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High-Fidelity Simulation across Multiple Length Scales

Mesoscale mechanisms can strongly affect system-level response
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• Mesoscale influences stress concentrations, localization, material damage, failure,

multiphysics phenomena, others ...

• Component reliability depends on material variability, mean response is inadequate

Resolving the microstructure in engineering-scale simulations is intractable

• Motivates a multiscale strategy (domain coupling, FEA2, MsFEM, HMC, ...)

• Emerging hardware and software are critical for viability of multiscale methods
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The Supercomputing Landscape is Changing

• What is the current definition of a "next generation"

supercomputer?

• On-node accelerators

Intel Knights Landing (KNL), NVidia GPU, etc.

• Enables increased parallelism, e.g., MPI + X

• Flops are cheap, memory management is critical

• DOE/NNSA Advanced Technology Systems

• Trinity ATS-1, LANL

Intel Xeon (Haswell) & Intel Xeon Phi (KNL)

• Sierra ATS-2, LLNL

IBM POWER9 CPUs & NVidia GPUs

• Future ATS platforms ...
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ATS-1 Trinity
http://www.lanl.gov/projects/trinity/

Advanced Simulation and Computing

ATS-2 Sierra
https://asc.11nl.gov

• Predicting, with confidence, the behavior of nuclear weapons through

FisE comprehensive, science-based simulations.
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Alternative Strategies for Software Parallelization
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Choice of parallelization strategy is tied to hardware architecture

Serial execution

No decomposition
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Traditional MPI

One MPI partition per core

MPI + X with large number of available threads (e.g., KNL)

One MPI partition per core

One thread per hardware thread OM
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MPI + X

One MPI partition per node

One thread per core Om)

MPI + X on a GPU machine

One MPI partition per core

One "thread" per GPU execution path 0(1000)
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Advanced Computational Solid Mechanics Code Design

Goal: Enable high-fidelity computational simulation on
next-generation computing platforms
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■ Opportunity: Run existing codes faster and on larger meshes

■ Opportunity: New modeling approaches that were previously intractable

■ Risk: Existing codes may not run well (or at all) on next-gen platforms

Exemplar:

FEA2 multiscale method is currently
intractable for engineering-scale

simulations, but may become viable with

next-generation hardware
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Current Efforts for Next-Gen Computational Solid Mechanics

Adapting material models for performance portability

• Apply Kokkos package to Sandia material model library for improved
performance across a variety of computing platforms

• Emphasis on material model API, data structures

High-performance engineering-scale simulations

• Focus on explicit transient dynamics

• Apply & evaluate software tools for next-gen HPC

• Kokkos, Qthreads, DARMA

Hierarchical FEA2 multiscale approach

• Sub-models activated as needed based on macroscale behavior

• Creates load balancing challenge, amenable to asynchronous many-task (AMT) scheduling

National Nuclear Security Administration

Advanced Simulation and Computing

/A Predicting, with confidence, the behavior of nuclear weapons through

BE comprehensive, science-based simulations.
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Applying Kokkos to Material Models

What is Kokkos?

■ Abstraction layer / API for performance portability on NGP architectures

Design strategy

■ Kokkos : :View data structures enable optimal layout patterns and
efficient transfer between host and device

■ Kokkos : :parallel_for mechanism for simultaneous evaluation
of the constitutive model on a large number of material points

Key considerations

■ Kernels executed on accelerator(s) must adhere to device restrictions

■ Thread safety

■ GPU utilization requires CUDA compatibility (severe restriction!)

■ Strive for future-proof design that is compatible with existing material
model API, restrict exposure to Kokkos complexity
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Kokkos Software Engineering Strategy

Store data in Kokkos::View containers

using Layout = Kokkos::CudaSpace::execution_space::array_layout;

using ExecutionSpace = Kokkos::CudaSpace::execution space;

using View = Kokkos:

View my data;

:View<double *, Layout, ExecutionSpace›;

Execute computational kernels using Kokkos::parallel_for

Kokkos::parallel_for("Stress",

mdpolicy_2d,

KOKKOS LAMBDA (const int i elem, const int i_ipt) {
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def grad n = Kokkos::subview(def grad data step n, i elem, i ipt, Kokkos::ALL)

• • •

material d->GetStress(time previous,

time current,

def grad n,

def grad npl,

stress n,

stress npl);

} ) ; 8



Performance Results for the Neo-Hookean Model
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• Full utilization of a single compute node on conventional and next-gen
hardware platforms

• get_stress ( ) called on —1M material points divided into 2K worksets

• Speed-up is given relative to serial execution on Intel Haswell architecture

Table 1: Performance comparison for a single node at full utilization: Speed-up of the neo-
Hookean model relative to serial Haswell.

