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Some Opening Comments:

2

"Balluffi Fest" 1993 MRS fall meeting

At the center of my bookshelf...

Key advances to theory of line defects at interfaces

J.P. Hirth, "Dislocations, Steps and Disconnections at Interfaces" J. Phys. 
Chem. Solids 55 (10) 985-989 (1994).

R.C. Pond, J.P. Hirth "Defects at Surfaces and Interfaces" Solid State 
Physics, Vol 47, 287-365 (1994)

J.P. Hirth and R.C. Pond, "Steps, Dislocations and Disconnections as Interface 
Defects Relating to Structure and Phase Transformations:  Acta Materialia 44 
(12) 4749-4764 (1996)

and many more...
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Layered Chalcogenides: Diversity of 
compositional and structural arrangements

Anisotropic, layered structures contribute to useful 
and interesting thermal, electronic, optical properties, 

Thermoelectrics, Photothermoelectric Effect,
Topological Insulators, Dirac Semimetals

Example: (Pb,Sn)Se/TiSe2

Multi-layersExample: Bi2Te3 Example: ZrTe5

Interfaces and Dislocations play important roles in crystal growth 
and thermal and electronic properties of these complex materials
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Outline 
• Crystal structure in tetradymite-type compounds

•Layered structure gives flexibility in 
accommodating compositional variations
•Close structural relationship to rock-salt 
chalcogenides

• Interfacial Structure
Interfacial disconnections.
•Bi2Te3: Twin interface
•Rocksalt/Tetradymite interface

• Dislocation Structure: 

Dissociated Core Structure in:
• Bismuth Telluride
• Zirconium Telluride
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Bismuth Telluride (Bi2Te3): Crystal Structure
•Rhombohedral (R-3m) structure
•Based on tetradymite (Bi2STe2) prototype
•Isomorphous with Bi2Se3, Sb2Te3

•Three crystallographically distinct atomic sites
•Te(1)-Te(1) layers: van der Waals bonding

HAADF-STEM

Bi:  Z=83
Te: Z=52

Te(1)

Te(1)

Te(2)
Bi

Bi Atomic number 
difference enables
Bi and Te to be 
distinguished in 
HAADF-STEM

Te(1)

Te(1)

Te(2)
Bi

Bi

<2110> projection
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Layered structure allows flexibility in 
accommodating variations in composition

Insertion of metal bi-layers
Example: 
(Bi2)m(Bi2Te3)n

homologous series

J.W.G. Bos, H.W. 
Zanderbergen, 
M.-H. Lee, N.P. Ong, 
R.J. Cava,
Phys. Rev B 2007

Electron diffraction and HRSTEM 
show ordering in (Bi2)m(Bi2Te3)n series

Dramatic reduction in low-
temperature thermal conductivity

P. Sharma, D.Medlin, et al. PRB 83  (2011) 235209. Medlin & Snyder, JOM 2013 

Increasing Bismuth
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Layered structure allows flexibility in 
accommodating variations in composition

Metal rich, 7-Layer M3X4 fault
Example: (Ag,Sb)3Te4 transition phase during 
nucleation of Sb2Te3 precipitates in AgSbTe2

7-layer 
Structure
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Sharma, Sugar, & Medlin, Journal of Applied Physics (2010).
Sugar and Medlin, Journal of Materials Science (2011)
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Tetradymite and Rocksalt structures 
are closely related

Example:  
Crystallographically Aligned
Sb2Te3 precipitates in PbTe

Heinz, Snyder, Ikeda, and 
Medlin, Acta Mat. 2011

Rocksalt (MX) Structure Tetradymite (M2X3) Structure

• Solid-state phase transformations in chalcogenides
• Structural interpretation of extended defects
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How do these structural considerations 
impact Dislocations and Interfaces? 

Array of 1/3<2-1-1 0> Dislocations in Bi2Te3

1
3 [2110]

1
3 [1210]

1
3 [1100]

1
3 [1010]

1
3 [0110]

Amelinckx and Delavignette, 1960

Dislocations in Bismuth Telluride

Looking down on basal plane

Burgers vectors lying in basal plane

Fig. 1. Dislocation network in Nage,. Note that certain seg-
ments of dislocations and certain node-points have left the foil
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Dislocation Core structure: 
Termination at Te(1)-Te(1) layer

HAADF-STEM 
300 keV
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b=1/3<2 -1 -1 0>

60° mixed 
dislocation

5-layer
Bi2Te3

“quintet”

1 nm

<2 -1 -1 0 > projection

[0 0 0 1]

Stoichiometric 
Core
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Non-basal dislocations:   
Screw dislocations important to crystal growth

b = (1/3)[0-111)H

= [001]R

Example:  spiral growth steps at 
screw dislocation in Bi2Te3 thin film 

M. Ferhat, J.C. Tedenac, J. Nagao, 
J. Crystal Growth (2000)

Growth steps,
1 quintuple layer high

What about edge dislocations
with non-basal Burgers vectors?
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Non-basal edge dislocations:
What happens if we pull out a quintuple unit?
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Non-basal edge dislocations:
What happens if we pull out a quintuple unit?
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Non-basal edge dislocations:
What happens if we pull out a quintuple unit?

b = (1/3)[01-1-1)H = [00-1]R
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200 nm

Medlin, Erickson, Limmer, Yelton, Siegal,  J. Mat. Sci. 2014

Dislocations in Bi2Te3 Nanowires

Wires formed by electrochemical 
deposition in nanoporous AAO 
templates.

