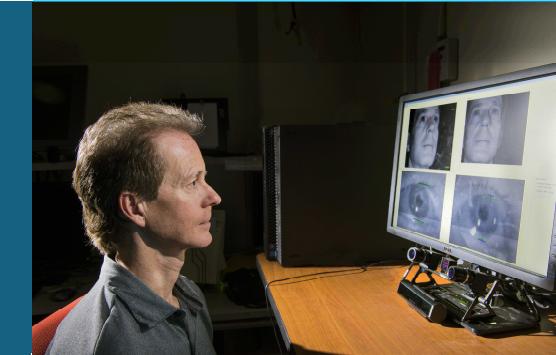


# VISUALIZING CLUSTERING AND UNCERTAINTY ANALYSIS OF MULTIVARIATE TIME-SERIES DATA



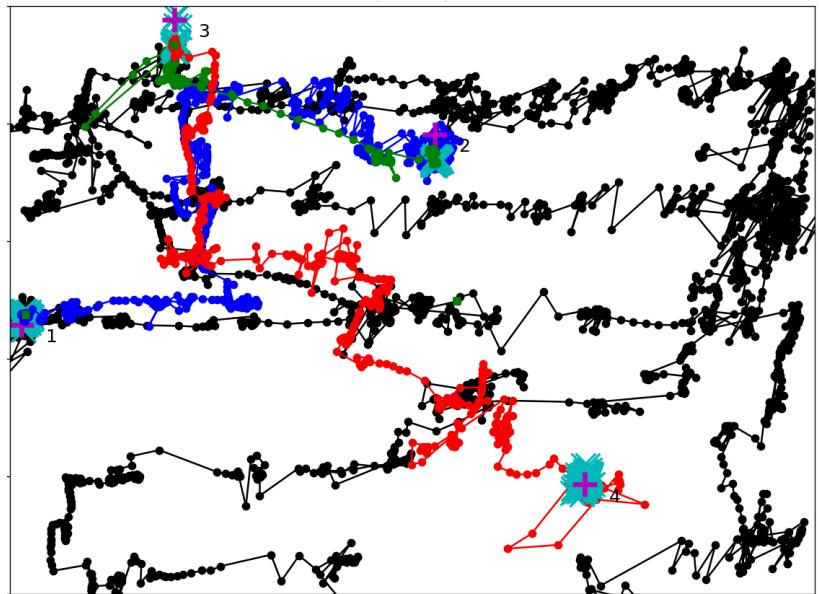
*PRESENTED BY*

Kristin Divis, Maximillian Chen,

Laura McNamara, J. Dan Morrow

## 2 Inspiration: Eye tracking data

- Series of gaze points (x, y) every  $\sim 17$  ms—it's both **longitudinal** and **multivariate** (not i.i.d.)
- Questions:
  - How do we determine patterns of longitudinal, multivariate eye movement behavior in an **unsupervised** manner?
  - How do we quantify the **uncertainty** of this pattern determination in order for us to determine how confident we should be in the clustering results?
  - Can **visualizations** (in addition to global numerical measures) help build our understanding?



## Probabilistic Clustering Models

- Provide probabilistic information about assignment of data points to clusters
  - Allow for **uncertainty quantification**
- Commonly-used probabilistic models such as the Gaussian Mixture Model (GMM)<sup>1</sup> and Latent Dirichlet Allocation (LDA)<sup>2</sup> assume data is **i.i.d.**
- The GMM has been extended for **scalar** longitudinal data<sup>3</sup> ... but we are interested in models that also cluster **dependent multivariate** data

<sup>1</sup> Raftery et al. (2002)

<sup>2</sup> Blei et al. (2003)

<sup>3</sup> McNicholas et al. (2010)

# Hidden Markov Model (HMM)

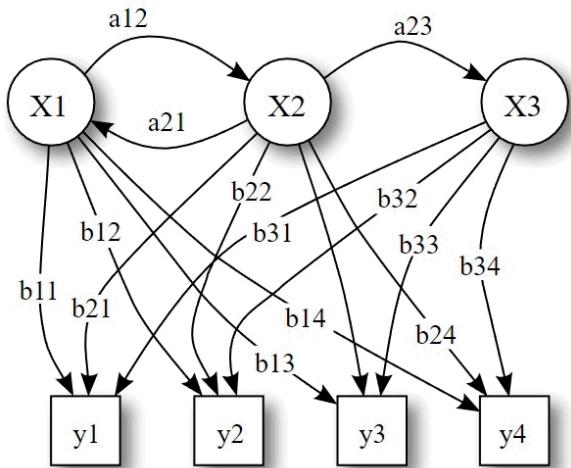


## Model Assumptions

- **Observed data:**  $m$ -variate time series of length  $T$  denoted by the general form:

$$O_{1:T} = (O_1^1, \dots, O_1^m, O_2^1, \dots, O_2^m, \dots, O_T^1, \dots, O_T^m)$$

- **Latent (hidden) states:**  $S_{1:T} = (S_1, \dots, S_T)$
- **Model parameters:**  $\theta$
- **Covariates:**  $z_{1:T} = (z_1, \dots, z_T)$



