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.| Outline

"[ntroduction
=U.S. Program Wastes
='Tristructural Isotropic (TRISO) Particle Fuels

*Considerations for TRISO Spent Fuels

= Features, Events, and Processes (FEP)

" Coupled SiC Layer Corrosion and Radionuclide Diffusion
(coauthor Fred Gelbard, SNL)

*Summary and Conclusions
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Spent Nuclear Fuel and High-Level Radioactive
Waste Disposal: The Goal

” Deep geologic disposal has been planned
There has been, for since the 1950s (SNL, 2014 provides

decades, a WOﬂdWlde recent analysis of disposal options)
consensus in the

nuclear technical
community for
disposal through
geological i1solation
of high-level waste
(HLW), including
spent nuclear fuel

(SNF).”

“Geological disposal -
remains the only
long-term solution

available.”

National Research Council, 2001

Crystalline Underground portion of
bedrock final repository
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4‘ How Repositories Work

Natural
barriers
prevent or
delay water
from
reaching
waste form

Isolation mechanisms may differ
for different nuclides in different

)

Engineered
barriers
prevent or
delay water
from
reaching
waste form

disposal concepts

Slow

degradation
of waste form
limits
exposure to

water

Overall performance relies on

multiple components; different

disposal concepts emphasize
different barriers

1

Near Field:
water
chemistry
limits aqueous
concentrations

ﬁl
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Natural and
engineered
barriers
prevent or
delay
transport of
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environment




Geologic Disposal in the US: The Reality
DOE-managed SNF and HLW is in Temporary Storage at 5 Sites in 5 States

~9,700 Canisters [Projected) ‘ Idaho

~3,590-5,090 Canisters (Projected)

TOTAL

~3,175 Canisters (2010)
~19,865-21,365 Canisters (Total Projected)

Canisters - HLW Canisters for Disposal

West Valley
275 Canisters (2010)

HLW at West Valley is
owned by New York State.

DOE-Managed
HILNY

~20,000 total
canisters

(projected)

DOE-Managed SNF
~2,458 Metric Tons
FSVR TRISO (~23.5 MTHM)}

Source: Marcinowski, F., “Overview of DOE’s Spent
Nuclear Fuel and High-Level Waste,” presentation
to the Blue Ribbon Commission on America’s
Nuclear Future, March, 25, 2010, Washington, DC.
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Defense: ~2,102 MTHM
Non-Defense: ~27 MTHM

ort 5t Vrain, CO

MNon-Defense: ~15

M HM

TOTAL
~2,458 MTHM
Defense: ~2,149 MTHM
Non-Defense: ~309 MTHM
~3,500 DOE Canisters

Idaho
~280 MTMM
Defense: ~36 MTHM

Non-Defense: ~246 MTHM

MTHM — Metric Tons Heavy Metal

Other Domestic Sites
~2 MTHM
Defense: <1 MTHM
Non-Defense: ~2 MTHM

Savannah River
~30 MTHM

Defense: ~10 MTHM
Non-Defense: ~19 MTHM




6‘ TRISO Particle Fuels Overview

TRISO Characteristics of TRISO fuel with a UOy core of radius 250 - 300 um
Particles
J Nominal
b Bt Thickness
s (um)
: Layer Purpose/function
) porous 60 - 95 - allows kernel to swell
pyrolytic - stops recoiling fission products from reaching SiC layer
5,580 carbon buffer - provides void volume for gases
TRISO inner dense 30-40 - barrier to gaseous fission products
per pyrolytic - slows down metallic fission product transport
e carbon (IPyC)
ba Silicon 25-35 - main fission product barrier
Carbide (SiC) - structural support to contain gas pressure
3126 Outer dense 40 - 45 - protects SiC layer from chemical and mechanical damage
_Sompacts pyrolytic - adds to support to contain gas pressure
‘ fli :mm . carbon
- (OPyC)

Sources: Minato et al., (1994); Moormann, et al., (2001); Nabielek et al., (2010); Fachinger (2006).

(from van den Akker and Ahn, 2013)

"Previous work by van den Akker and Ahn (2013) evaluated releases in
repository setting
" Relies mainly on graphite matrix chemical longevity (oxidation)
" Fuel element graphite
= Individual graphite compacts
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Degradation and Release Mechanisms for
-1 TRISO Particles

*Corrosion of SiC and PyC layers
= Using Fachinger et al. (2006) data for various fluids and temperatures

"Models of van den Akker and Ahn (2013) to assess SiC layer rupture

dependent on
= Corrosion rates;
" Possible protection via outer PyC
= Helium internal pressure buildup
= Statistical variability of SiC strength

=" Additional FEP Considerations

" Degradation mechanisms for graphite matrix (elements and compacts)
= Seismic disruption: (compacts likely more durable than elements)
= Porosity/permeability evolution over time — advective pathways
= Diffusive release through graphite matrix
= Compare to lifetimes 10° — 108 yrs
= Condition of particles (e.g., location of radionuclides; Demkowicz et al., 2017)

