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High-Fidelity Simulation across Multiple Length Scales ) on

Mesoscale mechanisms can strongly affect system-level response

= Mesoscale influences stress concentrations, localization, material damage, failure,
multiphysics phenomena, others ...

= Component reliability depends on material variability, mean response is inadequate

Resolving the microstructure in engineering-scale simulations is intractable
=  Motivates a multiscale strategy (domain coupling, FEA2, MSFEM, HMC, ...)

= Emerging hardware and software are critical for viability of multiscale methods
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The Supercomputing Landscape is Changing ) e

= What is the current definition of a “next generation”
supercomputer?

= On-node accelerators
= Intel Knights Landing (KNL), NVidia GPU, etc.

= Enables increased parallelism, e.g., MPI + X

= Flops are cheap, memory management is critical ATS-1 Trinity

http://www.lanl.gov/projects/trinity/

= DOE/NNSA Advanced Technology Systems
= Trinity ATS-1, LANL
= |Intel Xeon (Haswell) & Intel Xeon Phi (KNL)
= Sierra ATS-2, LLNL

= |IBM POWER9 CPUs & NVidia GPUs ot

ATS-2 Sierra
https://asc.linl.gov

= Future ATS platforms ...
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Alternative Strategies for Software Parallelization Lf

Choice of parallelization strategy is tied to hardware architecture
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Serial execution Traditional MPI MPI + X

No decomposition One MPI partition per core One MPI partition per node

One thread per core ((10)

MPI + X with large number of available threads (e.g., KNL) MPI + X on a GPU machine
One MPI partition per core One MPI partition per core
One thread per hardware thread (%100) One “thread” per GPU execution path ¢(1000)
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Advanced Computational Solid Mechanics Code Design ) e

Goal: Enable high-fidelity computational simulation on
next-generation computing platforms

= Opportunity: Run existing codes faster and on larger meshes
=  QOpportunity: New modeling approaches that were previously intractable

= Risk: Existing codes may not run well (or at all) on next-gen platforms

Exemplar:

FE”A2 multiscale method is currently
intractable for engineering-scale
simulations, but may become viable with
next-generation hardware
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Current Efforts for Next-Gen Computational Solid Mechanics L f

Adapting material models for performance portability

= Apply Kokkos package to Sandia material model library for improved
performance across a variety of computing platforms

= Emphasis on material model API, data structures

High-performance engineering-scale simulations

= Focus on explicit transient dynamics

= Apply & evaluate software tools for next-gen HPC
=  Kokkos, Qthreads, DARMA
Hierarchical FE*2 multiscale approach

=  Sub-models activated as needed based on macroscale behavior

=  Creates load balancing challenge, amenable to asynchronous many-task (AMT) scheduling

) VW ! b%‘j /\ Advanced Simulation and Computing
///’ v A u-ﬂ /‘ Predicting, with confidence, the behavior of nuclear weapons through
Security Administration ASC" comprehensive, science-based simulations.




Applying Kokkos to Material Models ) ien

What is Kokkos?

= Abstraction layer / APl for performance portability on NGP architectures

Design strategy

= Kokkos::View data structures enable optimal layout patterns and
efficient transfer between host and device

= Kokkos::parallel for mechanism for simultaneous evaluation
of the constitutive model on a large number of material points

Key considerations

= Kernels executed on accelerator(s) must adhere to device restrictions
= Thread safety

= GPU utilization requires CUDA compatibility (severe restriction!)

= Strive for future-proof design that is compatible with existing material
model API, restrict exposure to Kokkos complexity

Littlewood, D.J. and Tupek, M.R.. Adapting material models for improved performance on next-generation hardware. Memorandum SAND2007-5873, Sandia National Laboratories, Albuquerque,
NM and Livermore, CA, 2017. 7




Kokkos Software Engineering Strategy ) e

Store data in Kokkos::View containers

using Layout = Kokkos::CudaSpace::execution space::array layout;
using ExecutionSpace = Kokkos::CudaSpace::execution space;

using View = Kokkos::View<double *, Layout, ExecutionSpace>;
View my data;

Execute computational kernels using Kokkos::parallel_for

Kokkos::parallel for("Stress",
mdpolicy 2d,
KOKKOS LAMBDA (const int i elem, const int i ipt) {

def grad n = Kokkos::subview(def grad data step n, i elem, i ipt, Kokkos::ALL);

material d->GetStress(time previous,
time current,
def grad n,
def grad npl,
stress n,
stress npl);

})s
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Sandia
Performance Results for the Neo-Hookean Model i) Natona

= Full utilization of a single compute node on conventional and next-gen
hardware platforms

= get stress() called on 1M material points divided into 2K worksets

=  Speed-up is given relative to serial execution on Intel Haswell architecture

Table 1: Performance comparison for a single node at full utilization: Speed-up of the neo-
Hookean model relative to serial Haswell.

