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Background

 Develop a testing/inspection strategy to efficiently survey a 
composite structure for the full life-cycle.

 Introduce damage into a composite sample under a known 
load condition, inspect the samples with traditional NDI 
techniques.

 Determine the relationship between damage, dynamic 
frequency response, mode shape, and damping of a carbon 
fiber composite material and the use of inspection 
techniques.



Why use composites?
 Typical Composites

 Glass

 Carbon

 Aramid

 Epoxy

 Benefits: high strength to weight ratio, fatigue resistance

 Challenges: transverse loading deficient, subsurface damage, 
and delamination

 Damage detection techniques for composite structures
 Visual 

 Optical 

 Ultrasonic

 Acoustic 

 Radiographic

 Thermal 

 Modal Analysis

Fiberglass. 2016. Fins'nTales. Web. Kevlar Rope. 2016. China's Senior Supplier. Web.
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Specimen Fabrication

Briggs, Timothy, Shawn Allen English, and Stacy Michelle Nelson. "Quasi-Static Indentation Analysis of Carbon-Fiber Laminates." (2015)

Thickness

(mm.)
Ply Count Stack Sequence

Square Dimension

(mm.)

4.2 12 [(0/90)6]s 152

8.4 24 [(0/90)12]s 152

4-Axis CNC Ply Cutting

Layup Kits for Laminates

Panels Autoclave Cured

Specimens Cut From Laminate •



• Existing orthotropic material models either do not consider damage or use a fully interactive 
damage criteria

• Our model divides material behavior into 3 sections: 
• Linear elastic
• Distributed damage (hardening often associated with matrix cracking)
• Localized damage (softening often associated fiber breakage)

• Damage initiates according to a partially-interactive strain based failure criteria

Cylindrical punch simulation example with out-of-
plane shear damage

Idealized Stress-strain response 
showing damage while loaded

Indentation experimental fixture 

Cylindrical 
Punch

Composite

Fixture

For this 
investigation, we 
are focusing on 
the flat 
cylindrical 
punch.

“This highly localized event may not be feasible to model with standard 
3D finite elements due issues associated with mesh dependence and 
model size. Surface localization elements, such as CZEs, can possibly be 
used to better predict the localized out-of-plane shear failure.”

Briggs, Timothy, Shawn Allen English, and Stacy Michelle Nelson. "Quasi-Static Indentation Analysis of Carbon-Fiber Laminates." (2015)

Boundary Conditions

Xm

1/1

Darna
14

NI -
0.2

Distributed

Cracks Dominant
Crack

Fiber Fracture Energy
(Size Dependent)

Strain
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By systematically increasing the level of loading to 
regions of ‘interest,’ an understanding of the damage time 
sequence of events can be determined (24 Ply).

The nature and spatial 
variation of the damage is 
difficult to define using 
traditional ultrasonics.

Damage and Growth
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C Scan

A Scan

B Scan

Although some spatial variation can be determined from signal 
attenuation, additional insight is gained by CT inspection.

Ultrasonics versus Computed Tomography
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Introduction—Mode Shapes

 Specific pattern of vibration that move sinusoidally at varying 
points

 All mode shapes are present at the same time, however are 
shown at different frequencies

 Each mode shape and correlating frequency depend on 
structure, material, and boundary conditions

Josić, Krešimir. Mode Shape. 2010. CAN WE HEAR SHAPES? Web.
Russell, Daniel A. Circuluar Modes. 1998. Pennsylvania State University, University Park. Acoustics and Vibration Animations. Web.
Coleman, Robert E. Four Spring Modes. N.d. Vibration Theory. Signalysis: Delivering the Sound of Silence. Web. 
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Experimental Approach

Grid System, Free Boundary Conditions Mounted Accelerometer 

Endevco 2250AM1 Accelerometer
Piezoelectric Quartz

PCB 086C03 Modal Hammer. 2016. Dr. Ferenc Papai: Experimental Modal Analysis Equipment. PCB Piezoelectronics. Web.
"Agilent." III-Vs Review 17.5 (2004): 6. Web.

PCB 086C03 Modal Hammer 

Modal Hammer Impulse Force

Frequency Response Measured Outputs 

System Block Diagram
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Energy Quantification

Absorbed Energy (EA) 
defined as area under load 
displacement graph

 PdEA

Energy Absorbed vs. Displacement

Percent Damage Vs. Energy Absorbed
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24 Ply Series Mode Shapes

C-Scan Mode 1 Mode 2 Mode 3 Mode 4

C1

C2

C3

C4
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24 Ply Series Frequency
Frequency vs. Mode Number Percent Change of Frequency vs. Mode Number

Mode 3
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24 Ply Series Damping

 Critical damping has a similar increasing trend in magnitude for first 4 modes

 This trend is consistent with the dynamic location of the mode shape and 
the potential for increasing frictional losses

 Damping magnitudes at mode 4 correlate with degree of damage

 All specimens show a decrease in damping from mode 4 to 5

 However, mode shapes begin to differ at this transition
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� = length of plate

� = width of plate

ℎ = thickness of plate

� = modulus of elasticity

� = �ℎ =mass per unit area

� = Poisson’s ratio

���
� = Dimensional Frequency Parameter

Comparison with Isotropic Theory

��� =
���

�

2���

�ℎ�

12�(1 − ��)

 Increasing trend of frequency and mode number, as expected

 Mode 4 and 5 are orthogonal bending modes and are predicted to have the 
same frequency for isotropic plates

 Theory predicts relative trend with acceptable agreement, but any damage or 
anisotropy violate assumptions
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Conclusions

 Frequency of bending modes likely depends on spatial 
distribution and form of damage.

 If damage was centered at a dynamic point of the mode 
shape, notable variation in frequency occurs.

 If damage was centered at a node of the mode shape, little 
variation in frequency at that mode shape was noted.

 Mode shape change was the earliest indication of damage.



Future Research

 Variable damage locations

 Variation in damage forms

 3D damage correlation with:
 Damping

 Frequency

 Mode shapes

 Relating these dynamic changes to damage mechanisms

 Development and validation of orthotropic damage models 
that capture structural dynamic effects

 Relating these effects to long-term performance and 
reliability of critical components



Mode 5 Mode 6 Mode 7

24 Ply Series Mode Shapes
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12 Ply 24 Ply
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