*Diffusion of radionuclides through particles (Gelbard, 2002)
= Diffusivities not readily available for SiC
= Sensitivity study of diffusion compared to SiC layer corrosion
= Coupled diffusion and corrosion of SiC layer
= Kinetic models used to estimate/assess magnitude of diffusivities
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ayer corrosion lifetimes for TRISO fuel
® Pyrocarbon Fachinger et al., 2006
® jrradiated SiC - 'Repositoriesz
[} - > o 5
] 6.780 : 9815Co(t;or 100’s
yis 0 yrs
N lifetime ® [ack of water in
WP to corrode SiC
=<50°C ~10° to
104,000 104 V1S
yrs. &
lifetime °
20 40 60 80 100

Temperature (C)

=SiC layer corrosion data for different brines indicate:
= At 90 °C the 35 um layer would last ~7000 years (average at constant T')
= At 25 °C the would layer last ~100,000 years (average at constant T')

"Estimated layer lifetime will depend on thermal evolution
= Uncertainties: corrosion rate, thermal history, hydrologic condition (~10* to 10° years)
= Pyrolitc carbon layer protection may add to lifetime (~10° years; van den Akker and Ahn, 2013)
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Example radionuclides of interest for geological

s | repositories

Radionuclide Half-life (years) Decay Product

129] 1.57 x 107
36(] 3.01 x 103
226R 4 1.60 x 103
19Ge 2.95 x 10°
9Tc 2.13 x 10
Actinides

129Xe
36 Ar

—> 210Bj — 210pg — 206P
9Br

Ru

"Data for diffusivities through SiC

" Not readily available in general, and specifically at repository temperatures

"Conduct sensitivity analyses for coupled radionuclide diffusion and SiC layer

corrosion to identify threshold diffusivities
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Simplifications for simultaneous SiC layer
0| corrosion and radionuclide diffusion

*Diffusivities of *°Cl, *’St, and *Cs through graphite in different brines
range from 1.2 X 105 m?/s to 6.3 X 10> m?/s (Fachinger et al., 2000)

= [ ikely faster than for denser SiC, so assume instant transport for carbon layers
e ) p i

sic :
INNER PYROCARBON Regressing

surface

_FUEL KERNEL |

POROUS CARBON (BUFFER)

__OUTER PYROCARBON

Fuel
Kernel

SiC Layer

"Evaluate range of diffusivities through SiC, while layer corrodes

" Compare releases for 25 °C and 90 °C corrosion rates.
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Simultaneous radionuclide diffusion through,
« | and corrosion of, the SiC layer

y ‘\‘ \{ \
0.9 N N - . B
| iy N < \| "Solid Lines:
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= Wil \ "Dashed Lines
_g 0.5 \ o
8 y . \ =90°C
£ 0.4 i % corrosion rates
AN
0.3 i! v
N
0.1 k ' \
N \
0

10 100 1000 10000 100000
Time (years)

= If diffusivity through SiC is 10-1® m?/s => diffusive release dominates
= If diffusivity through SiC is 102! m?/s => diffusive release contributes only

for lower T’
=*This is 108 times than that for the carbon/graphite materials (~10"1° m?/s)

SASSANI&GELBARD GOLDSCMIDT 2018




12

Diffusion coefficient D (m%s)

Diffusivity data analyzed by Malherbe (2013) are
at higher temperatures than disposal conditions

Ag in SIC : S?bviv;e;?:gﬁ 109
10-13 ——— v Montgomery 1980 = EI T I [ I L I [ I T I T I [ I T I?
g v Amian 1981, 1983 : = 3
i B Bullock 1984 C . . ]
L xEpmme,, || o1 Csin SiC 3
L \\ ¥ & Lopez-Honorato 2010,2011 [T '(p a 3
SN oms: B i NE 101k —— Alelein 1980 |
1075 | v | aeeemmes| £ F — Amin 1988 | 3
: .- o LI - — Myers 1084 | o
- - : Ogawa 1985 3
i 0 F ——— Fukuda 1989 E
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*Extrapolate to T where D=>102! m?/s
= Diffusivities for both Ag and Cs hit this at ~750 K (~480 °C)

SASSANI&GELBARD GOLDSCMIDT 2018




s 1 Summary and Conclusions

=S1C Layer Lifetimes

= About 100,000 to 7,000 years from SiC average corrosion rates
® Fluid composition and thermal history
= If OPyC is protective, may be longer (~10° yr; van den Akker and Ahn, 2013)

=Simultaneous SiC Corrosion and Radionuclide Diffusion
=Simplified moving boundary problem with diffusion
=If diffusivity through SiC is 10-*! m?/s

= Diffusive release contributes to release only for lower temperatures

= High T data for Ag and Cs suggest values would be well below this value
= Diffusion in graphite/pyrolitic carbon may be much higher

"Next Steps

"Develop model further, coupling stochastics
= Added layers, including diffusion through compact graphite matrix
= Evolving temperatures for repository
= Assess major uncertainties
= Diffusivities, especially in SiC
* Mechanical behavior/evolution of graphite matrix (elements and compacts)
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