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3-D Radiation Transport and Detector Response Approaches

 Monte Carlo

 Accurate and accommodates virtually any source configurations

 Calculations take days to weeks or require massive parallel processing

 Variance reduction reduces computation time, but even knowledgeable 
operators make mistakes

 Can accelerate by coupling with external detector response function

 Discrete Ordinates

 Accurate, but not quite as flexible as Monte Carlo

 Calculations can be faster than Monte Carlo, but not always

 Gamma Detector Response and Analysis Software (GADRAS)

 1-D:  ~ 1 s

 3-D: < 1 minute

 Accurate, but not as flexible as Monte Carlo or 3-D discrete ordinates
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} ~ 105 times faster
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Monte Carlo Approach for Transport / Response
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Environmental Scattering f(,)//
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Monte Carlo Approach for Transport / Response
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Scattering in source object//
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Monte Carlo Approach for Transport / Response
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Total includes everything, including environmental 
scatter of photons that scatter in source object
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GADRAS Approach for Transport / Response
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• One ray-trace calculation for each source volume 
element determines entire spectral response

− Scatter continua interpolated from pre-computed 
databases for source objects and environment

− Intrinsic detector continuum (i.e., scatter out of 
detector) from DRF

 (1-D):  E, Y, �, l

 (3-D):  E, Y, �, l, �, ��/��
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1-D Method Combines DO and RT Calculations
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 Discrete ordinates (Partisn) calculation yields 4 leakage
 Few wide energy groups enable rapid solutions, accurate continua

 Ray-trace (RT) calculations
 Reproduces abrupt changes in continua at photopeak energies

 Only E and Y normally tallied by most ray-trace codes

 GADRAS output augmented to include Z and l

 Database of pre-computed scatter calculations interpolated based on 
E , Y, Z, and l

 Residuals obtained by stripping ray-trace from discrete 
ordinates compensate for ray-trace continuum errors
 Otherwise, spectrum for source surrounded by lead then polyethylene 

would be the same as spectrum with shielding materials reversed

D. J. Mitchell et al., “Gamma-ray Response Functions for Scintillation and Semiconductor Detectors”,
Nuclear Instruments and Methods in Physics Research Section A, Vol. 276(3), p. 547-556 (1989)
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1-D Method 137Cs in 12-cm Thick Nylon Sphere
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 Example: 137Cs in 13.9 g/cm2 nylon
 Computed ray-trace spectrum is almost identical to measurement
 Residuals are negligible, so compensation is not required  
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1-D Method Applied to Depleted Uranium

9

Measurement of
1-kg DU sphere

Ray-trace only

Residuals continuum
(Bremsstrahlung for DU)

Sum of ray-trace and residuals continuum yields accurate 
reproduction of measurement
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Differences Between 1-D and 3-D Scatter Calculations
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 1-D

 Approximation for scatter from ray-trace is adequate because discrete 
ordinates leakage calculation compensates for errors in ray-trace

 Scatter spectrum = f(E, Y, Zeff, leff)

 3-D

 Discrete ordinates calculations do not correspond to 1-D source 
models, so gross leakages cannot be used to compensate for ray-trace 
errors

 Scatter spectrum derived from ray-trace calculation must be accurate

 Scatter spectrum = f(E, Y, Z, l, �, �� ��⁄ )

hydrogen fraction metric used to mix scatter libraries
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3-D Computation of Effective Atomic Number, �
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Old 1-D Approach

New 3-D Approach
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where:

 n is the number of source shells
 v is the number of source voxels
 Y(k) is the gamma-ray leakage originating in shell or voxel k
 Z(x) is the mean atomic number at location x
 (x) is the density at location x
 µ(x) is the total cross section at location x (g/cm2)
 S(k) is the shell corresponding to voxel v
 L is the distance along vector to the detector face
 p is an empirical term (p=0 yields old approach, p=1 more weighting external shells)

transmission through 
external materials

voxels replace shells

integrated
instead of summed

•



3-D Computation of Effective Hydrogen Fraction, �

12

Old 1-D Approach New 3-D Approach

� =
∑ �(�) ∫ �� � � � � ���(�)(���)�

�
�
���

∑ �(�) ∫ �� � � ���(�)(���)�

�
�
���

Not used

• The hydrogen concentration is important because hydrogen has twice as
many electrons per unit mass as any other element, so the relative scatter
probability is also twice as great

• � is computed using the same weighting as �
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3-D Computation of Effective Areal Density, l
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Old 1-D Approach:

New 3-D Approach:

�� =
∑ �(�) ∑ �� ��

�����
�
���
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� =

∑ �(�) ∫ ��  �
��(�) �(�)⁄

�� �⁄
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��� � �

����

�

�
�
���
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���

where:

• s(x) is the scatter cross section at location x

• �s is the scatter cross section evaluated at Z

• � is the total cross section evaluated at Z

• B(x) is the probability of photon backscatter probability computed by integrating the
Klein-Nishina formula from 90 to 180 divided by the total integral



3-D Computation of Shield Shape Metric �� ��⁄
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Old 1-D Approach:

New 3-D Approach:

• Ro is distance between a source voxel and last material element along vector to the
detector surface

•  is the mean free path

•  is the mean free path evaluated at � and �

• r(i) is the radius corresponding to i mean free paths inward from Ro

Not used

�� −
∑ �� ��� �(��) − ��̅�

���

∑ �� ����
���

�� −
�

��

��
=

effective mean inner radius

effective mean outer radius
=

• More scattered photons are emitted for a point source at the center of a solid sphere
than if a gap exists between the source and the same thickness of shielding material

• The ratio of the inner to outer radius  is a
metric used to interpolate scatter database >

�� ��⁄ = 0 0.3

0
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3-D:  Six Parameters Define Scatter Spectrum
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• E Gamma-ray energy

• Y Gamma-ray leakage

• � Mean effective atomic number

• � Mean effective areal density

• � Mean effective hydrogen fraction

• ��/�� Mean effective ratio of inner to outer radius of

intervening material
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Spherical Equivalent for Volumetric Source Terms

 Volumetric source terms determined for geometries by 1-D 
deterministic solvers for spherical equivalent source

 Surface areas and masses of each layer are preserved as much as 
possible

 Source-terms are transformed back onto the original to get volumetric 
source terms

Model

Volumetric
source terms

Cylindrical DU Casting
6 66 cm

6 45 cm

6 35 cm

4. Ocm

SS-304 1 26 
kg

Void

Void
SS-304, 624 

22 g

8.65 cm

8.48 cm

8.40 cm
8.33 cm

8.28 cm
6.93 cm

6 66 cm

Void kg

SS-304, 1.26

Void

Void

U, 18.00 k

Void g

624 22 g
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Method Validation

 Accuracy of calculations have been evaluated for numerous source and 
detector configurations, including: spheres, cylinders, slabs, cones, and 
combinations of these primitive models

 Examples follow:

18
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3-D Benchmark Test (Pu in PE)

19

• 4.5 kg Pu in 3” PE sphere

• Neutron capture  from table

• Computation time: 30 s 
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3-D Benchmark Test (DU Casting in Steel and PE)
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• Source is 18-kg DU casting

• Inside 0.5-inch-thick steel 
cylinder

• Inside 2-inch-thick PE box

• Computation time: 35 s
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Computational Validation Ongoing

 Computed spectra are accurate for
all but a few configurations

 Calculations are inaccurate for the
following cases:

 3-D configurations if gamma-ray
emission is highly asymmetric

 Measurement with collimated 
detectors pointed away from radiation 
source

 The current method associates 
origin of scattered photons with 
location of original gamma rays as 
opposed to scattering material

 Photograph to right shows test
configuration used as part of
“DNDO 1-D vs. 3-D” project

 Impact of voids and streaming paths
included in the evaluation

21
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Summary

 This presentation describes a computational method that enables 
radiation transport and accurate detector response for 3-D source 
models in < 1 minute

 Incorporated into the Gamma Detector Response and Analysis Software 
(GADRAS)

 The approach utilizes pre-computed continua for the detector 
response and scattered radiation

 The method is accurate for numerous configurations of radioactive 
and shielding materials

 Research is ongoing to improve accuracy for a problematic cases

22
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Extras
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Flowchart of Transport Process (< 1 minute)
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Load/Age Model
(1DM file)

Generate Intrinsic 
Source Terms

Solve Neutron 
Problem (eigenvalue

+ fixed source)

Solve Photon Problem

Solve Electron 
Problem

Generate Bremsstrahlung 
Source Terms

Generate (n,g)
Source Terms

Generate Photon-
Induced Source Terms

Solve Photon Problem

Store Results
(GAM/RTD files)

Generate (a,n) 
Source Terms

Ray-Trace (1D)

ENSDF5

ToRI

Sources4C

Sources4C

PARTISN 

ONELD

ONELD

ONELDENDFB/VI

ENDF6.6

CEPXS

EL03 (MCNP)

GAMLEGJR

GAMLEGJR

Biggs-Lighthill

Key
Library/Database
Transport Code

EPDL97 (MCNP)

Nit

4/

41

4/

1. 

limula


