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Abstract—Control systems for critical infrastructure are be-
coming increasingly interconnected while cyber threats against
critical infrastructure are becoming more sophisticated and
difficult to defend against. Historically, cyber security has em-
phasized building defenses to prevent loss of confidentiality,
integrity, and availability in digital information and systems,
but in recent years cyber attacks have demonstrated that no
system is impenetrable and that control system operation may
be detrimentally impacted. Cyber resilience has emerged as a
complementary priority that seeks to ensure that digital systems
can maintain essential performance levels, even while capabilities
are degraded by a cyber attack. This paper examines how cyber
security and cyber resilience may be measured and quantified in
a control system environment. Load Frequency Control is used
as an illustrative example to demonstrate how cyber attacks
may be represented within mathematical models of control
systems, to demonstrate how these events may be quantitatively
measured in terms of cyber security or cyber resilience, and
the differences and similarities between the two mindsets. These
results demonstrate how various metrics are applied, the extent of
their usability, and how it is important to analyze cyber-physical
systems in a comprehensive manner that accounts for all the
various parts of the system.
Index Terms—Cyber Security, Cyber Resilience, Cyber-

Physical Systems, Control Systems, Load Frequency Control
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System Average Interruption Duration Index.
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I. INTRODUCTION

Automated control systems are integral parts of modern
infrastructure and have enabled enormous gains in operational
capabilities. Increasingly, interconnected power grid infras-
tructure leverages smart grid technologies such as Advanced
Metering Infrastructure (AMI) and Distribution Automation
(DA) to further advance efficiencies and control [1]. How-
ever, modern control systems are truly cyber-physical systems
because they have digital components that control physical
processes, which means that the infrastructure community is
becoming increasingly concerned about the risks that cyber
threats pose to control systems and the infrastructure they
support. For instance, malware such as Stuxnet, BlackEnergy,
Crashoverride, and Trisis/Trident have been specifically de-
signed and used to attack and cripple control systems [2]—[6].
These attacks have not only increased concerns about cyber
risks for control systems but they have also spurred the control
community to reconsider cyber security strategies.

Cyber resilience has recently emerged as a strategy that
complements security efforts and contributes to cyber risk
management. Whereas cyber security activities frequently aim
to prevent failures to maintain Confidentiality, Integrity, and
Availability (CIA), cyber resilience efforts recognize that it
is impossible to guarantee prevention of system degradation
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against all cyber attacks. In the event of an attack, cyber
resilience efforts aim to ensure essential operations; maintain
critical function levels; and rapidly recover. Given that it is
impossible to guarantee a network can never be penetrated,
cyber resilience efforts frequently do not focus on whether
an attack can happen and instead focus on how to react
when they do occur. Cyber resilience is especially relevant
to control systems and other cyber-physical systems because
cyber failures can manifest with immediate and significant
physical effects. Policy directives such as Executive Order
13636 "Improving Critical Infrastructure Cybersecurity" and
Presidential Policy Directive 21 are evidence of this increasing
recognition of the need for system resilience to cyber attacks

[7], [8]•
Despite the increasing prioritization of resilience, formal

approaches for understanding, analyzing, and improving re-
silience of control systems remain relatively new and under
development. These approaches must consider both cyber
and physical elements and demonstrate how degradation in
one domain affects the other. Ideally, these methods include
metrics that enable quantitative analysis and assist system
designers, analysts, and decision makers in measuring how
resilient their systems truly are. This paper describes a multi-
disciplinary approach that integrates information security and
control theory to quantify the resilience of control systems
to cyber attacks. The remainder of the paper is organized as
follows. Section II. describes related metrics for evaluating
cyber threats to cyber systems, including metrics previously
developed by Biringer et al. to quantify resilience in infras-
tructure systems [9]. Section III. introduces a notional power
system model and how the metrics of Biringer et al. can
be extended to measure cyber resilience of the system when
under various cyber attacks on the control system. Section
IV. details results for quantifying the resilience of the system
and compares those results with security metric evaluations.
Section V. concludes the paper by discussing opportunities for
further maturing and extending this approach.

