This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2018-8118C

Physics-Informed Machine Learning
for DRAM Error Modeling

Elisabeth Baseman*, Nathan DeBardeleben*, Sean Blanchard*, Juston Moore?,
Olena Tkachenko, Kurt Ferreiraf, Taniya Siddiquai, and Vilas Sridharan®
*Ultrascale Systems Research Center, Los Alamos National Laboratory1
§ Advanced Research in Cyber Systems, Los Alamos National Laboratory
Email: {lissa, ndebard, seanb, jmoore01} @lanl.gov
TNew Mexico Consortium
Email: otkac001@fiu.edu
fCenter for Computing Research, Sandia National Laboratories
Email: kbferre @sandia.gov
fRAS Architecture, Advanced Micro Devices, Inc.
Email:{Taniya.Siddiqua, Vilas.Sridharan} @amd.com

Abstract—As the scale of high performance computing facilities
approaches the exascale era, gaining a detailed understanding
of hardware failures becomes important. In particular, the
extreme memory capacity of modern supercomputers means
that data corruption errors which were statistically negligible
at smaller scales will become more prevalent. In order to
understand hardware faults and mitigate their adverse effects on
exascale workloads, we must learn from the behavior of current
hardware. In this work, we investigate the predictability of
DRAM errors using field data from two recently decommissioned
supercomputers: Cielo, at Los Alamos National Laboratory, and
Hopper, at Lawrence Berkeley National Laboratory. Due to the
volume and complexity of the field data, we apply statistical
machine learning to predict the probability of DRAM errors
at previously un-accessed locations. We compare the predictive
performance of six machine learning algorithms, and find that
a model incorporating physical knowledge of DRAM spatial
structure outperforms purely statistical methods. Our findings
both support expected physical behavior of DRAM hardware as
well as providing a mechanism for real-time error prediction. We
demonstrate real-world feasibility by training an error model on
one supercomputer and effectively predicting errors on another.
Our methods demonstrate the importance of spatial locality over
temporal locality in DRAM errors, and show that relatively
simple statistical models are effective at predicting future errors
based on historical data, allowing proactive error mitigation.

I. INTRODUCTION

Today’s supercomputers / high performance computers
(HPC) use a combination of commodity and specialized hard-
ware and software to achieve extremely high performance at
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a reasonable cost. Common HPC workloads require massive
memory capacities; the top 5 supercomputers in the world in
November 2017 had between 710 terabytes and 1.3 petabytes
of main memory [1]. In the next decade, and likely be-
yond, supercomputers are expected to more than quadruple
in computational power. Memory capacities are estimated to
achieve in the tens to hundreds of petabytes on these future
systems, further increasing the need to understand the nuances
of memory errors and faults. Capacities of this scale require
advanced error correction to mitigate a near constant rate of
errors from a variety of environmental (transient) and intrinsic
(permanent) sources. These sources include, but are not limited
to, terrestrial neutrons [2], temperature [3], alpha particles [4],
voltage fluctuations [5], and aging [6], [7].

Ultimately, fault tolerance impacts the supercomputer’s re-
liability as presented to users. Users expect systems to be
deterministic, but errors cause random behavior. Errors that
can be detected but not corrected cause the supercomputer
nodes to crash, while rare undetected errors could cause
silent corruption of calculations and potentially undermine the
integrity of science done on the systems. It is important to
understand that in this work we are studying DRAM errors
instead of their underlying faults. Many errors can come from
a single fault and understanding the mapping from errors to
faults is extremely valuable and has implications for hardware
design [8], [9]. In this work we instead apply modeling
techniques to the raw, unprocessed, data that comes from the
system; namely, errors.

Understanding the way in which errors and faults manifest
in main memory (DRAM) impacts the ways in which hardware
designers implement error detection and correction mecha-
nisms. In this work, we model both the transient environmental
errors and permanent intrinsic sources using a data-driven
approach. The primary contributions of our work are:

« Identification of features relevant to a statistical model of

DRAM errors and underlying physics
o Comparison of a variety of predictive machine learning



models for determining the likelihood of a DRAM loca-
tion to experience an error

« Development of a computationally efficient physics-based
machine learning model for spatial modeling of DRAM
errors

o Demonstration of error model transferability between
HPC implementations

II. RELATED WORK

Many published studies have examined failures in produc-
tion cloud and HPC systems [10], [11], [12], [13], [14], [15],
[16], [9], [17], [8], [18], [19]. These studies typically focus on
characterizing failures and trying to understand the underlying
reliability of the large-scale system.

