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3-D Radiation Transport and Detector Response Approaches BE.

= Monte Carlo
= Accurate and accommodates virtually any source configurations
= Calculations take days to weeks or require massive parallel processing

= Variance reduction reduces computation time, but even knowledgeable
operators make mistakes

= Can accelerate by coupling with external detector response function
= Discrete Ordinates

= Accurate, but not quite as flexible as Monte Carlo

= Calculations can be faster than Monte Carlo, but not always

= Gamma Detector Response and Analysis Software (GADRAS)
= 1-D: ~1s
~ S i

=  Accurate, but not as flexible as Monte Carlo or 3-D discrete ordinates
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Monte Carlo Approach for Transport / Response

Environmental Scattering f(¢,0)
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Monte Carlo Approach for Transport / Response

Scattering in source object




Monte Carlo Approach for Transport / Response

v Total includes everything, including environmental
scatter of photons that scatter in source object




GADRAS Approach for Transport / Response

* One ray-trace calculation for each source volume
element determines entire spectral response

— Scatter continua interpolated from pre-computed
databases for source objects and environment

— Intrinsic detector continuum (i.e., scatter out of
detector) from DRF




1-D Method Combines DO and RT Calculations

= Discrete ordinates (Partisn) calculation yields 4 leakage
= Few wide energy groups enable rapid solutions, accurate continua

= Ray-trace (RT) calculations
= Reproduces abrupt changes in continua at photopeak energies
= Only E and Y normally tallied by most ray-trace codes
= GADRAS output augmented to include Zand pf
= Database of pre-computed scatter calculations interpolated based on
E, Y, Z and pf
= Residuals obtained by stripping ray-trace from discrete
ordinates compensate for ray-trace continuum errors

= QOtherwise, spectrum for source surrounded by lead then polyethylene
would be the same as spectrum with shielding materials reversed

D. J. Mitchell et al., “Gamma-ray Response Functions for Scintillation and Semiconductor Detectors”,
Nuclear Instruments and Methods in Physics Research Section A, Vol. 276(3), p. 547-556 (1989)
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1-D Method 3’Cs in 12-cm Thick Nylon Sphere

= Example: 137Cs in 13.9 g/cm? nylon
= Computed ray-trace spectrum is almost identical to measurement

= Residuals are negligible, so compensation is not required
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1-D Method Applied to Depleted Uranium B

106 = ' 1 ’ 1

Residuals continuum Measurement of
(Bremsstrahlung for DU)  1-kg DU sphere
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Sum of ray-trace and residuals continuum yields accurate
reproduction of measurement




Differences Between 1-D and 3-D Scatter Calculations .

= 1-D
= Approximation for scatter from ray-trace is adequate because discrete
ordinates leakage calculation compensates for errors in ray-trace
= Scatter spectrum =f(E, Y, Z ot pl;ff)
= 3-D
= Discrete ordinates calculations do not correspond to 1-D source
models, so gross leakages cannot be used to compensate for ray-trace
errors
= Scatter spectrum derived from ray-trace calculation must be accurate

= Scatter spectrum =f(E, Y, Z, pf, H, 1;/7,)

/N

hydrogen fraction metric used to mix scatter libraries
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3-D Computation of Effective Atomic Number, Z B

Old 1-D Approach
 _ k=1Y (k) Xicks1 Z(Dpl(D) New 3-D Approach
k=1 Y (K) Xizg41 PL(D) 5 _ Tk YR) [ dx Z(x)p(x) e HOI(L=0)
b Y () [y dx p(a) e
voxels replace shells \

where: integrated
instead of summed

n is the number of source shells
v is the number of source voxels transmission through
Y(k) is the gamma-ray leakage originating in shell or voxel k
Z(x) is the mean atomic number at location x

o(x) is the density at location x

U(x) is the total cross section at location x (g/cm?)

S(k) is the shell corresponding to voxel v

L is the distance along vector to the detector face

p is an empirical term (p=0 yields old approach, p=1 more weighting external shells)

external materials

[EEY
[EEY



3-D Computation of Effective Hydrogen Fraction, H

Old 1-D Approach New 3-D Approach

4 : () (L)
Not used H = 2r=1Y (k) fo dx H(x)p(x) e
v_ Y (k) [T dx p(x) e @)

* The hydrogen concentration is important because hydrogen has twice as

many electrons per unit mass as any other element, so the relative scatter
probability is also twice as great

* H is computed using the same weighting as Z




3-D Computation of Effective Areal Density, pl

— h=1 Y(k) Yitisipl(k)
Old1-DA h: — Sik=1 i=k+1
pproac l N0

i)

