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2 I Motivation

Family of yield surfaces provides flexible modeling of plastic deformation...
... IF we can integrate these models
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Plasticity Model

Yield function

F(o,2) = ¢ (o) — 5 (2) <0

Flow direction
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el =~ —
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Stress rate

oc=C:(e—-¢P
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5 | Discretization

» Closest point projection 72 o' =0,+C:Ae

* Trial stress state is outside of elastic

tr

region o
» Return stress to the yield surface g_F
g
[45: o1

Opni1 =0 —C: Ae?

backward Euler Ae? = Avy (3_17) F(o,Ay)=¢ (o) —d(Ay) = ‘
oo ), .1
0o
R(0,Ay) = —AeP + Ay—— =0
oo
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Newton-Raphson

-
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AY(k+1) = Ay + A (A7)

ot = g0 L Ag

~

solution variables




71 Newton-Raphson

AY(k+1) = Ay + A (A7)

ot = g0 L Ag
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A(Ay) = —x o
OF (k) o) | OF (k) ,

oo " Oo * 1)

increments in
solution variables

Ao =—2H) . (R(’“) + A (A7)




s I Newton-Raphson

A =A + A (A
Tk+1) = 2(E) (A7) Slope of hardening curve
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9 I Newton-Raphson

AY(k+1) = Ay + A (A7)

ot = g0 L Ag
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101 Line Search”

AYg41y (@) = Aypy + a A (A7)
) search direction
found from Newton-Raphson
oc* D (a) =™ 4 a Ao ( P )
)

search magnitude
a € (0,1]

Residual r(a) = <£ , R)

Merit function ¢ (a) = %r (o) - r ()

* A. Perez-Foguet and F. Armero, Int. J. Num. Meth. Eng., 52 (2002) 331-374
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Line Search”

lteration algorithm for line search parameter

Ck(o) =1

v o= o check
©s S Y (a(j)) < 1 (0) find minimum
using quadratic

approximation

A4
No % =14+ ag¥r +afyvs

A 1
Yo (a+ag) — 20a) (ag) —a) ¥ (0) + %y (agy) |

J

a2, 1(0)
(4)
Q1) = Max < Noy 4, n=0.1
(G+1) { (7) (o)) — (1 — 204(3')) ¥(0)

* A. Perez-Foguet and F. Armero, Int. J. Num. Meth. Eng., 52 (2002) 331-374
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Scan Trial Stress Space

For every trial stress state

 Record the number of \
iterations required for

convergence

Analysis

* Trial stresses out to 30 times size
of yield surface

05,718 trial stress states

» Perfect plasticity

» Results for both Newton-Raphson
and line search

Does not
converge
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Hosford®

|sotropic, non-quadratic

Newton

* W. F. Hosford, J. Appl. Mech., 39 (1972) 607-609

Line Search

4 15

4 10




15 1 Hill

Anisotropic, quadratic

¢2 (0') = F(@'QQ — 5’33)2 + G(5'33 — &11)2 + H(@'H — 5’22>2 + 2L5’%3 + 2M@'§1 + 2N@'%2

Newton

15

4 10

F =0.583
G =0.364
H =0.634
L =1.815
M = 2.069
N =2.349

Line Search

NL

4 15

4 10




6| Barlat® (Y1d2004-18p)

Anisotropic, non-quadratic

1
) = {3 [l = 17 = 17 B = 17 By = 17 Iy = sl

4

/ /' a / I/ a / /! a
+ |8y — s3|" + |s3 — s7|" + [s3 — 55

T2

4 10

Newton

* F. Barlat et. al., Int. J. Plast., 19 (2005) 1009-1039

1/a
155 = o417}

Line Search

NL
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4 10
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Cazacu®

|sotropic, non-quadratic, tension/compression asymmetry

Newton

* B. Plunkett et. al., Int. J. Plast., 24 (2008) 847-866

Line Search

NL

4 15

4 10




18 | Plunkett-Cazacu-Barlat® (CPB06ex2)

Anisotropic, non-quadratic, tension/compression asymmetry

0(0) ={aaclyocly K R [ (1541 = K'50)" 4+ (5] = K's5)" + (5] = 'sy)"

1/a
(15t = K7s)" + (Is5] = k"s5)" + (Is5] = "s5)" |}
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Newton Line Search

* B. Plunkett et. al., Int. J. Plast., 24 (2008) 847-866
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19 I Plunkett-Cazacu-Barlat (CPB06ex2)
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20 I Return Mapping

Hosford yield surface
a=28

perfect plasticity

ZARN

stress state should
yield surface return somewhere
around here

I




21 I Return Mapping Trajectory — Newton-Raphson




22 I Return Mapping Trajectory — Newton-Raphson

 Newton-Raphson has
difficulty near the corner

« With any yield surface other
than von Mises this will
occur

F=¢(g)-o(A7)=0

R = —Aep—i—AV% =0
oo

« Algorithm can’t find the flow
direction




23 1 Merit Function — Newton-Raphson
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24 1 Return Mapping Trajectory — Line Search
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Return Mapping Trajectory — Line Search

Line search converges near
the corner

Algorithm finds the flow
direction

Convergence is slow

Many small steps




26 I Merit Function — Line Search

18400 771
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Merit Function — Quadratic Approximation

7e-04 ] ) ) T ) T )

6e-04
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quadratic
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merit function

06400 E w 5 é w i %

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.8 0.9

1.0




28 | Effect of 7

Quadratic approximation

O = a ] Oé%g)w(())
(j+1) = aXq NAG). ¢(a(j)) — (1 - 2a(j)) $(0)

|

parameter for the line search algorithm
n=0.9




29 I Hosford — n

1/a
1
¢(0') = {5[\01 —Uz\a-l- \02—03\(1-1— \03—01|a]} a=28
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31 I Plunkett-Cazacu-Barlat — 7

0(0) ={ glas ey K1) | (511 = K1) 4 (Ishl = K'sh)" + (5] = )"

1/a
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2 I Return Mapping Trajectory — Line Search (77 =0.5)




33 1 Return Mapping Trajectories

n=20.1

™ larger 7 allows
iteration to go farther
on 3" jteration




34 I Return Mapping Trajectories

n=20.1

15 iterations

8 iterations |




35 1 Merit Function — 7= 0.5
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3 I Merit Function — Comparison
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37 1 Merit Function — Comparison to 7=0.1
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33 I Merit Function — Comparison
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3 I Merit Function — 7= 0.1
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40 1| Merit Function — 7= 0.5
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4211 Return Map

3rd jteration

Newton




2 | Merit Function for “Tresca”

PS5 S S S
1616 I i i i i i i i I i i




43 1 Merit Function




44 ‘ Iteration for o
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45 ‘ Iteration for o
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4 | lteration for «
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48 | Capability Expansion

Robust integration for any yield surface provides a foundation for
further developments

* Hardening models

« Temperature and rate
dependence

* Models for material
failure

Void

| Nucleation/Growth

* Pressure dependent "
models

* Yield surface distortion




49 | Conclusions

1.

A robust integration algorithm has been developed, augmenting a
return mapping algorithm with a line search method

* Flexibility

* Understanding

« Extensibility
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