II. CYBER METRICS FOR EVALUATING CONTROL AND

RELATED SYSTEMS

Reliability metrics such as System Average Interruption
Duration Index (SAIDI) and System Average Interruption Fre-
quency Index (SAIFI) that measure an infrastructures ability
to provide continuous delivery of services (both in quantity
and quality) have traditionally been the primary measure for
evaluating infrastructure operations [10]. These metrics con-
sider infrastructure to be of a binary nature (i.e., infrastructure
is either in a reliable or unreliable state) and require that a
specific, restrictive set of conditions be met to apply them.
For example, low probability, high-consequence events such
as hurricanes, cyber attacks, and other acts of god violate these
conditions, invalidating the use of reliability metrics for these
situations. Numerous cyber security metrics have been devel-
oped in part to address this gap and have been proposed with
various goals and use cases. These metrics frequently focus on
confidentiality and integrity of data and availability of services.

Many focus on basic cyber hygiene (e.g., percentage of users
with strong passwords) or the effectiveness of security controls
(i.e., firewalls) while others use modeling to evaluate security
[11], [12]. Many cyber security metrics have been developed
for Information Technology (IT) systems, but these approaches
are not directly applicable to cyber-physical control systems
[13], [14].

For example, one approach widely used in the field of
cyber security is the Common Vulnerability Scoring System
(CVSS), which is used to grade the severity of vulnerabilities
after they have been discovered [15]. This provides a way
to prioritize patching and mitigation efforts so that the most
critical vulnerabilities are given priority. The CVSS does this
grading through a combination of pre-defined weights and
subject matter expert judgment to quantify exploitability and
impact for a specified vulnerability and provide an overall
score for the criticality of the vulnerability. For example,
calculation and weights for the Impact Subscore (ISC) is
shown in Equation (1) with numerical values assigned to
each impact rating as shown in Table I. We mention the ISC
specifically because we will by utilizing it in Section IV to
grade the impact of various scenarios to the security of our
example system and compare its results with a resilience based
scoring approach.

ISCBase = 1 — [(1 — Impactconf)x

(1 — Impact/ x (1 — ImpactAvail)]

TABLE I
ISC IMPACT

Impact Rating Numerical Value
None 0.00
Low 0.22
High 0.56

(1)

Cyber security efforts frequently focus on controlling access
into a system and maintaining CIA. However, they often
provide little information on how to plan for or respond to
a successful breach of security measures so cyber resilience
metrics have received increasing attention to address that gap.
The majority of infrastructure resilience analyses and metrics
developed over the past 20 years has focused on natural dis-
asters and random events, but several cyber-specific resilience
metrics and analysis methods are becoming more prevalent.
Though C. S. Holling first introduced resilience as a property
of ecosytems and complex systems more than 40 years ago
[16], resilience has only emerged as a significant topic of
discussion in the national security community over the past 15
years. During that period, a variety of resilience metrics have
been proposed, especially for critical infrastructure systems
(e.g., see [17], [18], and [19]). Biringer et al. provide an
extensive overview of resilience metrics in Chapter 9 of [9].
However, due to the ubiquitous reliance of the electrical
power community on reliability as the key measure of grid
performance, resilience is relatively new as a performance
metric for the grid. Initial grid resilience metrics and analyses



have focused extreme weather and natural disasters (e.g., see
[20], [21]), but growing concerns about cyber threats have
spurred the development of cyber resilience metrics.
Many cyber resilience metrics are intended to evaluate

organizational readiness or potential network designs. One
example is the CERT Resilience Management Model, which
includes metrics for measuring resilience at organizational lev-
els [22]. MITRE's Cyber Resilience Engineering Framework
(CREF) uses qualitative values (very low, low, medium, high,
very high) to evaluate cyber resilience goals, objectives, and
techniques [23], [24]. DiMase et al.'s cyber physical systems
security framework uses a semi-quantitative scorecard to eval-
uate operational, functional, and architectural levels in critical
assets, command and control functions, and cyber physical
systems [25], and Linkov et al. describe a cyber resilience
matrix with potential metrics that measure a systems ability
to plan, absorb, recover, and adapt in physical, information,
cognitive, and social domains [26].