X: hidden states

y: observed states

a: transition probabilities

b: emission probabilities



**Uncertainty Quantification:** We want to quantify the uncertainty of the predicted state of an observation at time  $t$

- **Posterior probability** of being in state  $j$  at time  $t$  given the observation sequence  $O_{1:T}$ , covariates  $z_{1:T}$ , and model parameters  $\theta$ :

$$P(S_t = j | O_{1:T}, z_{1:T}, \theta')$$

- **State classification:**  $S_t^* = \max_j P(S_t = j | O_{1:T}, z_{1:T}, \theta')$
- **Classification uncertainty:**  $1 - \max_j P(S_t = j | O_{1:T}, z_{1:T}, \theta')$

# Clustering Evaluation Measure: Numerical

- These are completely global measures: there is a **single numerical value** for the **entire data set**

- All measures take values between 0 and 1 (0 = completely dissimilar; 1 = perfectly similar)

- External Evaluation:** determine whether two clustering models produce similar clusters

- Rand Index (RI)
- Hubert and Arabie's Adjusted Rand Index
- Morey and Agresti's Adjusted Rand Index
- Fowlkes-Mallows (FM) Index
- Jaccard Index ( $J$ )

- Internal Evaluation:** identify separability of clusters

- Dunn Index (D)

$$RI = \frac{TP + TN}{TP + FP + FN + TN},$$

where TP=true positive, TN=true negative, FP=false positive, and FN=false negative

$$ARI = \frac{\overbrace{\sum_{ij} \binom{n_{ij}}{2} - [\sum_i \binom{a_i}{2} \sum_j \binom{b_j}{2}] / \binom{n}{2}}^{\text{Index}}}{\underbrace{\frac{1}{2} [\sum_i \binom{a_i}{2} + \sum_j \binom{b_j}{2}] - [\sum_i \binom{a_i}{2} \sum_j \binom{b_j}{2}] / \binom{n}{2}}_{\text{Max Index}}} \underbrace{\binom{n}{2}}_{\text{Expected Index}}$$

$$FM = \sqrt{\frac{TP}{TP + FP} \frac{TP}{TP + FN}}.$$

$$J(A, B) = \frac{|A \cap B|}{|A \cup B|} = \frac{TP}{TP + FP + FN},$$

where  $|A \cap B|$  is the size of the intersection of datasets  $A$  and  $B$  and  $|A \cup B|$  is the size of the union of datasets  $A$  and  $B$ .

$$D = \frac{\min_{1 \leq i < j \leq n} d(i, j)}{\max_{1 \leq k \leq n} d'(k)},$$

where  $d(i, j)$  represents the distance between clusters  $i$  and  $j$ , and  $d'(k)$  measures the intra-cluster distance of cluster  $k$



Expect visualizations to **enhance our understanding** of the clustering models

- Visualize clustering results and clustering uncertainty for a model
- Compare results of multiple models
- Provide **more specific information** on clustering trends than existing global numerical clustering evaluation measures

## Constrained visual search task on synthetic aperture radar (SAR) imagery

- Created as a data “sandbox” to validate newly developed algorithms<sup>1</sup>
- Search for 4 target dots in a set order. Depending on task, may flip between different views of the same image to find the dots are make judgements between pairs of dots while searching.
- 16 participants, 4 task variants, took approximately 1 hour per participant
  - That’s ~25,000 sample points (x, y, t) per participant
  - ... using a subset of the data here



Simplified view of task

<sup>1</sup> See Divis et al. (2018, NDIA)

- Model fitting and selection
  - Use R package `depmixS4` (Visser and Speenbrink, 2010)
  - Assume each (x,y) data point follows a multivariate normal distribution.
  - Select model using BIC criterion (lowest BIC value after fitting models with different numbers of hidden states)
- Covariates: featurize scanpath (e.g., changes in direction, curviness of path between targets)
- Model variants
  - **No** covariates
  - **All** covariates (length ratio, angle, angle difference, total angles)
  - **Single** best covariate (angle)
- Model evaluation
  - Global **numerical** external and internal measures
  - Cluster **visualizations**

