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+1 Motivation for Studying Foams in Fires

Foams (and other organics) are used to
protect electronic devices from mechanical
and thermal shocks under normal
operating conditions.

In accident scenarios, these systems can be
exposed to high heat fluxes, such a fire.




5| The Trouble with Organic Materials

= QOrganic materials decompose at low temperatures compared to other
engineered materials, such as metals

= QOrganic material decomposition can impact heat transfer and pressurization
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Subject to heating (e.g. fire), porous foams open up and/or
liquefy and decompose into char and products (gas+liquid)



1 Foam in a Can Experiment
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: | Experimental Motivation

Experiments showed that steel containers could breach from
pressurization created by the gases of the thermally decomposing organics

Existing thermal models could not predict this behavior

°When heated, organic materials undergo thermo-physical process that need to be
better understood

A new series of experiments were conducted to better understand the
problem in order to model it

°These experiments were used both to gain insight into the physics as well as to
validate the model



» I Foam in a Can Experiment
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Data Sets:
> 320 kg/m3 PMDI polyurethane foam (rigid, closed cell)
> Heated to 800 C at a rate of 150 C/min.

Can dimensions are approximately
> Diameter: 9 cm

° Length: 6.5 cm

o Side Wall Thickness: 0.5 mm

Monitor pressure and temperature
X-Rays to view can interior

Experiments run to breach

Experiment conducted in upright and
inverted orientations

> Material bulk movement towards or away from
heat source

Acknowledgement: Jill Suo-Anttila



ol Foam in a Can Experiment: Thermocouples

Temperature is monitored on the top, along the sides, and on the bottom
of the can as well as on an embedded object.
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« I X-Ray Video of Experiments
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12| Experimental Quantities of Interest
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% Porous Media with Vapor Liquid
== Equilibrium Model




1«1 Model Description
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2D Axisymmetric Model in Sierra Thermal/Fluids

Three step reaction mechanism
> PMDI Polyurethane -> CO,, light and heavy organics, char

> Phase of light and heavy organics determined by Henry’s or Raoult’s law
> When liquid is formed, it is treated as part of the motionless matrix

Continuity, species, and enthalpy equations
° Solved for in condensed and gas phases

> Gas velocity solved using Darcy’s approximation for flow through a porous
material

° ldeal gas law used to relate density to pressure
> Radiative and Convective boundary conditions

Material Properties

> Foam Effective Conductivity, Foam Porosity, Foam Permeability
° Function of reaction

° Other material properties
> Constant or function of temperature



s | Decomposition Reactions and VLE

100} - - Three step reaction mechanism:

(Acknowledgment: Ken Ericson)
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The major organic decomposition products of the reaction:

o Propylene glycol

o Aniline

o 4-methylaniline

o Phenyl isocyanate
These products can exists in either the liquid or gas phase at the
temperatures and pressures seen in the can
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Gas and Solid Temperatures

Time = 480.0s Time = 480.0s
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» | Condensed Liquid and Reactions
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18| Effects of Heat Transfer and Flow ol [— Dot |
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Buoyant flow accelerates heat transfer in the inverted orientation, leading to a
higher temperature gradient.

Gasses produced by the reaction flow to cooler areas of the can where they can
condense. They can gasify again when heated.

Accelerated heat transfer progress reaction faster and narrows reaction band.



» I Uncertainty Quantification (UQ)

The input parameters were varied using a Latin Hypercube Study (LHS) in

Dakota
°31 parameters were included

2310 simulations in both the upright and inverted orientation were preformed (total

620 simulations)

The mean and standard deviation of the ensemble were calculated
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x| Summary

A model was created to predict pressure and temperature of a
decomposing foam.

°The model incorporated porous media flow with vapor liquid equilibrium
equations to better predict orientation dependence

An uncertainty quantification study was performed to understand the
influence of parameter uncertainty on responses
©100-125 K spread in temperature and 4-8 MPa in pressure



» 1 Future Work

Porous Media VLE model

°|nvestigate additional heating rates and densities of foam
>Using 2D models to handle computationally expensive activities for 3D models
°Implement additional statistical and UQ techniques

Condensed Phase Advection
°|Include physics that would allow the matrix phase to flow






Effective Conductivity and S

Radiative heat transfer is accounted for by an
effective conductivity calculated by the diffusion
method for an optically thick media

16 o 3
k‘rad _ 3 ﬁ T
f is the absorption plus scattering, which is the
properties that is measured. It varies as the inverse
of krad-
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Mesh Resolution
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26| Foam in a Can Experiment
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% Model Validation and Uncertainty
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» | How Do We Validate This Model?

Pressure (MPa)

We have both experimental and simulation data —

can we just compare them?
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However, to run this simulation, 31 foam properties

were used.



» 1 Nominal Properties

Virgin Liquid Char
Bulk Density (kg/m3) 320
Solid Density (kg/m3)
(Fj’]?;n Rosseland Coefficient (mK) 1990 100000
liquid, char)  Bylk Conductivity (W/mK) 0.098-0.8
Specific Heat Capacity (J/kgK) 1269-2203 1000
Permeability (m?) 5.25x10'2  5.25x10-12
Heat of Reaction (J/kg) 0
Activation Energy (MJ/kg) 179
Reactions 0.45 FOAM - 0.252 CO, + 0.198 organics

Mass Fractions

k1
0.15 FOAM -
k2

0.40 FOAM -
k3

0.15 organics

0.2 organics + 0.2 char

Gas Products

Specific Heat Capacity (J/kgK)
Mass Diffusivity (m?/s)
Viscosity (Pa s)

Molecular Weight (g/mol)
Saturation Pressure (Pa)

2x10-3

85-107




» | How To Determine a Range!

Example 1: Virgin Foam Bulk Conductivity

°Have multiple data sets for the conductivity at several
densities over a temperature range of 300-523 K

°A range of £35% encapsulated the measured values (with
measurement error included)

Example 2:

cRadiative heat transfer is accounted for by an effective
conductivity calculated by the diffusion method for an
optically thick media

°Have no experimental data, had previously calibrated this
parameter

°Chose to have the char radiative conductivity have twice
the uncertainty of the virgin foam, +70%.



x| Sensitivity

How do we assess the sensitivity of each response
to each parameter?

> Pearson correlation coefficient is a number between O
and 1, where 0 means there is no correlation and 1 means
there is a high correlation

1 0.8 0.4 0 =04 0.8 =1
1 1 1 1 1 1
e - o — ~_ Ny

Image: https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
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Parameter: Char Radiative Conductivity
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33| Top Three Parameters
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