Atomic-Scale Investigation of Dlslocatlons
and Interfacial Line Defects in Layered
Chalcogenide Materials

Douglas L. Medlin
Sandia National Laboratories,
Livermore, California, USA

dimedli@sandia.gov

U.S. DEPARTMENT OF

@ ENERGY



Some Opening Comments:

At the center of my bookshelr...

a0l | yMiH | uosiaf
glE
L

AQT1V GNV STV13IW NI

HL

NOILIQ3 Q¥IHL

SNOILVD01S1d 40 AJO3
SNOLLVDOISIA 40 AJOAHL

| PR —————
sjelialel 0} uondnpoajuj

£ 335 SUDAHA TLVLD \iiw /e

Key advances to theory of line defects at interfaces
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Layered Chalcogenides: Diversity of )

compositional and structural arrangements

Example: (Pb,Sn)Se/TiSe
Example: Bi,Te; Example: ZrTes ¥ Millti-lay)ers i

R P e

Anisotropic, layered structures contribute to useful  Ea#sE
and interesting thermal, electronic, optical properties,
Thermoelectrics, Photothermoelectric Effect,
Topological Insulators, Dirac Semimetals

f Pb Sn Ti Se

Interfaces and Dislocations play important roles in crystal growth
and thermal and electronic properties of these complex materials




Outline

 Crystal structure in tetradymite-type compounds
eLayered structure gives flexibility in
accommodating compositional variations
*Close structural relationship to rock-salt
chalcogenides

e Dislocation Structure:

Dissociated Core Structure in:
e Bismuth Telluride
e Zirconium Telluride

e Interfacial Structure
Interfacial disconnections.
*Bi,Te,;: Twin interface
*Rocksalt/Tetradymite interface
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Bismuth Telluride (Bi,Te;): Crystal Structure

*Rhombohedral (R-3m) structure

*Based on tetradymite (Bi,STe,) prototype
*lsomorphous with Bi,Se;, Sb,Te,

*Three crystallographically distinct atomic sites
-Te()-Te(V layers: van der Waals bonding

HAADF-STEM

Bi: Z=83
Te: /=52

Atomic number
difference enables
Bi and Te to be
distinguished in
HAADF-STEM
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Layered structure allows flexibility in
accommodating variations in composition

Insertion of metal bi-layers
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Layered structure allows flexibility in
accommodating variations in composition

Example: (Ag,Sb);Te, transition phase during
Metal rich, 7-Layer M;X, fault nucleation of Sb,Te; precipitates in AgSbTe,
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Tetradymite and Rocksalt structures
are closely related

Rocksalt (MX) Structure Tetradymite (M,X;) Structure

Example:
-om =
Fm-3 R-3m Crystallographically Aligned

H @ B @ B @ B Sb,Te; precipitates in PbTe
o 0O o 0O o 0O o : -
@ B @ B

@ B 0:.H
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Heinz, Snyder, Ikeda, and
O |00 Og©0 O O Medlin, Acta Mat. 2011
®:0 © B edlin, Acta Mat.

» Solid-state phase transformations in chalcogenides |
e Structural interpretation of extended defects @ Sandia
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How do these structural considerations
impact Dislocations and Interfaces?

Dislocations in Bismuth Telluride
Burgers vectors lying in basal plane Array of 1/3<2-1-1 0> Dislocations in Bi,Te,

Amelinckx and Delavignette, 1960

Fig. 1. Dislocation network in Bi,Te,. Note that certain seg-
ments of dislocations and certain node-points have left the foil
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Dislocation Core structure:
Termination at Te()-Te(!) layer
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Non-basal dislocations:
Screw dislocations important to crystal growth

Example: spiral growth steps at
screw dislocation in Bi,Te; thin film

Screw Dislocation
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Non-basal edge dislocations:
What happens if we pull out a quintuple unit?
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Non-basal edge dislocations:
What happens if we pull out a quintuple unit?
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Non-basal edge dislocations:
What happens if we pull out a quintuple unit?
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Dislocations in Bi,Te; Nanowires

P——
pestinsa o

Wires formed by electrochemical | =
deposition in nanoporous AAO =

templates.

Free standing wires annealed 30
minutes at 300° C in Ar-3%H..