New 3-D Approach:

—u(r)r
_Tt® Jy dx p() BELEE N1 — ) (1 S )]

k=1Y (k)

where:

Us(X) is the scatter cross section at location x

11, is the scatter cross section evaluated at Z

11 is the total cross section evaluated at Z

B(x) is the probability of photon backscatter probability computed by integrating the
Klein-Nishina formula from 90° to 180° divided by the total integral
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3-D Computation of Shield Shape Metric r; /7,

* More scattered photons are emitted for a point source at the center of a solid sphere
than if a gap exists between the source and the same thickness of shielding material

* The ratio of the inner to outer radius is a

metric used to interpolate scatter database >
Old 1-D Approach: Not used T = 0 0.3
New 3-D Approach: ~
Y
: : : R, ——
<ri> effective mean inner radius ° D
T effective mean outer radius . . e—(i—l)(r(i ) —i /T)
° g e (7D

* R, is distance between a source voxel and last material element along vector to the
detector surface

* ) is the mean free path

e ) is the mean free path evaluated at Z and ﬁ

14 * r(i1) is the radius corresponding to /i mean free paths inward from R,
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3-D: Six Parameters Define Scatter Spectrum

E
Y
- Z
pl
H

. Ti/TO Mean effective ratio of inner to outer radius of
intervening material

Gamma-ray energy

Gamma-ray leakage
Mean effective atomic number
Mean effective areal density

Mean effective hydrogen fraction




Spherical Equivalent for Volumetric Source Terms

BE.

= Volumetric source terms determined for geometries by 1-D
deterministic solvers for spherical equivalent source

= Surface areas and masses of each layer are preserved as much as

possible

= Source-terms are transformed back onto the original to get volumetric

source terms

Cylindrical DU Casting

—=—Void

I

Volumetric
source terms

8.65cm
8.48cm
8.40cm
8.33cm Void
8.28cm Void
6.93cm Void
6.66 cm B/ U, 18.00 kg

S5-304, 1.26 kg

B Void

6.40 cm I
S 55304, 624.22 g
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Method Validation

Accuracy of calculations have been evaluated for numerous source and

detector configurations, including: spheres, cylinders, slabs, cones, and
combinations of these primitive models

= Examples follow:




3-D Benchmark Test (Pu in PE)

4.5 kg Pu in 3" PE sphere
* Neutron capture y from table
Computation time: 30 s
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3-D Benchmark Test (DU Casting in Steel and PE) ~ BE

I ~5/16 NYLON BOLTS

- S / 20" THK. HOPE
N ,/i:,«‘"(ﬂp.) '

WEDGE, HDPE
/—

* Source is 18-kg DU casting

* |nside 0.5-inch-thick steel
cylinder

* Inside 2-inch-thick PE box
* Computationtime: 35 s
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Computational Validation Ongoing .

= Computed spectra are accurate for
all but a few configurations

= Calculations are inaccurate for the
following cases:

= 3-D configurations if gamma-ray
emission is highly asymmetric

= Measurement with collimated
detectors pointed away from radiation
source

= The current method associates
origin of scattered photons with
location of original gamma rays as
opposed to scattering material

= Photograph to right shows test
configuration used as part of
“DNDO 1-D vs. 3-D” project

= |mpact of voids and streaming paths
included in the evaluation




Summary

= This presentation describes a computational method that enables
radiation transport and accurate detector response for 3-D source
models in <1 minute

= |ncorporated into the Gamma Detector Response and Analysis Software
(GADRAS)

= The approach utilizes pre-computed continua for the detector
response and scattered radiation

= The method is accurate for numerous configurations of radioactive
and shielding materials

= Research is ongoing to improve accuracy for a problematic cases
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Flowchart of Transport Process (< 1 minute)

Load/Age Model

Generate Bremsstrahlung

ELO3 (MCNP)

ENSDF5 (lDl\\/i file) > Source Terms
ToRl Generate Intrinsic v ONELD
Sources4C SourciTerms Solve Photon Problem
GAMLEGJR
Sources4C Generate (a,n)
S e Generate Photon- EPDL97 (MCNP
\ Induced Source Terms ( )
PARTISN Solve Neutron
Problem (eigenvalue v
ENDFB/VI + fixed source) ONELD
J Solve Photon Problem
ENDF6.6 Generate (n,g) 7 GAMLEGJR
Source Terms
) Ray-Trace (1D) Biggs-Lighthill
ONELD Solve Electron v
Problem Store Results Key
CEPXS (GAM/RTD files) Library/Database
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