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Motivation2

Family of yield surfaces provides flexible modeling of plastic deformation…
… IF we can integrate these models
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• Yield function

Plasticity Model4

• Flow direction

• Stress rate

1

F (cr , l'') = 0 (cr) — a- W) < 0

E
( 9 F

• P = ' •yao-

a- = C : ( - P )



• Closest point projection

• Trial stress state is outside of elastic 
region

• Return stress to the yield surface

backward Euler

Discretization5 1

an+1 — 
at'. C : AE/3

AEP = A-y PF)
'947 ) n+1

crtr an + c : AE

F (c r , Aey) = 0 (o-) — F3- (Aey) = 0

R (cr, Ay) = —AEP + 46,7  aa° = 0



Newton-Raphson6

solution variables

1
c—A

-‘')/(k-kl) — 07(k) + A (A7)

0.(k+1) 0.(k) + Acr



Newton-Raphson7

increments in 
solution variables

1
ARk+1) — 07(k) + A (A7)

0.(k+1) cr(k) + Acr

r aF(k) F(k) — R(k) . (k)

. acr 
A (A7) = aF(k) :,=i0(k) :34,1(k) +1-1 k)au

oF(k))Acr y(k) : (R(k) + A (A•-y)  au 

.}



Newton-Raphson8

Slope of hardening curve

Hessian

1
ARk+1) A7(k) + (A7)

0.(k+1) 0.(k) Acr

F(k)

o (A7) = oF(k)

Au =

( ) (
ao-

0F()
ao- H'(k

oF(k) R(k) + A (A7) (90- )

da-

•

dAffP 
„ (Ae = ArY)

C-1 ± AeY oat, .2 oF0



Newton-Raphson9

Slope of hardening curve

Hessian

von Mises

1
ARk+1) - A7(k) + A (A7)

0.(k+1) _ 0-(k) + Au

F(k) —

A (A7) = oF(k)
ao-

Au =

( ) ( aF(k)
ao-

aF()
ao- -11-(1k

oF(k) R(k) + A (A7) ao- )

da-

•

dAffP '
. (Ae = ArY)

0C-1 + A7a0.2 aF,

F(k) 
A (APO = 3,u, ± Hi(k)

Au = A (61'
3 (
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Line Search*10

Residual

Merit function

search magnitude

search direction
(found from Newton-Raphson)

* A. Perez-Foguet and F. Armero, Int. J. Num. Meth. Eng., 52 (2002) 331-374 

1
07(k+1) (a) = 07(k) + a A (07)

0.(k+1) (a) 0.(k) + a Ao.

T

a E (0, 1]



Line Search*11

* A. Perez-Foguet and F. Armero, Int. J. Num. Meth. Eng., 52 (2002) 331-374 

No

find minimum 
using quadratic 
approximation

Yes
check

Iteration algorithm for line search parameter

1
ce(o) = 1

<-
0 (a(3)) < 0 (0)

'‘P = zPo + ce(3)01 + q3)02

- 10 =  2  (a + au) — 2aau)) (au) — a) 0 (o) + a20 (au))]
a(i)

{  
qi)0(0)

au+1) = max /rpm , } ri = 0.1
0(ce(i)) — (1 — 2a(i)) OM
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Scan Trial Stress Space13

For every trial stress state
• Record the number of 

iterations required for 
convergence

Analysis
• Trial stresses out to 30 times size 

of yield surface

• 95,718 trial stress states

• Perfect plasticity

• Results for both Newton-Raphson 
and line search

Does not 
converge
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Hosford*14

Line SearchNewton

* W. F. Hosford, J. Appl. Mech., 39 (1972) 607-609 

Isotropic, non-quadratic

1
}1/a

Cb(Cr) = — 0-21a + 10-2 — C13161 1U3 la]
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Hill15

Line SearchNewton

Anisotropic, quadratic

1
\ 2 , 

H 
gir •• 2 qur.•

2Na202 (Cr) F (622 — 033) +G 0,33 — 011) + k011 — 022) 1- - 31 12

40

0

25

F = 0.583

G = 0.364

H = 0.634

L = 1.815

5 M = 2.069

N = 2.349
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Barlat* (Yld2004-18p)16

Line SearchNewton

* F. Barlat et. al., Int. J. Plast., 19 (2005) 1009-1039 

Anisotropic, non-quadratic

\
+ \Sri _ 827 ± \ 81 If \cl, , \12 _ sna + \ 82 

—

srf _ 83 _t_.