=» Some loss of Te due to high
vapor pressure

Medlin, Erickson, Limmer, Yelton, Siegal, J. Mat. Sci. 2014 Laboratories



Dislocations have dissociated core:
wo configurations
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(1/3)[0 1 -1 1] Dislocation in Bi,Te;:

Core structure:
Bi;Te, 7-layer fault
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ZrTe;: A complex, layered chalcogenide

Material of interest as a Dirac Semimetal

Corrugated layering structure

Orthorhombic, Cmcm

[ 1 0 0] projection

a=3.9875A, b=14.530A, c=13.724A

H. Fjellvag, A. Kjekshus, Solid State
Communications, 60 (2) (1986) 91-93

Interdiffusion of contact metallization
causes large strains
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F. Léonard, W.L. Yu, K.C. Collins, D.L. Medlin, J.D. Sugar, A.A. Talin, W. Pan

ACS Applied Materials and Interfaces 9 (42) (2017) 37041-37047 .
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Dislocation Structure in Zirconium Telluride
HAADF-STEM

ZrTe; Crystal structure
Orthorhombic, Cmcm

[ 1 0 0] projection

a=3.9875A, b=14.530A, c=13.724A

H. Fjellvag, A. Kjekshus, Solid State
Communications, 60 (2) (1986) 91-93
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Dislocation Structure in Zirconium Telluride

HAADF-STEM

Climb dissociation
into two 2[0 0 1]
partial dislocations
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Atomic Structure of the Bi,Te; Basal Twin:
Energetic preference for termination at Te(!) sites

HAADF-STEM Imaging: DFT Calculations:
Twin Boundary Terminated at Te(") layer Three Possible Compositional Terminations
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Preferential termination at Te(!) layers:
Impact on boundary morphology

Example: step in Bi,Te; Basal Twin:
25 planes high (5 quintuple layers) Grain boundary vicinal to (0001):
NN PN G R e Steps of integral 5-plane Bi,Te; Quintets

b=1/3<10-10>

Step Height: 1 Interfacia

Step Height: 5 A g e
; : ) Steps = —— =
Telll BC e }—Tem =
¥ o o i
uB B‘r BC BC
5 ) o 5 nm
Bc“ K Step Height: 4
A A (iii) B ¥
Tel!) -- AB .
b=1/3<10-10> 4 YA Medlin and Snyder,
o By wo JOM (2013)
Medlin and Yang, 5 @'

Journal of Electronic o o Sandia
Materials, (2012) 5 ) National
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Atomic-resolution observations:
Boundary with {1 0 -1 5} twin orientation relationship
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Symmetrical Interface Configuration

(0,-1,1,13) interface inclination (rational approximant)

Rocksalt coordinated
grain boundary units
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Heterophase Rocksalt/Tetradymite

interfaces
Rocksalt (MX) Structure Tetradymite (M,X;) Structure
) ) Example:
Fm-3m R-3m Crystallographically Aligned
HE @ B ©o B @ W Sb,Te, precipitates in PbTe
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5
5
O
o
0
o

2| B e:@ @

@ B 0:H
O © 0.0 0O
@ B o:H @

I O O«O [
die|m @ @ B

oelmje m e:E @
d® ® O 0.0 O

Heinz, Snyder, Ikeda, and
O |:| O D[io D ':) Medlin. A M 2011
-0 © W edlin, Acta Mat. 20

Disconnections help us understand atomic mechanisms
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Disconnections in Phase Transformations
Example: Sb,Te; precipitate in AgSbTe, thermoelectric

Burgers vector: Resolve b into components
| Ag 54 A normal and parallel to interface

b =(a,,-c,. /3V3)[111]

'mismatch of step heights.

b, |=0.3747A
A, . ~~ *Analogous to
b =—>[121] Shockley partial
6 Dislocation
o|by|=2.48A
Y y "
Upper crystal Lower crystal T
circuit circuit Rocksalt ¢ 77———c—— v
\ e Y S e ——
- . Y ————{ b, T b ¢
b — C + PC metalplane ;, ©— "5 T g
Cat 7l R
-Coordinate Transformation from A s stacking ,
Tetradymite to Rock-salt. € -~ - S
-Coherently strained reference A A A S ALL