Free standing wires annealed 30 
minutes at 300°C in Ar-3%H2.

 Some loss of Te due to high 
vapor pressure

10 nm

(b) (a)

5.5° Tilt misorientation
Accommodated by array 
of 1/3<01-1-1> dislocations

Laboratories



Dislocations have dissociated core:
two configurations

<1 0 -1 0> Projection

Medlin, Erickson, Limmer, Yelton, Siegal,  J. Mat. Sci. 2014
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Core structure:    
Bi3Te4 7-layer fault

(1/3)[0 1 -1 -1] Dislocation in Bi2Te3: 

b = (1/3) [0 1 -1 -1]  (1/15) [0 5 -5 -2]    +   (3/15) [ 0 0 0 -1]

b2    >             b1
2 +           b2

2

109.8 Å2 >                22.9 Å2 +          37.2 Å2 =60.2 Å2

Reduced strain energy with dissociation

Medlin, Erickson, Limmer, Yelton, Siegal,  J. Mat. Sci. 2014

<2 -1 -1 0> Projection
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ZrTe5:  A complex, layered chalcogenide

F. Léonard, W.L. Yu, K.C. Collins, D.L. Medlin, J.D. Sugar, A.A. Talin, W. Pan 
ACS Applied Materials and Interfaces 9 (42) (2017) 37041-37047 

Interdiffusion of contact metallization 
causes large strains 

[ 1 0 0] projection

Orthorhombic, Cmcm

H. Fjellvåg, A. Kjekshus, Solid State 
Communications, 60 (2) (1986) 91-93

a=3.9875Å, b=14.530Å, c=13.724Å

Corrugated layering structure

Material of interest as a Dirac Semimetal
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Dislocation Structure in Zirconium Telluride

8 [0 0 1]

8 [0 1 0]
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8 [0 -1 0]

9 [0 0 -1]

b=[0 0 1]  
|b|=13.74 Å

50 Å

HAADF-STEM

[ 1 0 0] projection

Orthorhombic, Cmcm

H. Fjellvåg, A. Kjekshus, Solid State 
Communications, 60 (2) (1986) 91-93

a=3.9875Å, b=14.530Å, c=13.724Å

ZrTe5 Crystal structure
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50 Å

Climb dissociation 
into two ½[0 0 1] 
partial dislocations

½(xx+yy)

GPA Strain Map

100 Å
-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

HAADF-STEM

Dislocation Structure in Zirconium Telluride
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Atomic Structure of the Bi2Te3 Basal Twin: 
Energetic preference for termination at Te(1) sites

Collaboration with LBNL National Center for Electron Microscopy
TEAM 0.5 Microscope

HAADF-STEM Imaging:
Twin Boundary Terminated at Te(1) layer 

DFT Calculations:
Three Possible Compositional Terminations

Te(2) Te(1)Bi

60.1 303 40.7Interfacial 
Energy
(mJ/m2) 

D.L. Medlin, Q.M. Ramasse, C. D. Spataru, N.C. Yang, J. Appl. Phys. (2010)
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Preferential termination at Te(1) layers: 
Impact on boundary morphology

Medlin and Yang, 
Journal of Electronic 
Materials, (2012)

5 nm

Interfacial
Steps

Grain boundary vicinal to (0001):
Steps of integral 5-plane Bi2Te3 Quintets 

Step Height:  5
Step Height:  1

Step Height:  4

Example: step in Bi2Te3 Basal Twin:  
25 planes high (5 quintuple layers)

Twin

Twin

b=1/3<10-10>

b=1/3<10-10> Medlin and Snyder, 
JOM (2013)

Teo)

B

Gu
B

A

B

A MO
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Te)
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5 nmHAADF-STEM 
300 keV

{1 0-1 5} planes 
are aligned across 

boundary

Power Spectrum

{1 0 -1 5} planes 
in Bi2Te3

analogous to 
{100} planes 
in rocksalt

Atomic-resolution observations: 
Boundary with {1 0 -1 5} twin orientation relationship
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Symmetrical Interface Configuration
(0,-1,1,13) interface inclination (rational approximant)