Additional studies have attempted to use these failure
characterization studies to predict eminent failures as well
as to investigate important spatial and temporal correlations
amongst failure events [20], [21]. Schroeder and Gibson
studied failure event logs from a number of high-performance
clusters and discovered day-of-the-week and hour-of-the-day
temporal correlations between failure events [10]. Yigitbasi
et al. found similar correlations [22]. Liang et al. exploited
the spatial correlation between failure events in a BlueGene/L
system to predict 80% of memory and network failures [23].
In addition, Fu and Xu used a spherical correlation model
to develop two algorithms to cluster different events in a
system according to their spatial and temporal correlations
[24]. They applied a neural network predictor to predict the
time-between-failures in HPC systems. Oliner, Kulkarni, and
Aiken discovered a structure of causal influence between
the components of HPC systems by calculating time-lagged
cross-correlation and analyzing how the signals from different
system components deviate from their normal behavior [25].
Goudarzi et al. investigated the power of cross- and partial-
correlations to observe conditional correlations in HPC failure
event data and used information theory to understand the fun-
damental predictive power of HPC failure data [26]. Baseman
et al. used discriminative machine learning models to predict
which type of fault a DRAM device is experiencing, based on
the time series information of errors collected from the device
[27], [28]. Lastly, Gupta et al. found a spatial component of
failures does indeed exist [29].

Our work distinguishes itself from existing studies in several
ways. First, our study analyzes the entire lifetime of data from
a recent leadership-class system and contains a much larger
corpus of data than previous studies. Second, this work focuses
specifically on fine-grained DRAM errors (a significant and
increasing source of failure on these systems) and their locality
trends, unlike previous work which focused on node-level
failures. Finally, our present work focuses on quantitative sta-
tistical models with the ability to encode physical relationships
to learn locality trends from empirical data, rather than relying
on human expert-elicited parameters.

III. AVAILABLE DATA

Our data comes from two supercomputers in the U.S.
Department of Energy (DOE): Cielo at Los Alamos National
Laboratory (LANL) and Hopper at Lawrence Berkeley Na-
tional Laboratory (LBNL). Cielo was a 8,944 node Cray su-
percomputer with 286 TB of DDR3 DRAM memory. Hopper
had 6,384 nodes with 212 TB of DDR3 DRAM memory.

In both cases, correctable DRAM memory errors were
logged by the system software. Cielo’s error correction was
slightly more elaborate Chipkill (single symbol correct, double
symbol detect) while Hopper’s correction was single symbol
detect. This was a design decision due to LANL’s higher
altitude (~8,000 feet) compared to LBNL at roughly sea level.

All memory errors include a timestamp, the compute node
that identified the error, and a “syndrome” which we decode
to determine high fidelity location information about the
error event. This error location includes the DRAM channel,
lane, rank, bank, row, column, and number of bits that were
corrected. For Cielo, we have over 700 thousand correctable
DRAM error events for four and a half years from July 2011
to March 2016. This constitutes roughly the full operational
lifetime of Cielo. For Hopper, we have the first 22 months
of operation from April 2011 through February 2013. This
includes over 400 thousand correctable error events.

IV. POTENTIAL MODELS

Given a set of observed error locations in a DRAM device,
and a proposed access location, we aim to estimate the
probability that accessing this new location will result in an
error. Due to the sheer volume and complexity of our DRAM
field data, we turn to statistical machine learning techniques
in order to model DRAM error behavior in a data-driven way.
We compare the performance of a variety of machine learning
models on this error likelihood estimation task, ranging from
purely statistical out-of-the-box models (which do not encode
any spatial knowledge) to more nuanced and hand-crafted,
physics-informed models. What follows is a brief description
of each of the machine learning models we examine.

