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3 Challenges of reaching high pressure require compromises

• Uniformity of state
• Small samples, Short times or both
• Diagnostic access



4 I Quantum calculations offer a flexible alternative

• The equations governing the properties of any material under any conditions are known

TIT(rl...rN)= Dif(rl...rN)

fi =—EV  + 11  e 
2

Z e2/ +
. 2m 2 •/#1 ri -rj ij k —F/ i

• Just need to solve the 3N dimensional partial differential equations

- Approximations are necessary for real materials



5 I DFT —The Most Common Approximation

Three insights underpin the development of the most commonly used theory

. Physical Insight

. Wavefunction is not an observable but the density is

. Replace the 3N dimensional wavefunction with the 3 dimensional density

. Can approximate kinetic energy and develop a sensible density by solving for noninteracting electrons in an
effective potential

. A reasonable approximation is to make the effective potential a simple function of the density



6 I Density Functional Theory is a very successful technique

Careful DFT / QMD calculations can complement experiment by providing additional information

Shock melting of diamond
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7 I DFT approximations are not always small

• Deuterium liquid-liquid phase transition
• DFT predictions of pressure vary

widely between approximations
• Impossible to determine a priori

which one is correct
• Approximations are notoriously

difficult to improve

• Particularly troubling given complexity

of experimental analysis
• Can we do better?
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8 Quantum Monte Carlo Calculations offer another possibility

Recast Schrodinger equation as an integral problem in 3N dimensions

f T (R)fi(R)T(R)c/R
< H >= 

f T (R)T(R)dR

Massive parallelism available, each point can be calculated independently

Variational principle lets you know when your approximation is improving

Poor scaling if nontrivial trial wavefunction
3 dimensions per electron
20 points in each direction
209 2-- 512 billion points for 3 electrons
3.8 TB just to store!

Stochastic Methods scale much better for multidimensional integrals

Effort for constant error scales as 1/VN regardless of dimensionality



Taking the next step - Diffusion Monte Carlo (DMC)

- Project wave function in imaginary time 00

yt(r + gr))=e-figi- v (r)) =lc je-eigr10i)
Recast projection in integral form

where

- Observables are

G(R',R,r) = (R'

i=0

v(R',r +gr))= fdRG(W,R,r)1 v(R,r))

e-,(fi-ET)R)

For electronic structure, the kinetic term in the Hamiltonian makes this look like a diffusion equation (in 3N dimensions).
Other terms become sources and sinks

f TT (R)TO (R) 
0(R)TT (R) dR

TT (R) 
(VT PI Vo ) = 

TT (R)T0 (R)dR



10 I Why are QMC calculations not exact?

Monte Carlo Samples a probability distribution
Electrons are Fermions! (wavefunction is not >0 everywhere)

Use guiding (trial) wavefunction, qJ, for importance sampling and for fixed node
approximation

- ql is not the exact many-body wavefunction
- Built using single particle orbitals calculated externally

• Energy only depends on 111=0 manifold



11 How are QMC calculations used for high pressure in practice?

■ More expensive, so typically used when
DFT is not well trusted or high accuracy is
needed

■ Example of uncertain Al phase diagram

■ Given a dynamic experiment, how do
kinetics influence the perceived phase
boundaries?

■ See for example J. Belof's talk from earlier
this conference



12 I How are QMC calculations used for high pressure in practice?

• More expensive, so typically used when
DFT is not well trusted or high accuracy is
needed

• Example of uncertain Al phase diagram

• Given a dynamic experiment, how do
kinetics influence the perceived phase
boundaries?

Sjostrom, Crockett and Rudin,

Phys Rev B 94, 144101 (2016)

Solid phases primarily treated with

DFT — PBE and quasiharmonic or

renormalized phonon frequencies
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1 3 QMC calculations refine the phase diagram

Use QMC to calculate cold curves of each phase
Same treatment of ion-thermal contribution

Phase boundaries to higher pressures

Triple point a lower temperature
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14 QMC calculations refine the phase diagram

Use QMC to calculate cold curves of each phase
Same treatment of ion-thermal contribution

. Phase boundaries to higher pressures

I Triple point a lower temperature

• Which prediction should we trust?
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15 I What about a case where DFT is known to have problems?

• Strongly correlated transition metal oxides: Fees

• Competition between localization and hybridization

Iron d-states pose a problem
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16 I Magnetoelastic coupling in Fe0 at low temperature

Magnetic ordering causes Fe0 to

distort along 111 direction below

198 K
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Various DFT treatments have difficulty reproducing
experiment because treatment of d-states is crucial
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17 Can QMC do any better?

• To do calculation, need to use trial wavefunction
• Calculate the energy vs strain using orbitals from
DFT type calculations

• Little effect in weakly correlated material like Al or MgO

• Strong and uncontrolled approximation for Fe0
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18 I Introduce flexibility for d-states by optimizing more advanced forms

• Backflow or multi-determinants can
make inprovements, but the starting
point dependence remains
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19 I Take a step back and try something simpler — D2 Hugoniot

Coupled electron-ion calculation of Hugoniot

- Significantly more compressible than experiment

• This includes non-controversial gas gun experiments
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I Why could CEIMC disagree with experiments?
o CEIMC work uses Slater-Jastrow-Backflow Wavefunction

. Such an ansatz does not necessarily capture static
correlation correctly

. Ongoing problem to handle this for condensed phases

Approximation is larger when more highly compressed
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21 I Take the next step for the Hugoniot calculation

Apply QMC with various trial wavefunctions to
a representative snapshot of the compressed gas

-QMC gives a hint about how accurate the
calculation is: Follow the noise!

• As sampling variance goes down, answer improves

• Carefully constructed classes of trial
wavefunctions allow for extrapolation

• Currently only possible for small systems
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22 I Leverage this to understand effects of errors on the calculated Hugoniot

• Principle problem was QMC errors were small
but unbalanced

I Initial dilute gas was almost exact

• Shocked state had errors

I DFT errors were much larger, but largely
cancelled

• Systematic improvement was much more
important (and feasible) than eliminating errors
entirely
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23 1

QMC with known error bounds is not new

In 1980 Ceperley and Alder used DMC to
calculate the energy of the electron gas

Used exponentially scaling version of DMC
(released node)

Ground State of the Electron Gas by a Stochastic Method

D. M. Ceperley

National Resource for Computation in Chemistry. Lawrence Berkeley Laboratory, Berkeley. California 94720

and

B. J. Alder

Lawrence Livermore Laboratory. University of California. Livermore. California 94550

(Received 16 April 1980)

An exact stochastic simulation of the Schroedinger equation for charged bosons and

fermions has been used to calculate the correlation energies, to locate the transitions

tia their respective crystal phases at zero temperature within 10%, and to establish the

stability at intermediate densities of a ferromagnetic fluid of electrons.
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24 I QMC can offer a new way of performing calculations at high pressure

• Standard quantum calculation techniques are quite useful, but their accuracy is unknown
• It is not always clear (even to experts) when calculations will show errors

QMC has the advantage of performing calculations using the ab initio Hamiltonian

This does not always guarantee higher accuracy than DFT

• There are ways to control errors with QMC

• For example, comparing variance to total energy

• May allow one to say how accurate their calculations actually are!


