides of interest for geological
9 I repositories

Radionuclide Half-life (years) Decay Product

1291

36C1

226Ra

79Se

1.57 x 107 129xe

3.01 x 105 36Ar i

1.60 x 103 222Rn _> 218Po _> 214Pb _> 214Bi _> 214Po _> 210Pb I

_> 210Bi _> 210Po _> 206Pb

2.95 x 105 79Br

99Tc 2.13 x 105 99Ru

Actinides

oData for diffusivities through SiC
• Not readily available in general, and specifically at repository temperatures

•Conduct sensitivity analyses for coupled radionuclide diffusion and SiC layer
corrosion to identify threshold diffusivities

I

SASSANIaGELBARD GOLDSCMIDT 2018



I Simplifications for simultaneous SiC layer
I corrosion and radionuclide diffusion

•Diffusivities of 36C1, 90Sr, and 134Cs through graphite in different brines
range from 1.2 x 10-13 m2/s to 6.3 x 10-13 m2/s (Fachinger et al., 2006)
• Likely faster than for denser SiC, so assume instant transport for carbon layers

OUTER PYROCARBON

•

SIC
INNER PYROCARBON

FUEL KERNEL

POROUS CARBON (BUFFER)

Regressing
surface

mm

°Evaluate range of diffusivities through SiC, while layer corrodes
• Compare releases for 25 °C and 90 °C corrosion rates.
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Simultaneous radionuclide diffusion through,
„ I and corrosion of, the SiC layer
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• If diffusivity through SiC is 10-18 m2/s => diffusive release dominates

• If diffusivity through SiC is 10-21 m2/s => diffusive release contributes only
for lower T's
• This is 10-8 times than that for the carbon/graphite materials (-10-13 m2/s)
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Diffusivity data analyzed by Malherbe (2013) are
12 at higher temperatures than disposal conditions
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°Extrapolate to T where D=>10-21 m2/s

•Diffusivities for both Ag and Cs hit this at —750 K (-480 °C)

9 10 11

1 000 K

SASSANIaGELBARD GOLDSCMIDT 2018



13  Summary and Conclusions

mSiC Layer Lifetimes
oAbout 100,000 to 7,000 years from SiC average corrosion rates
• Fluid composition and thermal history

• If OPyC is protective, may be longer (-106 yr; van den Akker and Ahn, 2013)

oSimultaneous SiC Corrosion and Radionuclide Diffusion
• Simplified moving boundary problem with diffusion
•If diffusivity through SiC is 10-21 m2/s
• Diffusive release contributes to release only for lower temperatures

• High T data for Ag and Cs suggest values would be well below this value

• Diffusion in graphite/pyrolitic carbon may be much higher

oNext Steps
oDevelop model further, coupling stochastics
• Added layers, including diffusion through compact graphite matrix

• Evolving temperatures for repository

oAssess major uncertainties
• Diffusivities, especially in SiC

• Mechanical behavior/evolution of graphite matrix (elements and compacts)
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