Alternatively, another class of metrics use system perfor-
mance to quantify resilience. Albasrawi et al. use instanta-
neous measures of cyber resilience in smart grids that compare
current functionality of the smart grid relative to catastrophic
functionality levels ( [F (t) — F (t d)] 1 [F (to) — F (td)]) to iden-
tify optimal recovery strategies [27]. Clark and Zonouz define
game theoretic resilience metrics to develop cyber defense
policies that ensure resilience conditions in power systems
[28]. Hassel et al. use a set of cyber attack (e.g., percentage of
successful attacks, duration of successful attack) and defense
measures (e.g., mean number of attack disruptions, defensive
efficiency, etc.) to quantify resilience of military systems [29].
Rieger uses a "disturbance and impact resilience evaluation
curve" to describe how a cyber attack affects operation of
control systems. Rieger defines a set of resilience metrics as
properties of the curve (e.g., agility is the derivative of the
curve, brittleness is the area under the disturbance curve as
intersected by the resilience threshold, etc.) [30]. Wei and Ji
use a set of metrics that measure cyber resilience according
to the consequence of a cyber attack (e.g., performance
degradation and loss) and time (e.g., protection time, recovery
time) [31]. Choudury et al. use graph theoretic approaches
to integrate latency, authentication request frequency, and
other network statistics into a quality of service metric for
cyber resilience [32], and Ramuhalli et al.'s metrics focus
on continuity of operations, reconstitution of systems, and
attacker and defender costs [33].
Though not specifically developed for cyber analysis, the

Infrastructure Resilience Analysis Methodology (IRAM) uses
a control theoretic approach for quantifying resilience in
infrastructure and other systems and has been hypothesized
as an approach for quantifying cyber resilience for control
systems. The IRAM includes three sets of metrics. Systemic
Impact (SI) measures the magnitude and duration of per-
formance loss resulting from an attack, and Total Recovery
Effort (TRE) quantifies the resources and associated costs
required to fight through the attack and return the system
to acceptable performance levels. The Recovery Dependent

Resilience (RDR) index combines SI and TRE to provide a
comprehensive measure of the impact on the system. Larger
RDR values indicate greater impact and thus, lower resilience
levels (see Chapter 10 of Biringer et al. for a more detailed
description) [9]. Control systems are commonly designed with
performance and cost trade-off considerations, so the IRAM
metrics show promise for cyber resilience measurement and
analysis of control systems. The remaining sections explore
how they could be used in the context of an illustrative
example.

III. LOAD FREQUENCY CONTROL: A CONTROL SYSTEM
EXAMPLE

Consider a notional three-bus power system defined by
Bevrani and that consists of nine generators distributed across
three connected Control Areas (CA) as shown in Figure 1;
we focus on the secondary control loop, which performs
Load Frequency Control (LFC) (Figure 2) [34], and assume
a representative but simplified control system that does not
include fast dynamics (e.g., voltage) or nonlinearities. LFC is
an important capability for Balancing Authorities (BAs) who
are responsible for integrating resources and maintaining load-
generation balance for specific areas. Furthermore, BAs are
responsible for regulating and stabilizing system frequency—
which is an crucial function of LFC. Additionally, we consider
the architecture for this example to be the typical Supervisory
Control and Data Acquisition (SCADA) system that enables
monitoring and control of a variety of devices and components
in the grid. Frequency is often a measure of mismatch between
the demand and generation, which can be calculated with the
SCADA system data. Phasor Measurement Units (PMUs) or
Frequency Monitoring Network (FNET) sensors could also be
used to obtain frequency measurements for LFC calculations.