## Numerical Clustering Evaluation Results



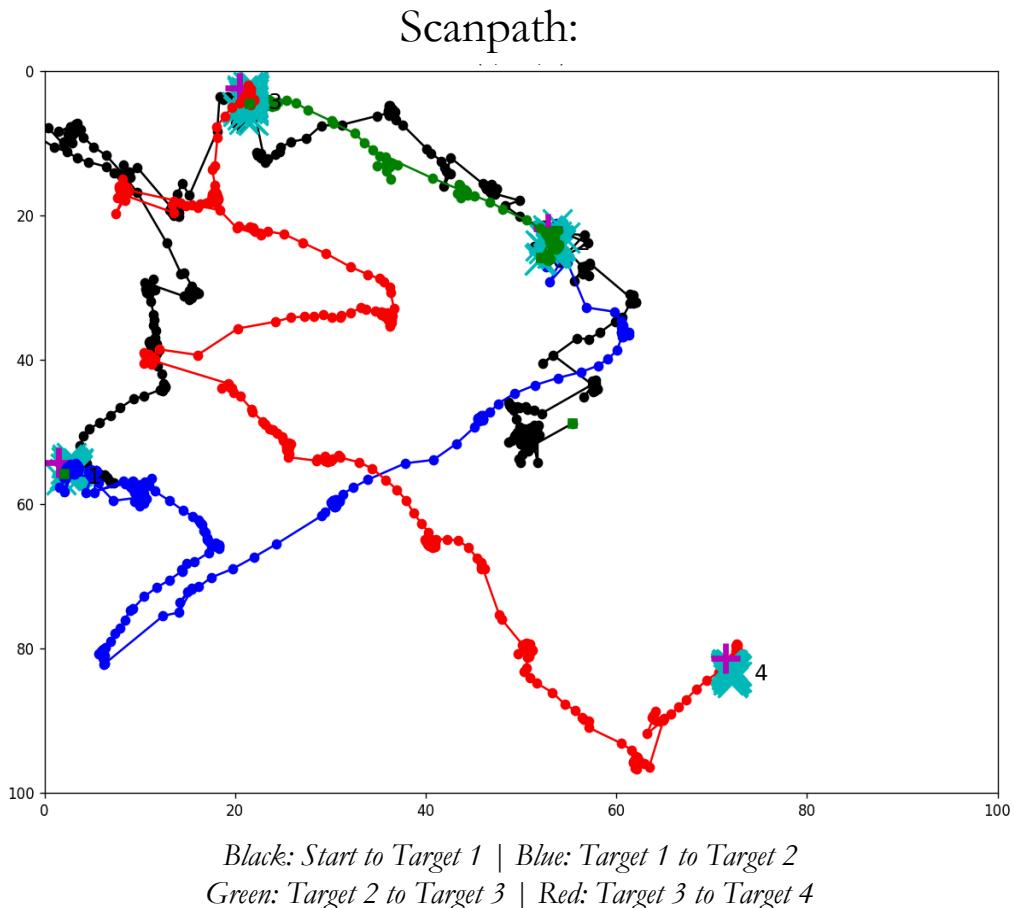
**External Evaluation:** models with **no covariates** and **single angle covariate** are most similar (generally highest values)

| Model 1 Covariates | Model 2 Covariates | Rand         | HA           | MA           | FM           | Jaccard      |
|--------------------|--------------------|--------------|--------------|--------------|--------------|--------------|
| <b>None</b>        | <b>Angle</b>       | 0.859        | <b>0.365</b> | <b>0.367</b> | <b>0.446</b> | <b>0.286</b> |
| None               | Multiple           | <b>0.865</b> | 0.346        | 0.349        | 0.422        | 0.268        |
| Angle              | Multiple           | 0.840        | 0.280        | 0.283        | 0.372        | 0.228        |

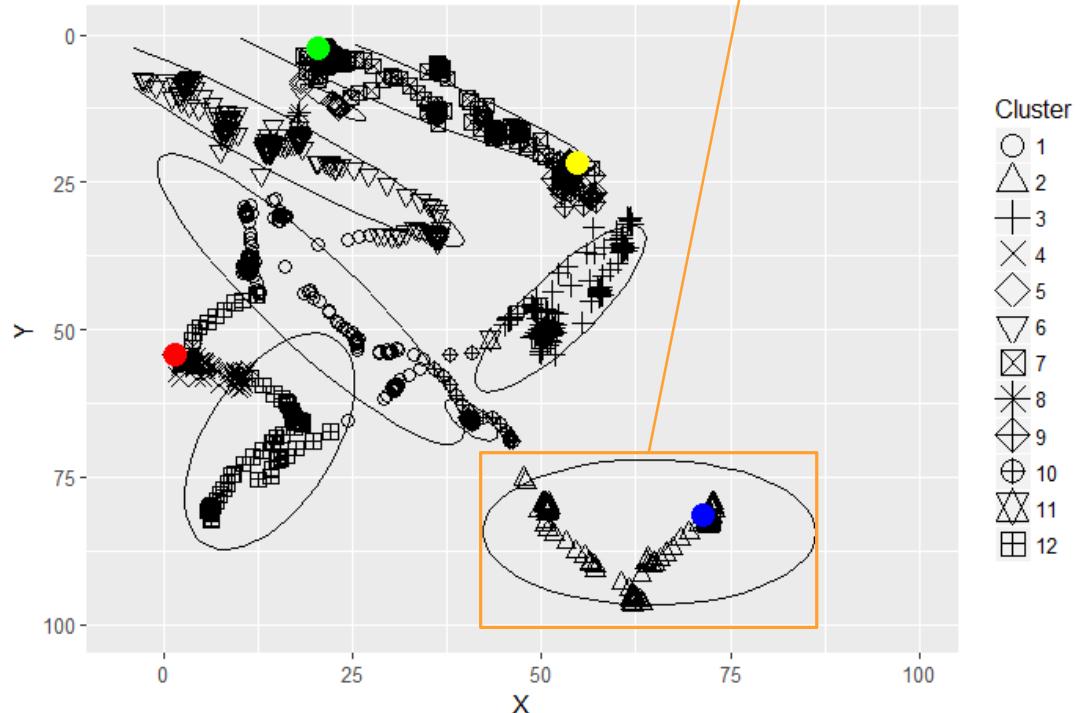
**Internal Evaluation:** model with the **single angle covariate** has the highest separability (highest value)

| Covariates   | Dunn Index     |
|--------------|----------------|
| None         | 0.00075        |
| <b>Angle</b> | <b>0.00112</b> |
| Multiple     | 0.00012        |