Each triangular unit:
10 Bi  15 Te

2:3 ratio of Bi and Te maintained at interface

Rocksalt coordinated
grain boundary units
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Heterophase Rocksalt/Tetradymite
interfaces

Example:  
Crystallographically Aligned
Sb2Te3 precipitates in PbTe

Heinz, Snyder, Ikeda, and 
Medlin, Acta Mat. 2011

Rocksalt (MX) Structure Tetradymite (M2X3) Structure

Fm-3m R-3m

Disconnections help us understand atomic mechanisms 
for precipitate growth and strain accommodation
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Disconnections in Phase Transformations

Resolve b into components 
normal and parallel to interface





Burgers vector:

Lower crystal 
circuit

Upper crystal 
circuit

-Coordinate Transformation from 
Tetradymite to Rock-salt.
-Coherently strained reference
Frame  (0.79% misfit)

•mismatch of step heights.
•|bn|=0.3747Å

•Analogous to 
Shockley partial 
Dislocation
•|b|||=2.48Å

Medlin and Sugar, Scripta Materialia, 2010.

Example:  Sb2Te3 precipitate in AgSbTe2 thermoelectric

, • • •• • •• 4

61 6. //: : •• • ; •• • , • • • *Ja....ALILA__t_..a...L..• _ _
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Defect properties give local mass 
flux required for transformation

AgSbTe2

Sb2Te3

Partition flux for defect motion into step and dislocation components

bn

y

Sb2Te3

AgSbTe2

h





Reject Ag and Incorporate Sb 
in ratio of 3:1

Tellurium: 
Step and Dislocation fluxes cancel.

No long-range Te transport required.

dislocationstep
Hirth & Pond, Acta Mat 1996

Species Step flux
(atoms/A2)

Dislocation flux
(atomlA2)
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A Rocksalt/Tetradymite Interface with Large Misfit

(111)PbTe/(0001)Sb2Te3

Misfit: +6.7%

Sb2Te3 Precipitates in PbTe
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Relationship between disconnection 
spacing and misfit strain

•Adjust spacing so that dislocation content 
of the disconnections balances the 
coherency strain on the terraces.

•Dislocation components resolved onto 
habit plane

b)

—OP Eyy-4—

c)

b.54bi
-

(1)

dislopation
site

•••

bz
4

bz

Fig. 6. Schematic illustration of the defect configuration of the

HP (a) steps, (b) disconnections and coherency defects, (c) off-
set dislocation components b5, and (d) dislocation components
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A Rocksalt/Tetradymite Interface with Large Misfit

(111)PbTe/(0001)Sb2Te3

Misfit: +6.7%

Heinz, Ikeda, Snyder, Medlin, Acta Materialia (2011)

Defect spacing accommodates the (111)/(0001) coherency strain.

Habit plane inclination:

Measured:  14.8°
Predicted: 16.2°

Sb2Te3 Precipitates in PbTe
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Conclusions

Key structural aspects layered chalcogenides are manifested in the 
detailed structures of extended defects in these materials.

Weak, van der Waals bonding across double chalcogenide layers

Ability to accommodate non-stoichiometry through altering the layer 
stacking

Close inter-relationship between the rocksalt and tetradymite

structural types.

Attention to the topological properties and detailed structure of 
extended defects in the chalcogenides is critical.

Understanding interfacial formation and stability and, ultimately, 
interfacial electronic and thermal transport properties

Set of elementary "building blocks" for a general picture of 
dislocation and interfacial structure in layered chalcogenides
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Array of 1/3<2-1-1 0> Dislocations
A Low Angle Tilt Boundary in Bi2Te3

x component
local 015 g-vector

25 nm

Power Spectrum <2 -1 -1 0>

Grain Misorientation: 
2.8°

60° 1/3<2 -1 -1 0> 
dislocations

  2sin1 bedge

2L











Calculate tilt rotation 
from dislocation density

Lavg = 8.0  nm

bedge = 0.379 nm 
(60° 1/3<2-1-10>
b=0.438 nm))

= 2.7° (calculated)
(2.8° measured)

L

(for array of 60° dislocations,
to be pure tilt, screw components
must  cancel)

HRSTEM
Analyzed using Geometric Phase Analysis 
method:  Hÿtch,Snoek, Kilaas, 
Ultramicroscopy 1998

0015

0-110

003
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•

0 -1-5

01.-10

00-15
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Interfacial Defects:

Anisotropic, layered structure of the 
chalcogenides, give rich interfacial defect behavior

Some examples:

GB Dislocations Misfit Dislocations Disconnection
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Layered Chalcogenides: Diversity of 
Compositional and Structural Arrangements

D.R. Merrill, D.R. Sutherland, J. Ditto, S.R. Bauers, M.Falmbigl, D.L. Medlin, D.C. Johnson, 
Chemistry of Materials 27 (2015) 4066-4072. 

