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Challenges of reaching high pressure require compromises

» Uniformity of state
» Small samples, Short times or both
« Diagnostic access
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Quantum calculations offer a flexible alternative

= The equations governing the properties of any material under any conditions are known
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* Just need to solve the 3N dimensional partial differential equations

= Approximations are necessary for real materials
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DFT — The Most Common Approximation

Three insights underpin the development of the most commonly used theory

> Physical Insight
|O>ZW = JW(r,r,..ry)dryss+dry
®

V(r) < 1/r

> Wavefunction is not an observable but the density is

> Replace the 3N dimensional wavefunction with the 3 dimensional density

> Can approximate kinetic energy and develop a sensible density by solving for noninteracting electrons in an
etfective potential

> A reasonable approximation is to make the effective potential a simple function of the density



s I Density Functional Theory is a very successful technique

Careful DFT / QMD calculations can complement experiment by providing additional information

Shock melting of diamond Phase diagram of MgO
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DFT approximations are not always small

Deutertum liquid-liquid phase transition
DFT predictions of pressure vary
widely between approximations
" Impossible to determine a priori
which one 1s correct
" Approximations are notoriously
difficult to improve
Particularly troubling given complexity
of experimental analysis
Can we do better?
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8 I Quantum Monte Carlo Calculations offer another possibility

= Recast Schrodinger equation as an integral problem in 3N dimensions
. I\P*(R)ﬁ(R)\P(R)dR
<H>= -
j\{f (R)¥(R)dR

= Massive parallelism available, each point can be calculated independently
= Variational principle lets you know when your approximation is improving

= Poor scaling if nontrivial trial wavefunction
= 3 dimensions per electron

= 20 points in each direction
- 20° = 512 billion points for 3 electrons
= 3.8 TB just to store!

-Stochastic Methods scale much better for multidimensional integrals
-Effort for constant error scales as 1/VN regardless of dimensionality



Taking the next step - Diffusion Monte Carlo (DMC)

° Project wave function in imaginary time 0

w(r+67)) = e 1 (7)) = ch.e_g"&

> Recast projection in integral form i=0

|y ®R,7+60) = [dRGR R, D)y (R,7))

o QObservables are
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> For electronic structure, the kinetic term in the Hamiltonian makes this look like a diffusion equation (in 3N dimensions).
Other terms become sources and sinks
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10 I Why are QMC calculations not exact!

= Monte Carlo Samples a probability distribution

= Electrons are Fermions! (wavefunction is not >0 everywhere)

= Use guiding (trial) wavefunction, W, for importance sampling and for fixed node
approximation

= W is not the exact many-body wavefunction
* Built using single particle orbitals calculated externally

= Energy only depends on W=0 manifold



11 I How are QMC calculations used for high pressure in practice!?

= More expensive, so typically used when
DFT is not well trusted or high accuracy is
needed

= Example of uncertain Al phase diagram

= Given a dynamic experiment, how do
kinetics influence the perceived phase
boundaries?

= See for example J. Belof’s talk from earlier
this conference

BN DN $30



12 I How are QMC calculations used for high pressure in practice!?

Polsin et al. PRI 119, 175702 (2017)

DAC with X-ray diffraction
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13 I QMC calculations refine the phase diagram

= Use QMC to calculate cold curves of each phase
= Same treatment of ion-thermal contribution
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14 I QMC calculations refine the phase diagram

= Use QMC to calculate cold curves of each phase
= Same treatment of ion-thermal contribution

* Phase boundaries to higher pressures
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15 I What about a case where DFT is known to have problems?

= Strongly correlated transition metal oxides: FeO Antiferromagnetic FeO via LsDA
= Competition between localization and hybridization ° |
= Iron d-states pose a problem /
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16 I Magnetoelastic coupling in FeO at low temperature

Magnetic ordering causes FeO to
distort along 111 direction below
198 K
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Strain (5)

Various DFT treatments have difficulty reproducing
experiment because treatment of d-states is crucial
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17 I Can QMC do any better?

= To do calculation, need to use trial wavefunction

= Calculate the energy vs strain using orbitals from
DFT type calculations

= Little effect in weakly correlated material like Al or MgO

= Strong and uncontrolled approximation for FeO

DMC Energy [Ha/FeO]
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18 | Introduce flexibility for d-states by optimizing more advanced forms

= Backflow or multi-determinants can
make inprovements, but the starting
point dependence remains

DMC Energy [Ha/FeO]
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19 | Take a step back and try something simpler — D, Hugoniot

= Coupled electron-ion calculation of Hugoniot

= Significantly more compressible than experiment

* This includes non-controversial gas gun experiments
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Why could CEIMC disagree with experiments?

CEIMC work uses Slater-Jastrow-Backflow Wavefunction

Such an ansatz does not necessarily capture static
correlation correctly

Ongoing problem to handle this for condensed phases

Approximation is larger when more highly compressed
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= Apply QMC with various trial wavefunctions to
a representative snapshot of the compressed gas

“QMC gives a hint about how accurate the
calculation 1s: Follow the noise!

= As sampling variance goes down, answer improves

= Carefully constructed classes of trial
wavefunctions allow for extrapolation

= Currently only possible for small systems

21 I Take the next step for the Hugoniot calculation

Energy vs Variance for a small calculation of deuterium
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22 | Leverage this to understand effects of errors on the calculated Hugoniot

* Principle problem was QMC errors were small
but unbalanced

= Initial dilute gas was almost exact

* Shocked state had errors

= DFT errors were much larger, but largely
cancelled

= Systematic improvement was much more
important (and feasible) than eliminating errors
entirely
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QMC with known error bounds is not new

Ground State of the Electron Gas by a Stochastic Method

In 1980 Ceperley and Alder used DMC to D. M. Ceperley
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24 I QMC can offer a new way of performing calculations at high pressure

= Standard quantum calculation techniques are quite useful, but their accuracy 1s unknown

= It 1s not always clear (even to experts) when calculations will show errors

= QMC has the advantage of performing calculations using the ab initio Hamiltonian
= This does not always guarantee higher accuracy than DFT

= There are ways to control errors with QMC
= For example, comparing variance to total energy

= May allow one to say how accurate their calculations actually are!