Notably, protective measures such as relays are not included
in this model which means that actions to limit damage to
components are not included in this analysis. Note that as each
CA is controlled separately, there is a separate LFC controller
for each CA. This results in a three sets of coupled differential
equations that are connected through the power flows that exist
between the control areas.

In this example, we are primarily interested in the perfor-
mance of the secondary control loop. The primary controller
doing Automatic Generation Control (AGC) for each gener-
ator, represented as C AGC in 2, is internal to the dynamics
of the secondary controller and is included as part of the
state transition matrix A. In each CA the control system is
designed to maintain system frequency and tie-line power
flows at specified levels (e.g., 60 Hz for frequency), and the
equations describing the dynamics for each control area can be
written in the general state-space form shown in Equation (2)
and with the system state variables shown in Equation (3). The
state for each CA, x, is a vector consisting of deviations from
the target frequency (Af), deviation from target power levels
(AP), and the area control error AC E, defined in Equation
(4). The LFC controller uses AC E along with Proportional-
Integral (PI) control to calculate the secondary control output
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Af

u(t), as shown in Equation (6) with gains defined in the matrix
K, as shown in Equation (5).

*(t) = Ax(t) Bu(t) w(t)

y(t) = Cx(t) Du(t) v(t)
(2)

x(t)T = [ 0 f APTie AP,ni 0Pm2 0Pm3

APO. APg2 Pg3] (3)

ACE = 130f APTie (4)

KT =[0 0 0 0 0 0 0 0 kp kt] (5)

u(t) = —Ky(t — TDelay) (6)

We introduce the TDelay term to represent conditions that
introduce latency into the control system. In most instances,

TDelay = 2 seconds, to represent some communications delay
from the wide area network even under normal conditions.

Note that the power flows across each tie-line are calculated
using the area interface, vi, which links the CAs to each
other. The area interface for each control area is calculated

in Equation (7), see Chapter 3 of [34] for further details (e.g.,
parameter settings).

vi = E TijAfj
j=1,joi (7)

We consider a set of attack scenarios that compromise con-
fidentiality, integrity, and/or availability of the control system
in Table II. Scenario 1 is the nominal no attack scenario.
Scenarios 2 and 3 represent denial of service (DOS) attacks,
and we represent the effect of those attacks by setting TDelay
to low (8 s in S2) and high (24 s in S3) values. Scenarios
3 and 4 represent signal jamming attacks, and we represent
the effect of those attacks by injecting zero-mean Gaussian
white noise with low (Pn = 0.25 in S4) and high (Pn = 0.75
in 85) power levels into the system using our measurement
noise v(t) in Equation (2). In Scenarios 6 and 7, we assume
a loss of confidentiality provides the adversary with sufficient
knowledge to cause a loss of availability by disabling 1 (low in
86) or 2 (high in SO generators, and we represent this effect
by modifying B in Equation (2). Scenarios 8 and 9 represent
confidentiality breaches that lead to losses of integrity; specif-
ically, we assume that the adversary uses knowledge of the
control system and access to the measurement signals of the
secondary control loop to degrade performance, resulting in
changes to C.
We evaluate the impact on the control system using the

CVSS ISC and IRAM metrics, as our security and resilience
measurements. CVSS ISC calculations are performed accord-
ing to Equation (1) with the CIA weights assigned according
to the previously presented impact ratings as shown in Table
I. For the IRAM metrics, we have elected to use the squared
error, ACE2 (relative to ACE2 in the absence of an attack),
and the amount of control expended, u2 (relative to u2 in the
absence of an attack), to represent as the system performance
and cost measures for responding to the attack. IRAM metrics
for SI, TRE, and RDR are calculated according to Equations
(8), (9), and (10). Note that while we give SI and TRE
equal weighting in Equation (10) for this study, the relative
weighting of these two terms may be varied according to the
analysts risk perspective. Also, the variable sm specifies the
attack scenario, with n = the scenario number as shown in
Table II. Note the similarity of these quantities to optimal
control formulations such as the Linear Quadratic Regulator
and Linear Quadratic Gaussian problems, which both aim to
minimize the L2 norm of the tracking error and control effort.

