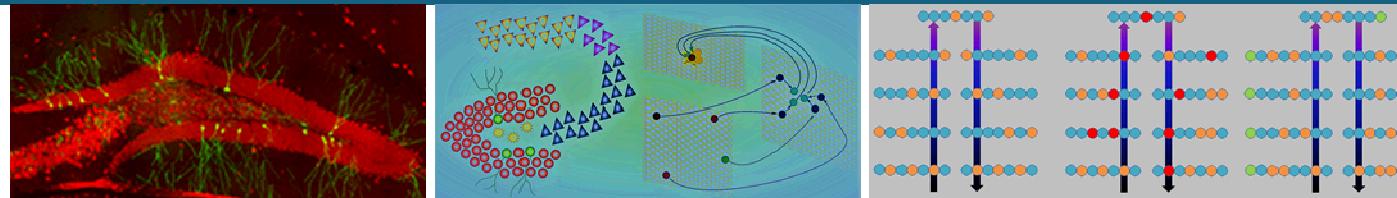


Whetstone

An Accessible, Platform-Independent Method
for Training Spiking Deep Neural Networks for
Neuromorphic Processors

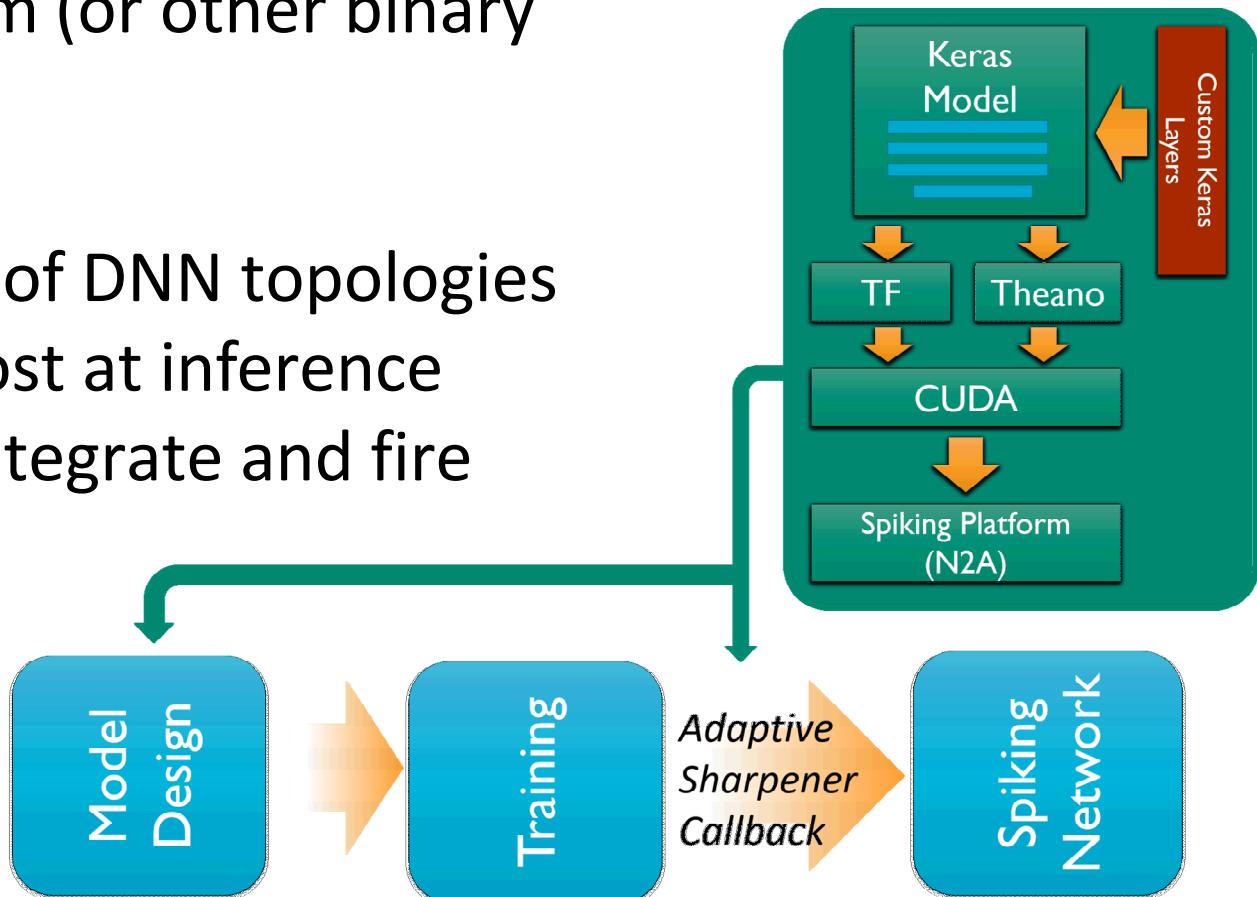


William M. Severa*, Craig M. Vineyard, Ryan Dellana
and James B. Aimone