Configuration Platform | Speed-up
Haswell: 32 cores ascic 25.1
Haswell: 32 cores + 4-wide SIMD ascic 88.5
Broadwell: 32 cores ascic 40.0
Broadwell: 32 cores + 4-wide SIMD ascic 124
KNL: 64 cores + 4x hyperthreads mutrino 42.7
KNL: 64 cores + 2x hyperthreads' + 8-wide SIMD | mutrino i
Kepler: Nvidia GPU ascicgpu 162
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Performance Results for the J2-Plasticity Model L f

= Full utilization of a single compute node on conventional and next-gen
hardware platforms

= get stress() called on 1M material points divided into 2K worksets

=  Speed-up is given relative to serial execution on Intel Haswell architecture

Table 2: Performance comparison for a single node at full utilization: Speed-up of the J2-
plasticity model relative to serial Haswell.

Configuration Platform | Speed-up
Haswell: 32 cores ascic 24.4
Haswell: 32 cores + 4-wide SIMD ascic 42.2
Broadwell: 32 cores ascic 34.9
Broadwell: 32 cores + 4-wide SIMD ascic 53.8
KNL: 64 cores + 4x hyperthreads mutrino 32.2
KNL: 64 cores + 4x hyperthreads + 8-wide SIMD | mutrino 76.4
Kepler: Nvidia GPU ascicgpu 71.3
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Performance Results: Thread scalability on Intel Haswell

Unit test results for Neo-Hookean and J2-plasticity models

get stress() called on ~¥1M material points divided into 2K worksets
Speed-up is given relative to serial execution on Intel Haswell architecture

Results show that NGP material models scale well on traditional hardware

Results demonstrate effectiveness of SIMD vectorization

J2-Plasticity thread scalability: Haswell

Neohookean thread scalability: Haswell
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Performance Results: Thread scalability on Intel Broadwell

Unit test results for Neo-Hookean and J2-plasticity models

= get stress|() called on ~“1M material points divided into 2K worksets
= Speed-up is given relative to serial execution on Intel Haswell architecture
= Results show that NGP material models scale well on traditional hardware

=  Results demonstrate effectiveness of SIMD vectorization
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Performance Results: Thread scalability on Intel Knights Landitig) st

Unit test results for Neo-Hookean and J2-plasticity models

= get stress|() called on ~“1M material points divided into 2K worksets
= Speed-up is given relative to serial execution on Intel Haswell architecture

= Test executed on 1 KNL CPU with 64 cores, 8-wide SIMD, and up to 4
hyperthreads per core

Neohookean thread scalability: KNL J2-Plasticity thread scalability: KNL
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Enabling Full-Scale Explicit Dynamics Simulations

Goal: Solid mechanics proxy app that fully integrates
recently-developed HPC software tools

= MPI + X via standard MPI, Kokkos, Qthreads
=  Kokkos for performance portability
= DARMA for asynchronous many-task scheduling

= Qthreads for high-performance multi-threading

NimbleSM
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Full Integration of Kokkos within NimbleSM ) ien

Enabling execution on GPUs requires pervasive code modifications

= Design strategy:

= Apply Kokkos::parallel for mechanism to execute computationally
intensive kernels on multiple data sets simultaneously

= Store data in Kokkos::View structures for performance portability

" Principal challenge:

= Computational kernels must be compatible with CUDA

= Limited functionality available (i.e., no access to std:: namespace)

MPI + X on a GPU machine
One MPI partition per core
One “thread” per GPU execution path (1000)
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Software Design L f

1: for each time step n do

2. "I 1 (1 4

3 thtl 4 At

4 vits  yn o4 (t"+% — t") a

B for each d.o.f. © with a kinematic boundary condition do
6 v 2 prescribed value

7 u"tl — ut 4+ vtz AL

8 > Compute internal forces

9 element .ComputeDeformationGradients () GPU

10: material model.ComputeStress () GPU > Element and material model

11 element .ComputeNodalForces () GPU objects instantiated on the GPU
12: > Sum internal forces at MPI partition boundaries

13 mpi.VectorReduction (internal_force) CPU

14: a"tl « M-1fntl e MP!I operations require data

15 vyl yntE 4 (tn—i—l _ tn—l—%) gnt1 transfer between GPU and network

16: if designated output step
17: io_system.WriteToFile () CPU <+—
18: end for

I/O operations require data transfer
between GPU and network

16




Sandia
Initial GPU Performance Results i) fatora

= Explicit transient dynamics simulation
= Neo-Hookean material model

= Fully-integrated element formulation

= Preliminary results suggest ~50x performance gain

10000 T T T L A T T T T T T T

I NimbleSM MPI (skybridge platform) —@®— |
Sierra/SM MPI (skybridge platform) —®— 1
NimbleSM MPI+GPU (ascicgpu07 platform) —@&— ]

Wave propagation simulation
~5 million elements
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Questions?

David Littlewood
djlittl@sandia.gov