A. Purely Statistical Approaches

1) Random Forest (RF): Random forests are supervised
machine learning classifiers that use an ensemble of decision
trees built from a single training dataset [30]. The advantage
of a random forest as compared to a single decision tree is
that it preserves the variance of a single tree while decreasing
the bias — i.e., each decision tree in the ensemble is allowed
to overfit as long as the number of trees is large. For this
reason, random forests frequently work quite well for a variety
of tasks without much parameter tuning. Each decision tree
within the random forest randomly selects a subset of available
features to consider at each split, so creating a sufficiently
large forest guarantees that each feature will be considered at
least once. For our problem, we use a random forest to predict
the probability of a given DRAM location to produce an error,
given the locations and frequencies of previous errors observed
on the same DRAM device.



2) Boosted Trees (BT): The boosted decision tree algorithm
is similar to a random forest in that it is a supervised en-
semble classifier consisting of decision trees, but the boosting
algorithm changes the behavior of the ensemble [31]. When
creating an ensemble of learners (in this case, decision trees)
using the boosting algorithm, we start by letting each tree have
rather weak performance, but on subsequent trees we increase
the weighting of training samples which were miss-classified
by the previous tree. This method frequently results in slightly
better classification performance than a random forest because
a boosted ensemble has the ability to correct itself as it is
trained, whereas each decision tree within a random forest is
trained independently. Again, a boosted ensemble of decision
trees involves very few parameters to tune, mainly the number
of learners in the ensemble, and so is easy to use out-of-the-
box. We train our boosted ensemble to predict the probability
of a DRAM location experiencing an error given the locations
and frequencies of previously observed errors on the same
DRAM device.

3) Support Vector Machine (SVM): Support vector ma-
chines (SVMs) are another type of supervised machine learn-
ing classifier, but which have more nuanced parameters [32].
SVMs project the training dataset into a higher dimensional
space using a kernel function. This function can be chosen
by hand, and in our work, we choose the commonly used
radial basis function kernel. In this higher dimensional space,
the decision surface between possible classification outcomes
becomes linear, and the SVM learns this surface. The result
is then projected back down into the original dimensional
space, and thus the SVM can learn a nonlinear decision surface
relatively efficiently. In our work, the SVM is trained to predict
whether a given DRAM location will produce an error given
previous error locations and frequencies on the same DRAM
device.

4) Neural Network (Multilayer Perceptron, MLP): A mul-
tilayer preceptron (MLP), which is a simple neural network, is
a supervised machine learning classifier based on the architec-
ture of the brain, which can learn a nonlinear decision surface
via backpropagation [33]. While these neural networks, par-
ticularly deep neural networks, have seen numerous successes
in recent years, they are difficult to tune and often require
significant engineering of their features and architectures for
optimal performance. We use a small MLP model to predict
whether a given DRAM location will experience an error
given the previous error locations and frequencies on the same
DRAM device.

5) Naive Bayesian Classifier (NB): The Naive Bayesian
classifier (NB) is an efficient machine learning model that uses
only marginal statistics of its training data. It is a directed
probabilistic graphical model which assumes independence
between all features and exploits Bayes’ Theorem for learning
and inference [34]. Although simple, Naive Bayes has been
shown to be surprisingly effective, and is especially known
for its usefulness in spam detection and filtering [35]. We
use a Naive Bayesian Classifier to predict whether a given
DRAM location will experience an error given the previous

error locations and frequencies on the same DRAM device.

B. Physics-Informed Approach: Markov Random Field (MRF)

We develop a statistical machine learning model for DRAM
errors which also makes use of spatial knowledge of the
hardware via a Markov random field model. Markov random
fields (MRFs) are undirected probabilistic models which en-
code dependencies between features [32]. One of the simplest
versions of an MRF is a grid structure, known as an Ising
Model in physics. MRF models, originally used for magnets
and for spin models, are especially effective at learning spatial
correlations (such as neighbor, row, and column errors in
DRAM). In our MRF model, we learn how strongly an error
experienced in one location effects its surrounding locations.
Learning in MRFs is accomplished by fitting weights such
that the lowest energy state corresponds to the most physically
preferable configuration, where the energy of a configuration
is given by:

HMRF = — Z (aiij,,;xj <+ T‘i7j£L'iSCj -+ Ci,jxixj) (1)
1,3,i7#]
where X is a given configuration of settings for all nodes in
the grid, 7, j index all pairs of nodes in the grid configuration,
a;,; 1s the corresponding weight between nodes 4 and j if 4 is
directly adjacent to j and O otherwise, r; ; is the corresponding
weight between nodes ¢ and j if ¢ and j are in the same
row and O otherwise, and ¢; ; is the corresponding weight
between nodes ¢ and j if ¢ and j are in the same column and
0 otherwise. Then, it is well known that the probability of a
particular given setting of all nodes, X, is:

P(X et 2
(X)) =— 2)
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where Z is known as the partition function. This model
is similar to the layout of a DRAM device, with its rows
and columns, and architects expect there to be dependencies
between spatially-related DRAM locations. For example, we
know that DRAM devices are connected across rows and
columns, the effects of which can be seen in errors observed
in the field [36]. Therefore, if one DRAM location experiences
an error, we would expect the probability of adjacent locations
to experience an error to increase (even in the case of a random
impact from a cosmic ray, as a ray travels through a device it
would be more likely to affect directly adjacent locations), as
well as the probability of an error in locations in the same row
and column to increase due to the physical architecture of the
device. For these reasons, we include undirected dependencies
across rows and columns within the Ising model grid to obtain
an “adapted Ising model” version of a simple MRF. The
structure of this model is shown in Figure 1.



Fig. 1. The structure of our physics-informed adapted Ising model, a special
case of a Markov Random Field. In this undirected probabilistic graphical
model, we assume dependencies between adjacent locations and dependencies
across rows and columns, as corresponds to the physics of DRAM devices.
In the shown example, we are trying to predict whether the node with the
question mark will experience an error. The other darkened nodes have
already experienced an error. The nodes outlined in bold are involved in
the probability calculation. Blue edges indicate relationships weighted with a
“directly adjacent” weight, green edges indicate relationship weighted with a
“column” weight, and red edges will be weighted with a “row” weight.

In this MRF model, we have incorporated domain knowl-
edge regarding some physical assumptions about DRAM de-
vices into our statistical model. We can now use Equation
2 combined with our observed real DRAM data in order
to learn the appropriate adjacent, row, and column weights,
and then to infer the probability of a given DRAM location
to experience an error given the previous error locations
observed from the same DRAM device. Exact learning and
inference procedures in Markov random field models would
be computationally prohibitive in real-time. Therefore, due
to the complexity of our partition function, we accomplish
learning and inference via a logistic regression approximation
to achieve a maximum pseudolikelihood estimate following
Hunter [37]. This approximate approach makes our MRF
model feasible for large-scale data and for real-time analysis.

V. EXPERIMENTAL SETUP

For each of our six potential models (random forest, boosted
trees, support vector machine, multilayer perceptron, naive
Bayes, and Markov random field), we investigate performance
on three distinct train/test pairs: train and test on data from
Hopper, train and test on data from Cielo, and train on Hopper
test on Cielo. Because Hopper was an older machine than
Cielo, these three train/test pairs not only allow us to evaluate
the usefulness of each model on two different HPC machines
— they also allow us to test the generality of each model. That
is, if a model performs well when trained on an older system
and tested on a newer system, this will mean that the model
has learned something universal about DRAM error behavior,
rather than overfit to a specific machine’s architecture.

A. Features

For all models other than MRF, we generate our dataset
using DRAM error location information from Hopper and/or
Cielo. We take a sample of DRAM locations across time, and
for each location we extract the total number of errors seen
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Fig. 2. Average F1 scores with standard deviation for each model (higher is
better). Note that MRF appears to be the most general model.

up to and including the current time in the same row, same
column, to the top, to the left, to the right, and below the
chosen location. We then also extract the average frequency
at which we have seen errors in each of these relative loca-
tions. These counts and frequencies then become our features,
and our ground truth as to whether the chosen location did
ultimately experience an error becomes our label.

For the MRF model, we also generate our dataset using
DRAM error location information from Hopper and/or Cielo
(depending on the train/test set pairing we are using). However,
because this model encodes some knowledge of the underlying
physics of the DRAM, we encode our features slightly differ-
ently. For each DRAM, we build up a final picture of which
locations experienced errors; in the final array snapshot of the
DRAM, locations which experienced an error are assigned a
1 for TRUE while locations which did not experience an error
are assigned a 0 for FALSE. We then use a randomly selected
subset of these arrays in the MRF model to learn our weights
for the undirected network. We then randomly select locations
from the held out DRAM arrays and use our trained model to
predict whether the selected location will experience an error
given the rest of the relevant DRAM snapshot.