# HMM with **no** covariates (12 Hidden States)



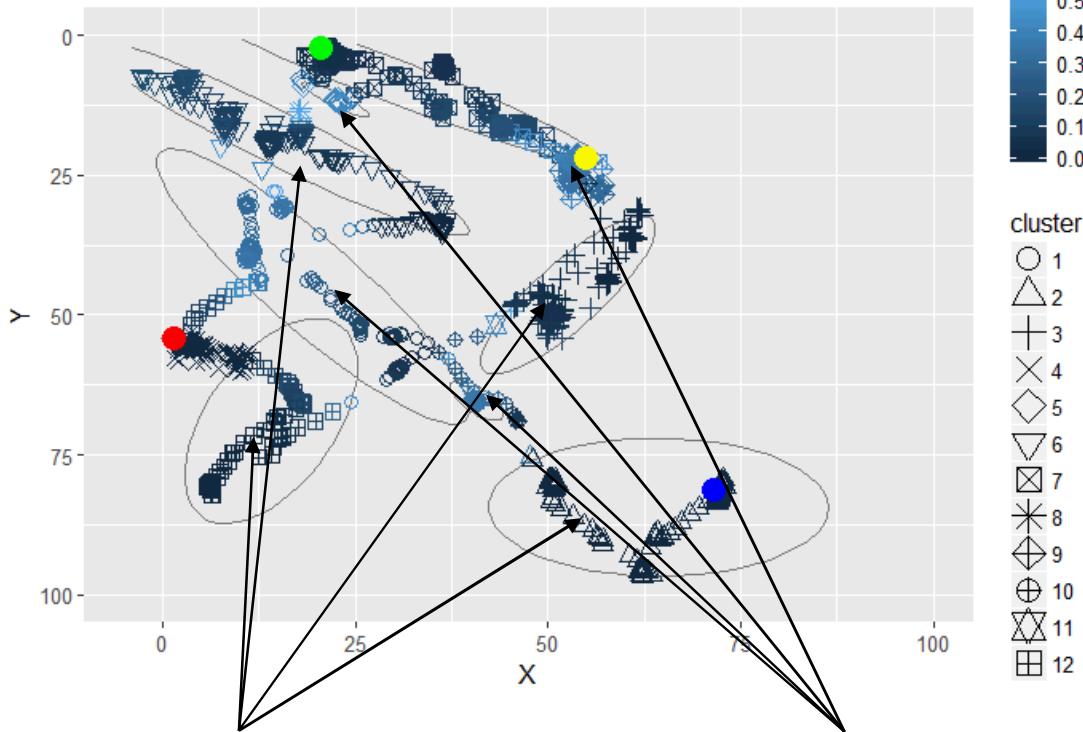
Cluster Assignments with Confidence Ellipses:



Relatively **distinct** and **tightly-packed** clusters

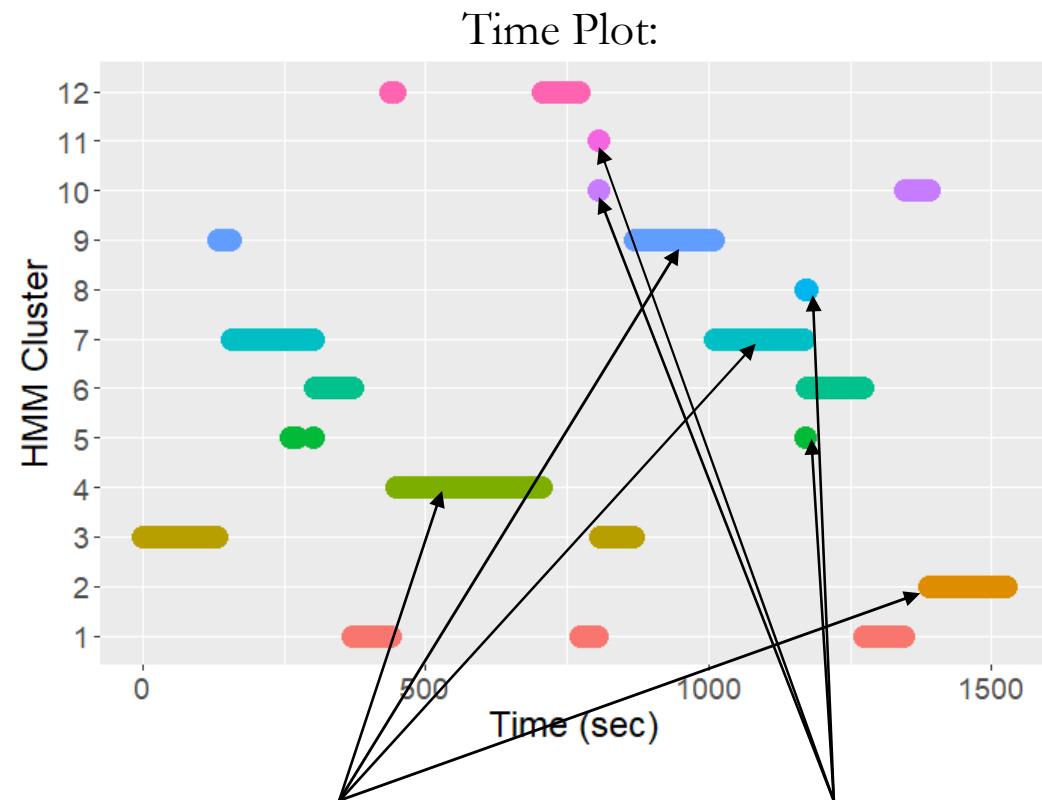
# HMM with **no** covariates (12 hidden states)

