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2 | Localization in Inelastic Deformation

Goal: Understand (predict) localization leading to failure

Processing variables

* Alloying
* Forming
* Heat treatment

Property variables

* Microstructure
e Defect distribution

Predictor space

* Deformation rate
* Temperature
* Loading mode

Outcome space

* (An)isotropy
* Strength
* Ductility




3 | Rate sensitivity at the (micro)structural scale
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Load (lb)

Temperature sensitivity at the (micro)structural scale

Material response (e.g. yield strength) Tests at 103 s°!
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Performance: Necking Locali
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Heterogeneity and localization in plasticity
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C. Alleman et. al., Comp. Mech., 61(1-2), 2018.




Concurrent Coupling: Schwarz Method _

Concept of solution scheme
Solve on ; using initial guess for BCs on [} .
Solve on Q, using BCs on I}, interpolated from Q.
Solve on ; with BCs on T' ; interpolated from Q,.

+ 2l

P By ¢

Mathematical proof of convergence for solid mechanics problem

Allows coupling of honconforming domains with different element types and
levels of refinement

Information is exchanged concurrently among two or more subdomains
Different solvers can be used for each subdomain
Different material models can be coupled provided that they are compatible

S

A. Mota, I. Tezaur, C. Alleman, CMAME, 319(1), 2017.



o | Performance: Local/Global Response

Mesoscale

voxelated microstructure derived
from Kinetic Monte Carlo evolution
(F. Abdeljawad)

Fix microstructure, investigate ensembles

151 axial vectors
from 3 of the 10
ensembles of
random rotations

Load microstructural ensembles in uniaxial stress
Fit flow curves with a macroscale J, plasticity model
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11 | Single Crystal Physics

Kinematics Hardening
Multiplicative elastic-plastic decomposition * Linear w/ recovery
Fe =F. (FP)! g% = (H—RagMIy«|
« Saturation
ici w_ (959 :
Crystal elasticity 4% = g, <gs = )Haﬁlyﬁl
S 0

Linear elastic constitutive relation
T* = L¢: E® » Dislocation density

Elastic Lagrangian strain g% = /H“Bpﬁ,p“ = <K1 /Zpﬁ — sz“> ad

B =~ [(FO)TF* 1]

2
Plastic flow
Crystal Plasticity «  Power law
Evolution of plastic deformation gradient , e ™
) Y =% || sign(®)
FP = LP* . FP g
Plastic part of the velocity gradient * Dislocation drag
(04
1P = j“m§ @ ng =Dz
(04

Resolved shear stress « Thermal activation

a __ a\P1?
7% = [(F®)T - F° - T']: m§ ® n 7o = pexp -2 1 - (L=
kBQ To




12 | Performance: Crystal Plasticity

Linear hardening w/ recovery
g% =(H—-Rag")Iy%l

Taylor (dislocation density) hardening

g% = /H“Bpﬁ, p* = (Kl /Zpﬁ — sz“> Vad

[100] EXP. {+
[110] EXP. ||
[111] EXP. {
® [100]SIM. .
® [110]SI
® [111]sI

ETH

= Parameterize through [100] Ta single crystal experiments
® Predict [110] and [111] response.

= Dislocation density based Taylor hardening model most
accurately reflects anisotropy.

[100] EXP.

[110] EXP.
——[111] EXP.
@ [100] SIM.
® [110] SIM.

® [111]SIM.

Lim, 2016
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Young’s Modulus [Mpa]

Performance: (An)isotropic Elasticity
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Performance: Upscaling Plasticity

Predict performance from

properties:

Property Metrics
= Beyond average grain size
— Grain neighborhood character
Response Metrics
= (Characterize heterogeneity
— Locally triaxial stress state, but
globally uniaxial
— Isotropic macroscale;
anisotropic mesoscale
Mapping from property metrics to
response metrics
=  Framework to upscale response
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Single crystal yield strength

Yield loci for anisotropic
single crystals oriented
throughout the
orientation space.

Uniaxial tensile yield
strengths for anisotropic
single crystals oriented
throughout the
orientation space.

Modified Schmid

Predicted

Yield Stress -

and macroscale response
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Crystal Plasticity _ I
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Correlation Length: Total Power
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20 | Progress and Future Work

Goal: Understand (predict) localization leading to failure

Modeling
e Structure-microstructure coupling (Schwarz)

* Investigating effects of microstructural physics

Coupling to characterization and mechanical testing
* Realistic microstructures
* Rate and temperature dependence

* Identifying/discovering mechanisms of deformation
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Additional questions to callema@sandia.gov