lia
--\+ \s

3
_____ 4\ati r _____ diva + \ sis _____ 4\a

40

b'(a) — 
1—.AA\si — S1 \a

± \s/2 — stV + \s3 1

a ------ 8



Cazacu*17

Line SearchNewton

* B. Plunkett et. al., Int. J. Plast., 24 (2008) 847-866 

Isotropic, non-quadratic, tension/compression asymmetry

1
1/a

0(o-) ={g(a, 0[(I,311 — kS1)a (1s21 kS2)a (1s31 kS3)a
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Plunkett-Cazacu-Barlat* (CPB06ex2)18

Line SearchNewton

* B. Plunkett et. al., Int. J. Plast., 24 (2008) 847-866 

Anisotropic, non-quadratic, tension/compression asymmetry

1
0(o-) = {g (a , , , lc' , k")[(Isil si)a + (1,521 sDa + d3)a

k" sna + k"SDa k" sn
a 
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Plunkett-Cazacu-Barlat (CPB06ex2)19 1
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Return Mapping20

stress state should 
return somewhere 
around here

Hosford yield surface
a = 8

perfect plasticity

yield surface

1

tr
CI



Return Mapping Trajectory – Newton-Raphson21 I

_



Return Mapping Trajectory – Newton-Raphson22

• Newton-Raphson has 
difficulty near the corner

• With any yield surface other 
than von Mises this will 
occur

• Algorithm can’t find the flow 
direction

1

F = 0 (o-) — o- (A'-y) = 0

ao
R. = —AEP + Aey 

au 
= 0



Merit Function – Newton-Raphson23 1
:0,

le-05

le-10

1e-15

le-20
0

07(k+1) (a) = ARk) + a A (Afy)

cr(k+i) (a) 0.(k) + a Ao.

1

Newton

(a) = 
1
(a) ' r (a)2
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Return Mapping Trajectory – Line Search24 I
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Return Mapping Trajectory – Line Search25

• Line search converges near 
the corner

• Algorithm finds the flow 
direction

• Convergence is slow

• Many small steps

I

_



Merit Function – Line Search26 1
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Merit Function – Quadratic Approximation27 1
7 4
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Effect of 28

Quadratic approximation

parameter for the line search algorithm

1

{ 
qi)0(0)

L'U+1) — max Iria(3)' ,p(ce(i)) — (1 — 2ce(i)) 0 (0)

T1 = 0.5



Hosford – 29

 = 0.5 = 0.1

1
1/a

0(0-) = { [10-1 - U21a ± la2 — Cre ± la3 — al 11
a = 8



Barlat – 30

 = 0.5 = 0.1

44(1) I-4_\si — S1 \a + \ srl — 82\a ± \ Sri — 813 \a + \ S2 — Sna + \ s2 — 521a

-\.1/ a
+ \ st2 _____ sq \a + \st3 _____ sna + \ sts _____ 4\o, + \sf3 _____ sq\a-\

a = 8



Plunkett-Cazacu-Barlat – 31

 = 0.5 = 0.1

1
0(a) — {g (a , ,

a
, , k")[(isil 811)a + (Al 8,2)a + (1331 —

+ I s7 I — k" dna + k" sna + (14 — kiisD
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Return Mapping Trajectory – Line Search ( = 0.5)32 I
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Return Mapping Trajectories33

larger  allows 
iteration to go farther 
on 3rd iteration

1
ri = 0.1 71 = 0.5



Return Mapping Trajectories34

15 iterations 8 iterations

1
ri = 0.1 71 = 0.5



Merit Function –  = 0.535 1
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Merit Function – Comparison36 1
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Merit Function – Comparison to =0.137 1
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Merit Function – Comparison38 1
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Merit Function –  = 0.139 1
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Merit Function –  = 0.540 1
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Return Map41

3rd iteration

1



Merit Function for “Tresca”42

5 6

1
1/a

0(Cf) = 2 L — ± la2 — 0-31a + la3 Ulla]

1,0

a = 20
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Merit Function43

5

1

Oe+00
0 0 0.3 0_4

oi

0_5 a.6 0_7 oa

•

1 0



Iteration for 44

 = 0.1874

1
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Iteration for 45

 = 0.0391
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Iteration for 46

 = 0.0391
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Capability Expansion48

• Hardening models

• Temperature and rate 
dependence

• Models for material 
failure

• Pressure dependent 
models

• Yield surface distortion

Robust integration for any yield surface provides a foundation for 
further developments

1

F (o- , e) = 0 (a) - a- (e) < 0



Conclusions49

• A robust integration algorithm has been developed, augmenting a 
return mapping algorithm with a line search method

• Flexibility
• Understanding
• Extensibility
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