Example: (PbxSn1-xSe)1+TiSe2 Intergrowth Compound

• Site specific alloying:
Sn, Pb on "rocksalt" bilayers
Separated by TiSe2 tri-layers

•Crystalline sheets, but rotational, "turbostratic," 
disorder between layers

-a "ferecrystal"

FEI-Titan 80-200
Chemistem

O Pb

0 Sn

c.) Se

• Ti

(200)

(400)

= 1.0
(420)

V, (040)

11\
' (240)

(400)\
,

(420) 4114

PbSe SnSe TiSe2

60 65 70
20°

x = 0.48
x = 0.26
x = 0.0

75
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ZrTe5:  A complex, layered 
chalcogenide

F. Léonard, W.L. Yu, K.C. Collins, D.L. Medlin, J.D. Sugar, A.A. Talin, W. Pan 
ACS Applied Materials and Interfaces 9 (42) (2017) 37041-37047 

Interdiffusion of contact metallization 
causes large strains 

[ 1 0 0] projection

Orthorhombic, Cmcm

H. Fjellvåg, A. Kjekshus, Solid State 
Communications, 60 (2) (1986) 91-93

a=3.9875Å, b=14.530Å, c=13.724Å

Corrugated layering structure

Material of interest as a Dirac Semimetal
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Dislocation Structure in Zirconium Telluride

8 [0 0 1]

8 [0 1 0]

S

F

8 [0 -1 0]

9 [0 0 -1]

b=[0 0 1]  
|b|=13.74 Å

50 Å

HAADF-STEM

[ 1 0 0] projection

Orthorhombic, Cmcm

H. Fjellvåg, A. Kjekshus, Solid State 
Communications, 60 (2) (1986) 91-93

a=3.9875Å, b=14.530Å, c=13.724Å

ZrTe5 Crystal structure

13.74 Å
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•
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50 Å

Climb dissociation 
into two ½[0 0 1] 
partial dislocations

½(xx+yy)

GPA Strain Map

100 Å
-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

HAADF-STEM

Dislocation Structure in Zirconium Telluride

.

t.
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Why care Dislocations in Layered 
Chalcogenides

– Impact on transport properties

– Processing:  
• Deformation processing is common for bulk 

thermoelectrics:

– hot pressing, extrusion

• Thin film nanostructure growth, epitaxy, 

– coherency strains accommodated by interfacial 
defects.

– non-stoichiometric defect cores.

– Elementary interest: 
• Weak van der Waals bonding and complex 

crystal structures yield rich variety of defect 
configurations.

Miura et al.,  Materials. Science and  
Engineering. A (2000)

Example: Texture Control 
in Bi2Te3 via Hot-Extrusion

Focus for this presentation:
-Application of atomic resolution microscopy and 
dislocation/interface theory to understand structure of 
crystal defects in layered chalcogenides
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How do these structural considerations 
impact Dislocations and Interfaces? 

Edge Dislocation

Reference Frame:
Perfect Crystal

Burgers 
Vector, b

Screw Dislocation

Interfacial Disconnection

Pure 
Step

Dislocation 
at step

z

J 
. /

I . \\\ \ /
Lig Sandia
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7-Layer Bi3Te4 faults: Mechanism to 
accommodate Te loss during annealing

Medlin, Erickson, Limmer, Yelton, Siegal,  J. Mat. Sci. 2014

(3/15) [ 0 0 0 -1]

• b: parallel with c-
axis

• 3/5  of the total 
dislocation content 
along c-axis

(1/15) [0 5 -5 -2]    

• b  is parallel with 
(0 1 -1 5) planes

• 2/5  of the total 
dislocation content 
along c-axis

Horizontal component: (1/3) [01 -1 0]
• analogous to Shockley partial. 
• avoids fault in stacking resulting from 
additional 2 planes at Bi3Te4 fault  

Climb dissociation

P 
A

A

Bije fault
A

 B

B

 C5
3A 

13
A

Y
B PA y   A
A

YB
A—m••••mmm.,7 

 A
 I a   B.u Nammmummnomm..mm. L.E

C aummmmmmummumm B
 C 
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Interfacial Line defects:  in general have 
both dislocation and step content 

43

R.C. Pond, Dislocations in Solids, Chapter 38  (1989)
J. Hirth & R.C. Pond, Acta Materialia (1996)

t()  1
2
[12 1]

t()  1
2
[101]

b  1
3
[1 1 1]





t()

t()

t()

t()

bij=t()ij-P t()ij

Burgers 
vectors of 
the set of
"admissible"
defects

Crystal lattice translation vectors

Matrix converts 
from  to  crystal 
coordinates

"disconnection"  = both step and dislocation content

Dichromatic Pattern
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