3 100 100

51(Sn) = E f AC E,!(t, sn)dt — f AC _E(t, sl)dt1
n=1 0 o

(8)

3 100 100

T RE(sn) = E I f q(t, sn)dt — f q(t, sod
i=1 (9)
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TABLE II
SCENARIO DESCRIPTIONS: C = CONFIDENTIALITY, I = INTEGRITY, A = AVAILABILITY

Scenario Scenario Type Definition Modification to System

Si Baseline Normal Behavior N/A

S2 Loss to A, Low DOS to Communications, Latency / Time Delay Tdelay = 8 seconds

S3 Loss to A, High DOS to Communications, Latency / Time Delay Tdelay = 24 seconds

S4 Loss to I, Low
Signal Jamming, Addition of Zero-Mean Gaussian
White Noise Pn = 0.25

S5 Loss to I, High
Signal Jamming, Addition of Zero-Mean Gaussian
White Noise

pn = 0.75

S6 Loss to C & A, Low
Loss of Generation Capability, Tripping of Relays /
Disabling Power Generation

CA 2 Loses 1 Generator

S7 Loss to C & A, High
Loss of Generation capability, Tripping of Relays /
Disabling Power Generation

CA 2 Loses 2 Generators

S8 Loss to C & I, Low Manipulation of Measurement Signals for LFC ACE2 = 0

S9 Loss to C & I, High Manipulation of Measurement Signals for LFC ACE2,ots = —ACE2,actuca

RDR(sn) = SI(sn)+TRE(sn) (10)

wi(t) =
a t > 10

In every simulation, we apply a step load change at t =
10 seconds of ce = 0.1 p.u. by modifying w(t) for CA 1 and
CA 2 as shown in Equation (11). Since this change in load is
affects the system behavior by creating a drop or increase in
system frequency, this added load is modeled as a disturbance
only to the first element of w(t), as this is the element that
will affect the state variable for system frequency. Then, each
cyber attack commences by modifying system parameters at
t = 20 seconds and ends at t = 80 seconds. At the time the
cyber attack ends, the system will revert to conditions with no
system degradation but the load of a = 0.1 p.u. will remain
for CA 1 and CA 2.

IV. RESULTS & DISCUSSION

Table III shows the results of the SI, TRE, RDR, and ISC
calculations for the nine attack scenarios. Lower ranks imply
lower attack impacts with respect to either the IRAM RDR or
ISC metrics, as shown.
Some similarities can be observed between the IRAM and

CVSS rankings Scenarios 2 and 4 (low latency and low noise)
are ranked as the least impactful attacks, and Scenarios 7 and
9 (high loss of confidentiality resulting in loss of availability
and integrity) are ranked as the two most impactful attacks.
Some notable differences can be observed though, especially
for Scenario 8. According to the IRAM RDR metric, Scenario
8 is the 3rd worst scenario, but it is the 3rd least impactful
scenario according to the CVSS metrics. Additional minor
ranking discrepancies can be seen for Scenarios 5 and 6.
Further inspection of the IRAM metrics provides additional
insights. The SI, TRE, and RDR results for Scenario 9 are two

orders larger than those for Scenario 7, indicating the attack
for Scenario 9 is far more impactful and expensive than the
attack for Scenario 7. From a resilience perspective, Scenario
9 is far and away the worst scenario and should be prioritized
over Scenario 7 for addressing.