Frame (0.79% misfit () (i) (i) Sandia
ame (0.79% misfit) rl'l National
Medlin and Sugar, Scripta Materialia, 2010. Laboratories



Defect properties give local mass
flux required for transformation

Partition flux for defect motion into step and dislocation components

AgSbTe,

Species

+0.00334

Sb
: /003459
-2 (\3a_, -
\Te Aoy

i (V3a,, -1 13)

-0.00668
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dislocation
Hirth & Pond, Acta Mat 1996

Reject Ag and Incorporate Sb
in ratio of 3:1

Tellurium:
Step and Dislocation fluxes cancel.
No long-range Te transport required.
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A Rocksalt/Tetradymite Interface with Large Misfit

Sb,Te; Pre

Sandia
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Relationship between disconnection
spacing and misfit strain

2
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= |
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‘\_ dislocation
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b T
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Fig. 6. Schematic illustration of the defect configuration of the
HP (a) steps, (b) disconnections and coherency defects, (c) off-
set dislocation components b_, and (d) dislocation components
b
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Pergamon Acta Materialia 51 (2003) 5385-5398 —_—
www.actamat-journals.com

A comparison of the phenomenological theory of martensitic
transformations with a model based on interfacial defects

R.C.Pond **, S. Celotto #, JP. Hirth ®

* Department of Engineering, University of Liverpool, Brownlow Hill, Liverpool L69 3BX, UK
® 114 E. Ramsey Canyon Road, Hereford, AZ 85615, USA

Received 25 June 2003; received m revised form 25 June 2003; accepted 11 July 2003

*Adjust spacing so that dislocation content
of the disconnections balances the
coherency strain on the terraces.

*Dislocation components resolved onto

habit plane
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A Rocksalt/Tetradymite Interface with Large Misfit

Habit plane inclination:

b
cah .
\,___,'.7-"1"-'-_ Measured: 14.8°
N Predicted: 16.2°
* sSum

Eemoemeonm L
oo omOoaoo

02
60 4l =20 0 20 41 B0

[} (degrees)

Defect spacing accommodates the (111)/(0001) coherency strain.

National

Heinz, lkeda, Snyder, Medlin, Acta Materialia (2011) Laboratories



Conclusions

Key structural aspects layered chalcogenides are manifested in the
detailed structures of extended defects in these materials.

Weak, van der Waals bonding across double chalcogenide layers

Ability to accommodate non-stoichiometry through altering the layer
stacking

Close inter-relationship between the rocksalt and tetradymite
structural types.

Attention to the topological properties and detailed structure of
extended defects in the chalcogenides is critical.

Understanding interfacial formation and stability and, ultimately,
interfacial electronic and thermal transport properties

Set of elementary "building blocks" for a general picture of
dislocation and interfacial structure in layered chalcogenides
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Array of 1/3<2-1-1 0> Dislocations
A Low Angle Tilt Boundary in Bi,Te,

Power Spectrum <2 -1 -1 0>

= = = £ - s F = - - - -

X component
{ local 015 g-vector
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0015
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HRSTEM

Analyzed using Geometric Phase Analysis
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Ultramicroscopy 1998
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Calculate tilt rotation
from dislocation density
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Degge = 0-379 nm
(60° 1/3<2-1-10>
b=0.438 nm))

(for array of 60° dislocations,

to be pure tilt, screw components
must cancel)



Interfacial Defects:
Some examples:

Anisotropic, layered structure of the
chalcogenides, give rich interfacial defect behavior
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Layered Chalcogenides: Diversity of
Compositional and Structural Arrangements

Example: (Pb,Sn,_ Se),,sTiSe, Intergrowth Compound

[110]

TR R E R LR LR EE L o b b Ean
sSeses@eBe v OBEe L)

[110]

o000

s = ow £ llcF X

TiSe, [

FEI-Titan 80-200

« Site specific alloying: Chemistem

Sn, Pb on "rocksalt" bilayers
Separated by TiSe, tri-layers

*Crystalline sheets, but rotational, "turbostratic,"
disorder between layers

-a "ferecrystal"

log (Intensity a.u.)

National
Chemistry of Materials 27 (2015) 4066-4072.