B. Evaluation

For each of our models combined with each train/test set
pair, we report average F1 score, which is the harmonic
mean of precision and recall. For F1 score, a value of 1.0
indicates perfect predictive performance, while 0.5 indicates
performance as good as random guessing. We also report
average false positive and false negative rates.

VI. RESULTS

Figure 2 shows average F1 scores with standard deviation.
Note that across all train/test sets, among models that do not
have knowledge of physics, the random forest and boosted
trees models perform best. As expected, among these models,
scores are slightly lower when trained on an older system and
tested on a new system. However, these scores are still quite
high, indicating that the models are indeed learning something
general about DRAM behavior. However, we observe that the
MRF model does as well at predicting the newer system when
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Fig. 3. Average false positive rates with standard deviation for each model
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trained on an older system as it does when trained on the
newer system. In fact, the MRF model does very well when
trained and tested on two different systems, indicating that by
giving the model access to observed data as well as some basic
knowledge about the physics architects expect, we can create
a general and accurate model of DRAM behavior.

Figure 3 shows false positive rates with standard deviation
for each model for each train/test set pairing. This represents
how frequently each model incorrectly predicts that a DRAM
location will experience an error. Note that for this metric
SVMs are our worst performers, while MLPs, NB, and MRFs
perform very well. Models that do not have underlying phys-
ical knowledge are able to achieve near zero false positive
rates, even when trained and tested on different systems.
However, the MRF models all achieve near zero or exactly
zero false positives regardless of train and test sets. Clearly
given access to some physical knowledge as well as observed
data allows the MRF statistical model to understand that errors
are relatively rare.

Figure 4 shows false negative rates with standard deviation
for each model for each train/test set pairing. That is, Figure
4 represents how frequently each model incorrectly predicts
that a DRAM location is safe to access. Under this metric, we
observe that random forests and boosted trees tend to be our
best performer among physics-ignorant models. However, we
again see that MRF, the physics-aware model, performs sig-
nificantly better, even on temporally distinct train and test sets.
In fact, the performance when trained and tested on different
systems is nearly the same as when trained and tested on the
same newer system. This suggests that giving the model the
ability to learn about the strength of physical correlations in the
DRAM devices gives a non-trivial performance improvement.

VII. CONCLUSION

We find that statistical machine learning models can predict
the likelihood that a given DRAM location will experience an
error with excellent predictive performance (up to an F1 score
of 0.89 +/- 0.01). In our comparison of a variety of models, we
find that among models which are ignorant of any underlying
physics, random forests and boosted trees achieved the highest
F1 scores and lowest false negative rates, while multilayer

False Negative Rate Across Models and Train/Test Pairs
0.2

' I I I I
[ ' I I I I I
Train & Test Cielo
Train and Test Sets

Lo
]

™ Random Forest
Boosted Trees
® Support Vector Machine

= Multilayer Perceptron

False Negative Rate
°
&

Naive Bayes

e
°
&

® Markov Random Field

Train & Test Hopper Train Hopper, Test Cielo

Fig. 4. Average false negative rates with standard deviation for each model
(lower is better). MRF achieves significantly fewer false negatives.

perceptrons and naive Bayes classifiers achieve the lowest
false positive rates. However, a Markov random field model
which encodes a basic understanding of underlying physical
connections between DRAM locations and is then trained
using observed data performs best on all three metrics, even
when trained on an older supercomputing system and tested
on a newer system. In fact, using a model which has a very
basic representation of some physical relationships between
locations gives better performance than models which only
rely on statistics, even when those physics-ignorant models
are given extra information regarding temporal locality of
errors. For these reasons, our work points to the usefulness of
spatial locality over temporal locality in the analysis of DRAM
errors. In addition, because our Markov random field model is
approximated by a logistic regression classifier, the model is
simple and fast enough to be potentially used in production,
even on board future memory controllers.

Further work includes investigating other Markov random
field configurations to further confirm the underlying physics
within DRAM devices — this would allow researchers and
architects to either confirm or question that the errors observed
do indeed agree with expected physical behavior. In addition,
these models could be used as architecture design tools to
accurately simulate expected error/fault behavior in a new
DRAM layout.
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