Additionally, one can observe that the jamming attacks
(Scenarios 4 and 5) have almost no effect on the end perfor-
mance of the control system (SI is practically 0); the primary
effect of these attacks is to increase the amount of control
effort required. This controller can still operate effectively
in the presence of noise, so the control scheme provides an
inherent level of resilience against these attacks. In contrast,
the impacts of the DOS attacks in Scenarios 2 and 3 equally
affect performance and the cost of responding to the attack,
i.e., SI and TRE are approximately equal. Given the nature of
the CVSS ISC metrics and their intended use, they provide
limited information about the resilience of this control system
to the specified attacks. The IRAM metrics provide additional
insights that can be informative when analyzing resilience of
control systems.

As Scenario 1 is the baseline of normal behavior, it has no
loss to security as represented by an ISC score of 0. However,
as we are doing active load tracking and an unexpected load
has been added to the system, there is some cost associated
with normal error tracking and control. This would be repre-
sentative of the regular costs of doing business, wear and tear
on the system components, and other aspects of doing business
in a regular day to day environment. This baseline behavior
under normal conditions is shown in Figure 3. Note that in
our calculation of SI, TRE, and RDR, we have removed these
"normal!" costs from the results of all scenarios. This means
our resilience costs only measure the impact of the cyber event
in each individual scenario.

Recall that Scenarios 2 and 3 represent a loss of availability
by increasing amounts of time delay in the measurement
communications. To further examine how varying levels of



TABLE III
SIMULATION RESULTS

Scenario SI TRE RDR ISC Rank (IRAM) Rank (ISC)
Si 0.000 0.000 0.000 0.00 1 1
S2 0.096 0.102 0.198 0.22 3 2
S3 0.617 0.673 1.290 0.56 5 6
S4 0.003 0.100 0.103 0.22 2 2
55 0.011 0.297 0.308 0.56 4 6
S6 0.281 1.489 1.770 0.3916 6 4
S7 2.213 5.729 7.942 0.8064 8 8
S8 2.103 1.573 3.677 0.3916 7 4
S9 269.378 187.315 456.693 0.8064 9 8
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Fig. 3. ACE under Normal Behavior with a Step Load Disturbance at t=10
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time delay affect the performance of this system, several
experiments were run where the amount of latency is varied
substantially. As may be observed in Figure 4, the resulting
performance trend is nonlinear but has several regions with
differing behavior. First, as time delay increase so does SI,
TRE, and RDR, as would be expected with higher amounts of
phase lag between the reported and actual signals. Up to about
20 seconds of delay the cost to resilience increases steadily,
but after 20 seconds the cost begins to taper off as the system
is only responding to a single step change in load and is
not performing additional load tracking. However, if further
system disturbances are adding to create more realistic load
tracking, the resilience costs should continue to increase. To
demonstrate this, see Figure 5 where an additional step load
is added at t=40 seconds.

Figure 6 shows a similar result where various levels of
measurement noise are applied. Here, the SI, TRE, and RDR
costs all increase linearly, but the value of SI increases very
slowly. TRE does increase more rapidly, but not enough to
correspond with relatively large changes in the ISC score.
This shows how the LFC system is robust to measurement
noise but must expend significantly more effort to maintain
performance.
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As Scenarios 6-9 also contain a loss of confidentiality, they
all result in higher resilience costs than Scenarios 1-5, with
a small anomaly of SI for Scenario 6 being lower than SI
for Scenario 3 yet still having a higher cost These higher
resilience costs map to the more sophisticated actions that
also create greater resilience costs. In comparing Scenario 6
to Scenario 7, we note a very large increase to resilience cost,
and a corresponding large increase in security cost. There is
also a difference here concerning the controllability of CA 2.
Controllability and observability are concepts referring to a
systems ability to control and observe its internal state. For
a system to be controllable, it must be possible for system
inputs to move the states of the systems to any location in
the state-space in finite time. For a system to be observable, it
must be possible to determine the current state using system
outputs in finite time. In Scenario 6, generation capability
is lost as represented by modifications to B. However, the
system remains fully controllable. Yet, in Scenario 7, both the
operating generators in CA 2 are disabled (the third generator
is in reserve and is not supplying power), at which point the
rank of the controllability matrix for CA 2 becomes zero. In
other words, this scenario causes the LFC to lose all ability to
control this system. Figure 7 shows this result where CA 2 is
not able to recover and reaches a new steady state condition
until the cyber event ends.