Configuration Platform Speed-up
Haswell: 32 cores ascic 25.1
Haswell: 32 cores + 4-wide SIMD ascic 88.5
Broadwell: 32 cores ascic 40.0
Broadwell: 32 cores + 4-wide SIMD ascic 124
KNL: 64 cores + 4x hyperthreads mutrino 42.7
KNL: 64 cores + 2x hyperthreads1 + 8-wide SIMD mutrino 177
Kepler: Nvidia GPU 162ascicgpu
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Performance Results for the J2-Plasticity Model
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• Full utilization of a single compute node on conventional and next-gen
hardware platforms

• get_stress ( ) called on —1M material points divided into 2K worksets

• Speed-up is given relative to serial execution on Intel Haswell architecture

Table 2: Performance comparison for a single node at full utilization: Speed-up of the J2-
plasticity model relative to serial Haswell.

Configuration Platform Speed-up
Haswell: 32 cores ascic 24.4
Haswell: 32 cores + 4-wide SIMD ascic 42.2
Broadwell: 32 cores ascic 34.9
Broadwell: 32 cores + 4-wide SIMD ascic 53.8
KNL: 64 cores + 4x hyperthreads mutrino 32.2
KNL: 64 cores + 4x hyperthreads + 8-wide SIMD mutrino 76.4
Kepler: Nvidia GPU ascicgpu 71.3

10



Performance Results: Thread scalability on Intel Haswell

Unit test results for Neo-Hookean and J2-plasticity models
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• get stress ( ) called on —1M material points divided into 2K worksets

• Speed-up is given relative to serial execution on Intel Haswell architecture

• Results show that NGP material models scale well on traditional hardware

• Results demonstrate effectiveness of SIMD vectorization

Neohookean thread scalability: Haswell J2-Plasticity thread scalability: Haswell



Performance Results: Thread scalability on Intel Broadwell

Unit test results for Neo-Hookean and J2-plasticity models
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• get stress ( ) called on —1M material points divided into 2K worksets

• Speed-up is given relative to serial execution on Intel Haswell architecture

• Results show that NGP material models scale well on traditional hardware

• Results demonstrate effectiveness of SIMD vectorization

Neohookean thread scalability: Broadwell J2-Plasticity thread scalability: Broadwell



Performance Results: Thread scalability on Intel Knights Land

Unit test results for Neo-Hookean and J2-plasticity models
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• get stress ( ) called on —1M material points divided into 2K worksets

• Speed-up is given relative to serial execution on Intel Haswell architecture

• Test executed on 1 KNL CPU with 64 cores, 8-wide SIMD, and up to 4
hyperthreads per core

Neohookean thread scalability: KNL
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Enabling Full-Scale Explicit Dynamics Simulations

Goal: Solid mechanics proxy app that fully integrates
recently-developed HPC software tools

■ MPI + X via standard MPI, Kokkos, Qthreads

■ Kokkos for performance portability

■ DARMA for asynchronous many-task scheduling

■ Qthreads for high-performance multi-threading

NimbleSM
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Full Integration of Kokkos within NimbleSM

Enabling execution on GPUs requires pervasive code modifications

• Design strategy:

• Apply Kokkos::parallel_for mechanism to execute computationally
intensive kernels on multiple data sets simultaneously

• Store data in Kokkos::View structures for performance portability

• Principal challenge:

• Computational kernels must be compatible with CUDA

• Limited functionality available (i.e., no access to std:: namespace)

!!!!!1111111
!!Ilqf11111

MPI + X on a GPU machine

One MPI partition per core

One "thread" per GPU execution path 0/000)
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Software Design

1: for each time step n do
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2: tn-q tn+1)(tn<— +
tn+1 tri At3: +

4: tn)Vn-q vn + (tn-q — an

5: for each d.o.f. i with a kinematic boundary condition
n+ -

do

6: vi prescribed value

7: AtUn-" Un + VnA

8: D Compute internal forces
9: element ( ) GPU.ComputeDeformationGradients
10: material_model . ComputeStress 0 GPU
11: element .ComputeNodalForces ( ) GPU

Element and material model
objects instantiated on the GPU

12: D Sum internal forces at MPI partition boundaries
13: mpi .VectorReduction (internal_force) CPU

n+1 A4-1 n+114: Ir MPI operations require dataa f

15: tn-q
transfer between GPU and network

vn+1 <— Vn+ + (tn+1 — ) an+l

16: if designated output step
I/0 operations require data transfer

io_system.WriteToFile CPU
between GPU and network

17: 0

18: end for
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Initial GPU Performance Results

• Explicit transient dynamics simulation

• Neo-Hookean material model

• Fully-integrated element formulation

• Preliminary results suggest "50x performance gain
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Wave propagation simulation
-5 million elements
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Questions?

David Littlewood
djlittl@sandia.gov
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