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Motivation for Studying Foams in Fires



Motivation for Studying Foams in Fires4

Foams (and other organics) are used to 
protect electronic devices from mechanical 
and thermal shocks under normal 
operating conditions. 

In accident scenarios, these systems can be 
exposed to high heat fluxes, such a fire. 
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The Trouble with Organic Materials 5

Subject to heating (e.g. fire), porous foams open up and/or 
liquefy and decompose into char and products (gas+liquid)

time

 Organic materials decompose at low temperatures compared to other 
engineered materials, such as metals 

 Organic material decomposition can impact heat transfer and pressurization
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Foam in a Can Experiment6



Validation Experiments



Experimental Motivation  8

Experiments showed that steel containers could breach from 
pressurization created by the gases of the thermally decomposing organics

Existing thermal models could not predict this behavior
◦ When heated, organic materials undergo thermo-physical process that need to be 

better understood

A new series of experiments were conducted to better understand the 
problem in order to model it
◦ These experiments were used both to gain insight into the physics as well as to 

validate the model
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Foam in a Can Experiment9

Data Sets:
◦ 320 kg/m3 PMDI polyurethane foam (rigid, closed cell)

◦ Heated to 800 C at a rate of 150 C/min.  

Can dimensions are approximately
◦ Diameter: 9 cm

◦ Length: 6.5 cm 

◦ Side Wall Thickness: 0.5 mm

Monitor pressure and temperature

X-Rays to view can interior 

Experiments run to breach

Experiment conducted in upright and 
inverted orientations
◦ Material bulk movement towards or away from 

heat source
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Foam in a Can Experiment: Thermocouples10

Temperature is monitored on the top, along the sides, and on the bottom 
of the can as well as on an embedded object.
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X-Ray Video of Experiments 11
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Experimental Quantities of Interest12

Inverted 
pressurizes 
faster

Inverted 
temperature 
rises faster

Breach8
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Porous Media with Vapor Liquid 
Equilibrium Model 



Model Description 14

2D Axisymmetric Model in Sierra Thermal/Fluids

Three step reaction mechanism
◦ PMDI Polyurethane -> CO2, light and heavy organics, char

◦ Phase of light and heavy organics determined by Henry’s or Raoult’s law

◦ When liquid is formed, it is treated as part of the motionless matrix

Continuity, species, and enthalpy equations 
◦ Solved for in condensed and gas phases

◦ Gas velocity solved using Darcy’s approximation for flow through a porous 
material

◦ Ideal gas law used to relate density to pressure

◦ Radiative and Convective boundary conditions

Material Properties
◦ Foam Effective Conductivity, Foam Porosity, Foam Permeability  

◦ Function of reaction

◦ Other material properties

◦ Constant or function of temperature
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Decomposition Reactions and VLE15

Three step reaction mechanism: 
(Acknowledgment: Ken Ericson) 

0.45 ����
��
→ 0.20 �������� + 0.25 ���

0.15 ����
��
→ 0.15 ��������

0.40 ����
��
→ 0.20 �������� + 0.20 ����

Reaction 1

Reaction 2

Reaction 3

The major organic decomposition products of the reaction:
o Propylene glycol
o Aniline
o 4-methylaniline 
o Phenyl isocyanate

These products can exists in either the liquid or gas phase at the 
temperatures and pressures seen in the can
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Gas and Solid Temperatures16
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Condensed Liquid and Reactions17
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Effects of Heat Transfer and Flow18

Buoyant flow accelerates heat transfer in the inverted orientation, leading to a 
higher temperature gradient.

Gasses produced by the reaction flow to cooler areas of the can where they can 
condense. They can gasify again when heated.

Accelerated heat transfer progress reaction faster and narrows reaction band.
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Uncertainty Quantification (UQ) 19

The input parameters were varied using a Latin Hypercube Study (LHS) in 
Dakota
◦31 parameters were included

◦310 simulations in both the upright and inverted orientation were preformed (total 
620 simulations)

The mean and standard deviation of the ensemble were calculated
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Summary and Future Work



Summary21

A model was created to predict pressure and temperature of a 
decomposing foam.
◦The model incorporated porous media flow with vapor liquid equilibrium 
equations to better predict orientation dependence

An uncertainty quantification study was performed to understand the 
influence of parameter uncertainty on responses 
◦100-125 K spread in temperature and 4-8 MPa in pressure 
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Future Work22

Porous Media VLE model 
◦ Investigate additional heating rates and densities of foam

◦Using 2D models to handle computationally expensive activities for 3D models 

◦ Implement additional statistical and UQ techniques 

Condensed Phase Advection
◦ Include physics that would allow the matrix phase to flow
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Questions?



Effective Conductivity and ��24

Radiative heat transfer is accounted for by an 
effective conductivity calculated by the diffusion 
method for an optically thick media 

���� =
�� �

� �
��

� is the absorption plus scattering, which is the 
properties that is measured. It varies as the inverse 
of ����.
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Mesh Resolution25

0.77mm
7,067 nodes

1.77mm
1,914 nodes

0.35mm
43,055 nodes

2% difference 
between 
Gradient and 
Finest 

3% difference 
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Gradient and 
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Foam in a Can Experiment26

Monitor pressure and temperature

X-Rays to view can interior 

Experiments run to breach

Sample Unit

Duraboard Insulation

Heat Lamp Array
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Model Validation and Uncertainty 
Quantification



How Do We Validate This Model?28

We have both experimental and simulation data –
can we just compare them?

However, to run this simulation, 31 foam properties 
were used.  

Simulation
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Nominal Properties 29

Virgin Liquid Char

Foam 
(virgin, 
liquid, char)

Bulk Density (kg/m3) 320 1000 64

Solid Density (kg/m3) 1500 1050 1500

Rosseland Coefficient (mK) 1990 100000 340

Bulk Conductivity (W/mK) 0.098-0.8 0.15 0.098-0.8

Specific Heat Capacity (J/kgK) 1269-2203 1000 2203

Permeability (m2) 5.25x10-12 5.25x10-12 1.45x10-8

Reactions

Heat of Reaction (J/kg) 0

Activation Energy (MJ/kg) 179

Mass Fractions

�. �� ����
��
→ �. ��� ��� + �. ��� ��������

�. �� ����
��
→ �. �� ��������

�. �� ����
��
→ �. � �������� + �. � ����

Gas Products

Specific Heat Capacity (J/kgK) 1000

Mass Diffusivity (m2/s) 2x10-5

Viscosity (Pa s) 0.0005

Molecular Weight (g/mol) 85-107

Saturation Pressure (Pa)
��

�.��
����
����
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How To Determine a Range?30

Example 1: Virgin Foam Bulk Conductivity
◦Have multiple data sets for the conductivity at several 
densities over a temperature range of 300-523 K  

◦A range of ±35% encapsulated the measured values (with 
measurement error included) 

Example 2: Char Radiative Conductivity 
◦Radiative heat transfer is accounted for by an effective 
conductivity calculated by the diffusion method for an 
optically thick media 

◦Have no experimental data, had previously calibrated this 
parameter

◦Chose to have the char radiative conductivity have twice 
the uncertainty of the virgin foam, ±70%.
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Sensitivity 31

How do we assess the sensitivity of each response 
to each parameter?
◦Pearson correlation coefficient is a number between 0 
and 1, where 0 means there is no correlation and 1 means 
there is a high correlation 

Image: https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
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Parameter: Char Radiative Conductivity32
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Top Three Parameters33
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