This is an extreme case: in a real-world environment with
thousands of generators, it is highly unlikely one could knock
all of them off the grid at once. Islanding conditions are
another story though, and research has been done to show
how controllability analysis may be used to determine critical
components of the grid [35]. Specifically, by processing con-
troller/component sensitivities with clustering and factoriza-
tion techniques, the components that are critical, essential, or
redundant to the overall system controllability are identified. A
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Fig. 7. ACE under Scenario 7 - Loss of Controllability

critical component is necessary for maintaining system control
and has no replacement, an essential one is needed for control-
lability but may be replaced with redundant controller(s), and a
redundant controller can be removed without impacting system
control. Therefore, in the case of maintaining generation,
the loss of critical generators would impact generation levels
whereas loss of non-critical generators would not. These roles
would change as these losses are incurred and, thus, must be
recalculated (though recurrent roles are often discovered for
different system conditions, as revealed in [36], [37]).

In Scenarios 8 and 9, the controllability of the system is not
an issue but rather the observability of the system is affected.
This is seen in Scenario 8, where the adversary has modified
the structure of C by zeroing the feedback to the controller
resulting in a loss of rank for the observability matrix. As
seen in Figure 8, this results in a similar response to the loss
of controllability seen in Figure 7. Incidentally, Scenario 9
does not affect the observability of the system as it does not
modify the structure of C, but rather changes the signs of
elements inside C. Yet, Scenario 9 is by far the scenario with
the highest resilience costs as it is driving the system away
from desired operating conditions. While this scenario is tied
with Scenario 7 with the highest ISC score of 0.8064, ISC
does not show the very large difference in resilience costs and
system performance between the two scenarios.

This shows some of the limits to this method of grading
cost. That is, the security is graded on a qualitative scale
based on the believed cost to the system while the resilience
measures only care about system performance. An example of
these differences is demonstrated by Scenarios 6 and 8 having
lower security costs than Scenarios 3 and 5, even though the
resilience costs show these latter cases to be more costly. This
demonstrates how security and resilience see these problems
differently, how they are complementary ways of looking
at this type of problem, and that further work needs to be
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completed to achieve a comprehensive approach in evaluating
the overall impact of a cyber event.

V. CONCLUSION

In dealing with control systems, it is important to show
both the cyber and physical effects and how various actions
are represented and measured in both domains By studying
the security and resilience of grid frequency control, vari-
ations between the results of different metrics demonstrate
how various measures and approaches have their places in
a comprehensive assessment of a system yet each on their
own fail to capture the entire picture. For instance, ISC is
a security metric and is designed within that context while
IRAM comes from study into infrastructure resilience and
is solely interested in the ability of the system to meet its
objectives and recover from performance degradation. These

are different yet complementary ways of looking at this
problem, especially when dealing with systems that cross both
the cyber-physical domains, and this work shows how deeper
insights can be gleaned about the system through inclusion of
additional resilience analysis.

The construction of the scenarios and their manipulations
in the system equations within this work is rather ad hoc,
as categorizing cyber events and their impact on a control
system is a difficult problem and such discussion is beyond
the scope of this work. Further work may extend this by more
clearly delineating how cyber attacks appear in and modify
these models, which could leverage extensive existing research
in such fields as complex systems, cyber-physical systems, and
hybrid systems.
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