Sandia
D.R. Merrill, D.R. Sutherland, J. Ditto, S.R. Bauers, M.Falmbigl, D.L. Medlin, D.C. Johnson, @
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Lrie;. A compiex, ilayerea
chalcogenide

Material of interest a

Corrugated layering structure

Orthorhombic, Cmcm

[ 1 0 0] projection

a=3.9875A, b=14.530A, c=13.724A

H. Fjellvag, A. Kjekshus, Solid State
Communications, 60 (2) (1986) 91-93

a Dirac Semimetal

Interdiffusion of contact metallization
causes large strains

(c) [ e {113)

.

—— (022}
T G
B Y

..... N b Z ! .

F. Léonard, W.L. Yu, K.C. Collins, D.L. Medlin, J.D. Sugar, A.A. Talin, W. Pan

ACS Applied Materials and Interfaces 9 (42) (2017) 37041-37047 .
Sandia
National
Laboratories



Dislocation Structure in Zirconium Telluride
HAADF-STEM

ZrTe; Crystal structure
Orthorhombic, Cmcm

[ 1 0 0] projection

a=3.9875A, b=14.530A, c=13.724A

H. Fjellvag, A. Kjekshus, Solid State
Communications, 60 (2) (1986) 91-93

Sandia
National
Laboratories



Dislocation Structure in Zirconium Telluride

HAADF-STEM

Climb dissociation
into two 2[0 0 1]
partial dislocations

Sandia
National
Laboratories




Why care Dislocations in Layered

Chalcogenides
— Impact on transport properties

Example: Texture Control

— Processing: in Bi,Te, via Hot-Extrusion

(00.6)-pole

« Deformation processing is common for bulk
thermoelectrics:

— hot pressing, extrusion
 Thin film nanostructure growth, epitaxy,

— coherency strains accommodated by interfacial
defects.

— non-stoichiometric defect cores.

— Elementary interest:

 Weak van der Waals bonding and complex S
crystal structures yield rich variety of defect Miura et al. “Ma _eGience and
configurations. Engineering. A (2000)

Focus for this presentation:

-Application of atomic resolution microscopy and
dislocation/interface theory to understand structure of @ ﬁg?igiﬁal
crystal defects in layered chalcogenides

Laboratories



How do these structural considerations
impact Dislocations and Interfaces?

Edge Dislocation Interfacial Disconnection
Screw Dislocation

“
“
\ L
\ 1
\ L
L | ;
Reference Frame: /
Perfect Crystal YT
ep
UL
Burgers
Vector,

Sandia
National _
Laboratories



7-Layer Bi;Te, faults: Mechanism to
accommodate Te loss during annealing

BiyTe, fault

Climb dissociation (3/15) [0 0 0 -1]

Bu — * b: parallel with c-
C - axis
p A—‘_—_“__—
" g_ « 3/5 of the total
ﬁA — N Cﬁ _.A dislocation content
- alon c-axis
(1115) [0 5 -5 -2] g = A Jg
* b is parallel with - - - ﬂ B
(0 1 -1 5) planes B 'S e —h
C py —__:_'_‘_"-___::_-__— __TB
« 2/5 of the total B= C— o,
dislocation content c— ————— e —
along c-axis p___——C a
A i C
o'
Horizontal component: (1/3) [01 -1 0] = ﬁﬂ

* analogous to Shockley partial.

* avoids fault in stacking resulting from

additional 2 planes at Bi,Te, fault _

Sandia
@ National _
Medlin, Erickson, Limmer, Yelton, Siegal, J. Mat. Sci. 2014 Laboratories



Interfacial Line defects: in general have
both dislocation and step content

Dichromatic Pattern Crystal lattice translation vectors

O m® O m O N l l

b;=t(1);-P t(u);

Burgers .
O el mO el oo vectors of ]Ic\/latrlx (t:or;bvertstI
1(A)=1 ) the set of rom u to A crysta
e Om 0@ Onm t(u :%[_101]/1 "admissible" coordinates
O m® O m O b=5[111], defects

"disconnection” = both step and dislocation content

R.C. Pond, Dislocations in Solids, Chapter 38 (1989) @ ﬁgggﬁal
J. Hirth & R.C. Pond, Acta Materialia (1996) Laborgtgyies
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