Uncertainty Plot with Confidence Ellipses:



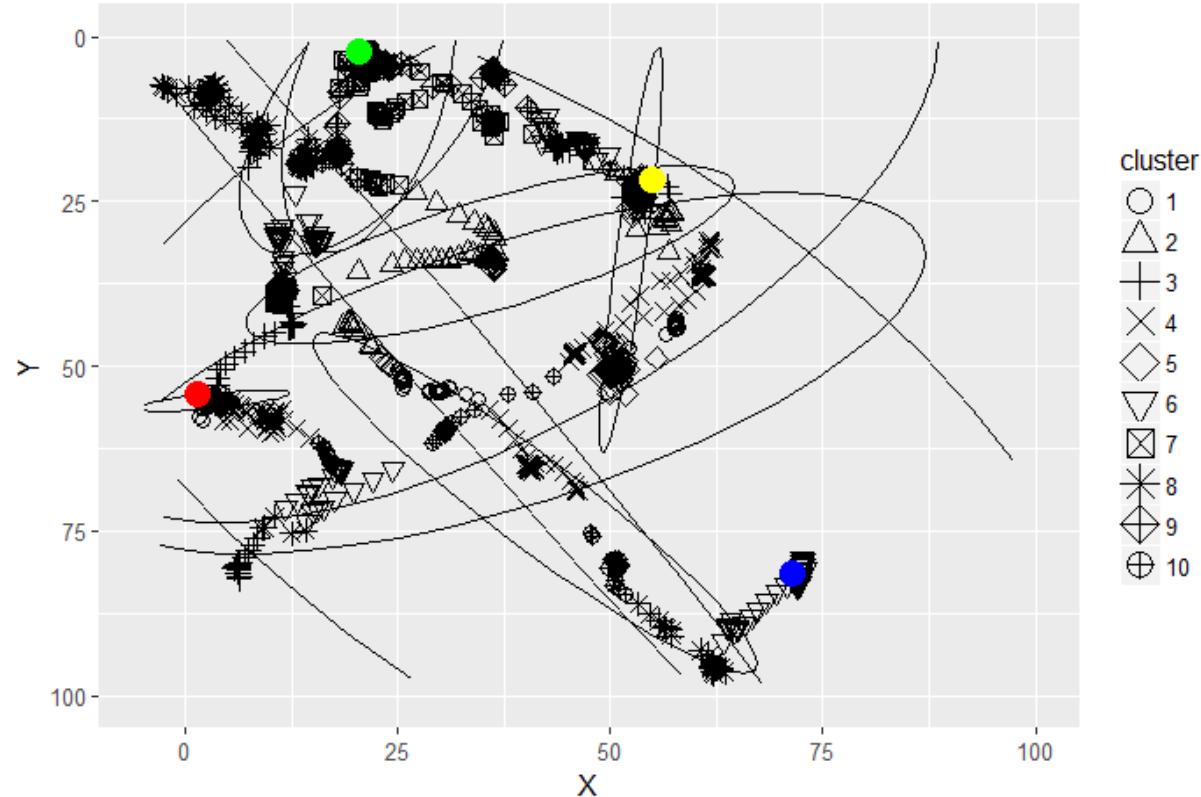
Clusters 2, 3, 6, & 12 all have points classified to these clusters with **low uncertainty**

Clusters 1, 5, 9, & 10 all have points classified with relatively **high uncertainty**



HMM with **all** covariates (10 hidden states)

Cluster Assignments with Confidence Ellipses:

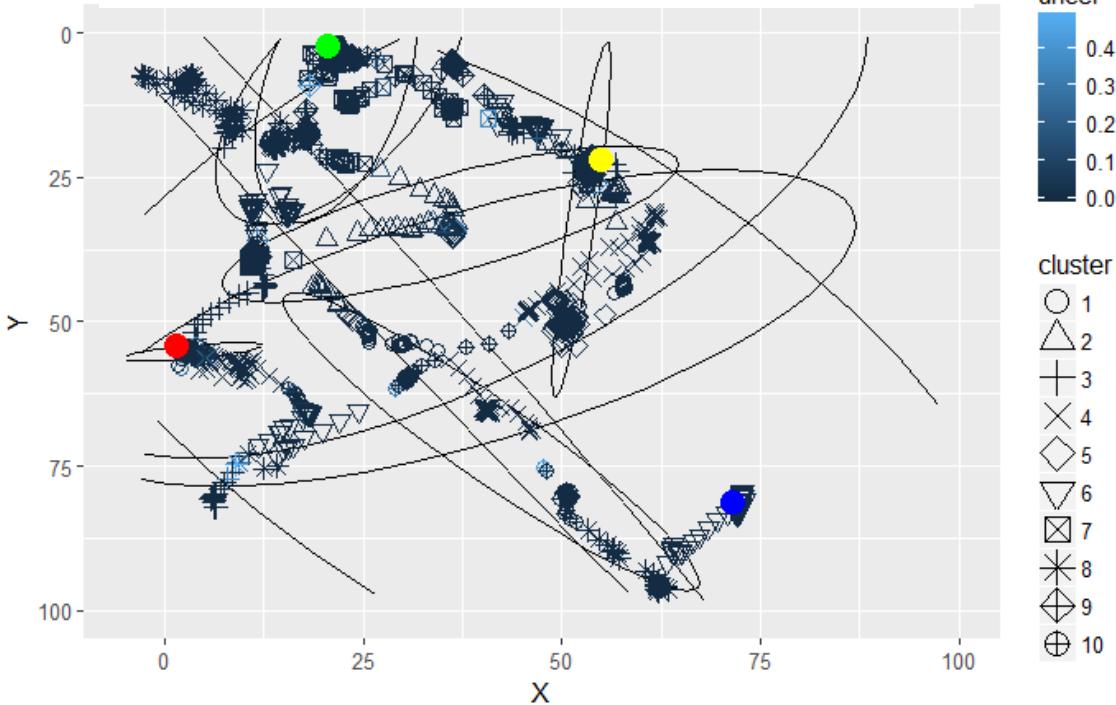


Adding all the covariates leads to **wider** clusters and **more overlap** between clusters—does not appear to improve clustering results

# HMM with **all** covariates (10 hidden states)

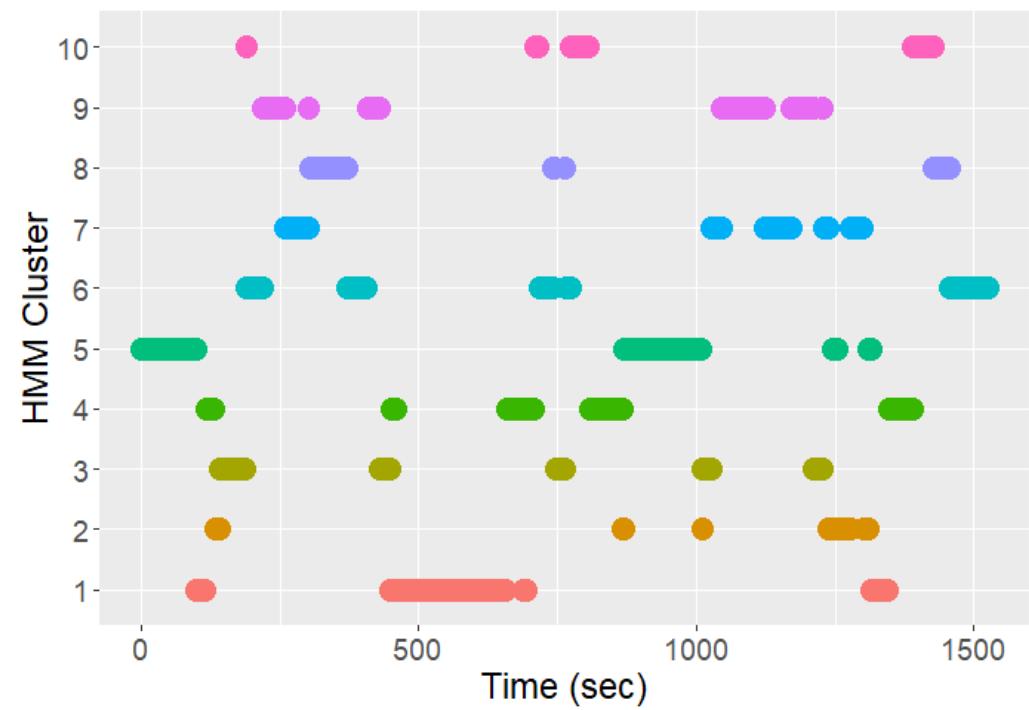


Uncertainty Plot with Confidence Ellipses:



Most of the points have been assigned to clusters with **relatively low uncertainty** but there's still **large overlap** between cluster ellipses, leading to overall poor confidence in the clusters

Time Plot:

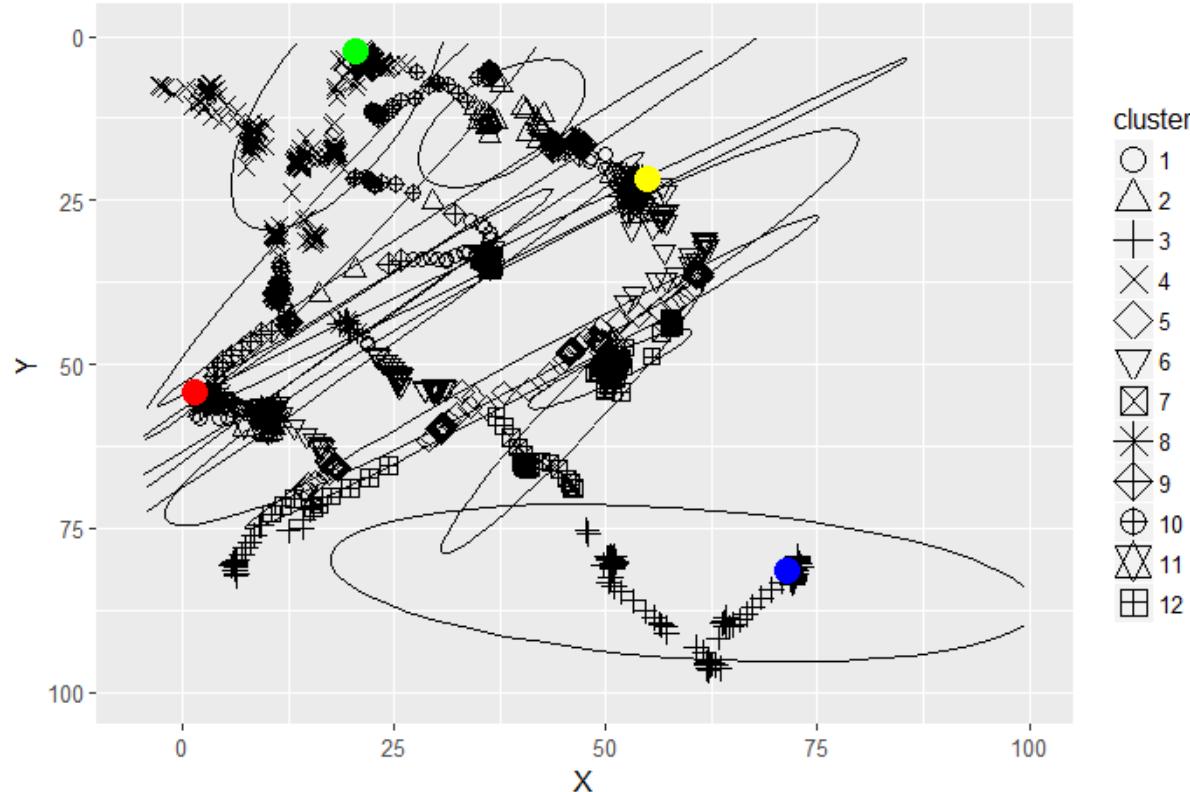


Similar pattern of some clusters having relatively **long dwell times**

...but also have more instances of **short revisits** to the same cluster

## HMM with **angle** covariate (12 hidden states)

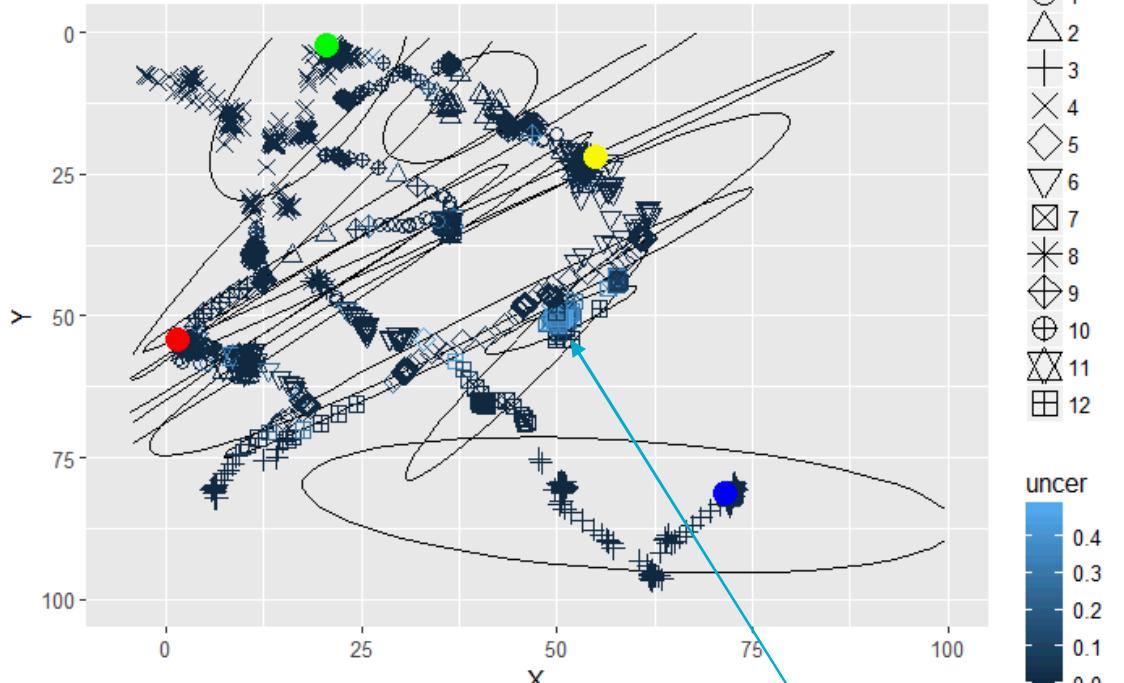
Cluster Assignments with Confidence Ellipses:



Having the angle covariate alone is better than all covariates (fewer overlapping clusters) but the clusters are still not as distinct as when no covariates are included

# HMM with **angle** covariate (12 hidden states)

Uncertainty Plot with Confidence Ellipses:



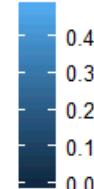
Most points clustered with relatively **low uncertainty** (dark blue)

...the **high uncertainty** (light blue) points are mainly around (50,50) in cluster 12

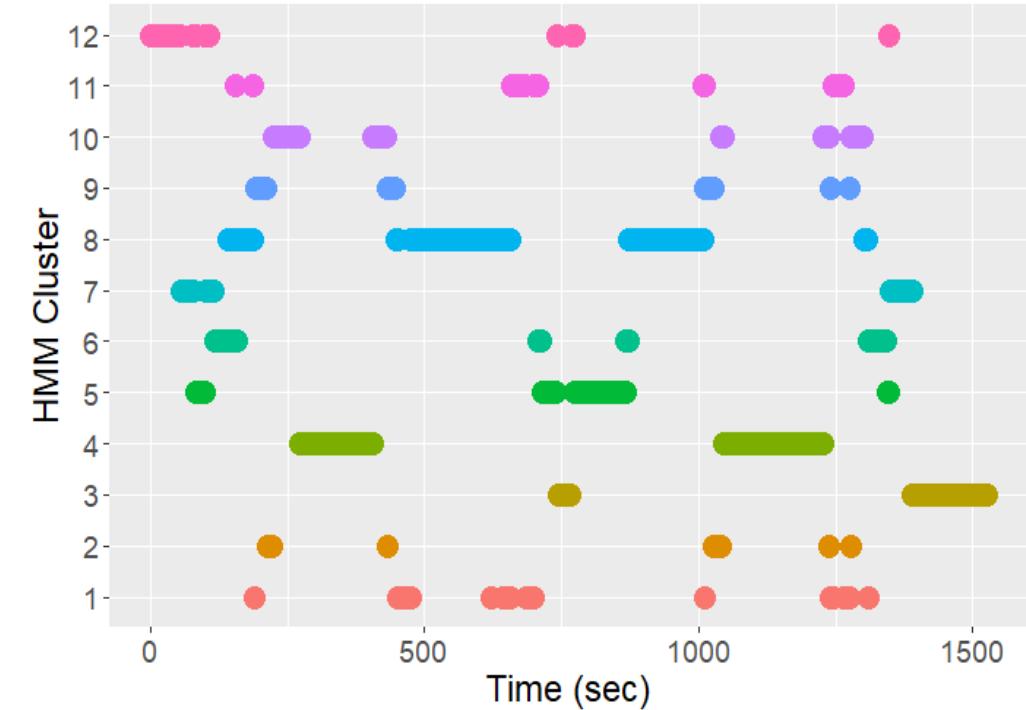
cluster

- 1
- △ 2
- +
- × 4
- ◊ 5
- ▽ 6
- 7
- \* 8
- ◇ 9
- ⊕ 10
- ◊ 11
- 12

uncer



Time Plot:



Spend a relatively large amount of time in some clusters and very little time in others, with multiple short revisits

- Used **HMM** methods to cluster **multivariate, time-dependent** data (multiple models with levels of covariate inclusion) and evaluated with global **single-value numerical** clustering measures and **visualizations**
- Inspired by eye tracking data—but models did **not** fit that data well
  - Including visualizations as an evaluation tool allowed us to better understand the **why** and **how**
    - Cluster assignments with 95% confidence ellipse: allowed us to gauge the size and variability of each cluster
    - Cluster assignments with uncertainty of each data point coded via color: allowed us to gauge uncertainty relative to position in cluster
    - Time plot of clusters: allowed us to track the assignment of data points through time
- Benefits of visualization:
  - Assess the clustering performance and what level of confidence we should have in the results
  - Identify specific patterns in the data, which existing numerical clustering evaluation measures cannot provide
  - Compare results of multiple clustering models



- **Statistical**

- Extend single-numerical evaluation measure and visualizations to data sets and models with better clusters
- Goodness-of-fit statistics for mixture models
- Integrate cluster separability measures into the computation of classification uncertainty
- Extend current measures for classification uncertainty at individual data points to quantifying the uncertainty of clusterings, and then visualizing these uncertainty bounds
- Create visualizations for clustering time-series data with data points of more than two dimensions

- **Geospatial temporal** (eye tracking) data: more *useful* approach?

- Currently every data point is forced into a cluster—traditional eye tracking techniques **drop data** that do not align to meaningful eye movement patterns
- Pull in **top-down components** (e.g., fixations, saccades, blinks) to help guide the bottom-up clustering into more meaningful patterns?
- Better incorporate **temporal** information in addition to spatial (current model only “looks” 1 point back)
- Apply to less coarse eye movement data (e.g., letter shapes in reading)

Thank you!

# Questions?