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

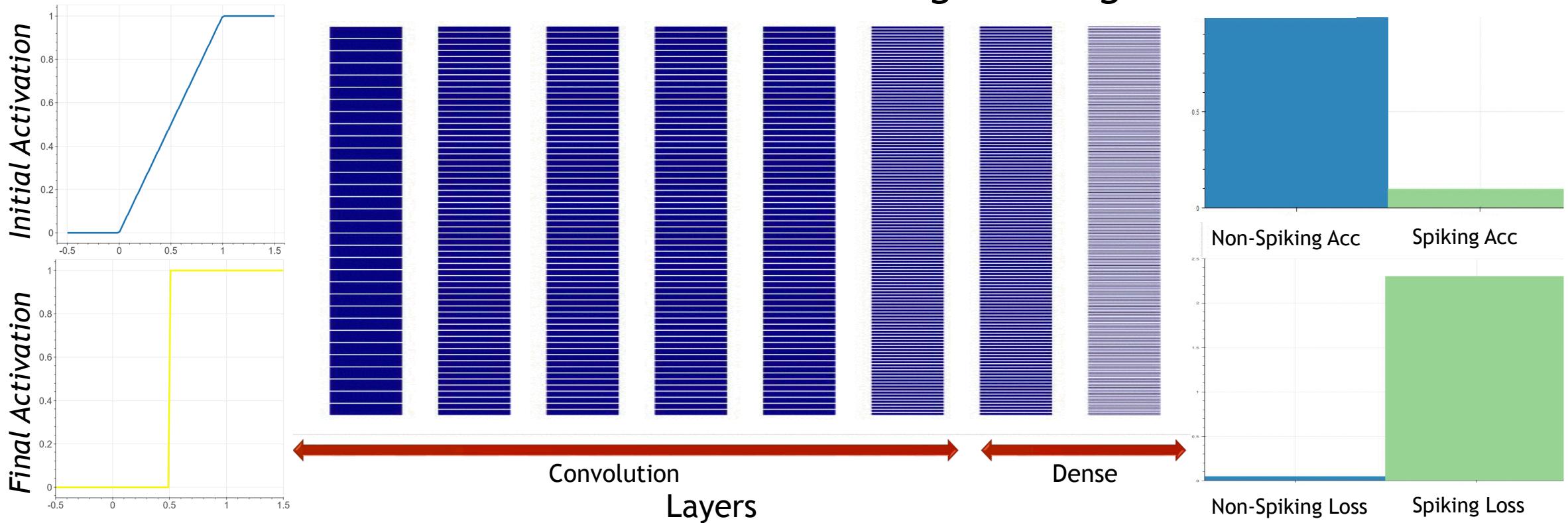
Whetstone provides a drop-in mechanism for tailoring a DNN to a spiking hardware platform (or other binary threshold activation platforms)

- Hardware platform agnostic
- Compatible with a wide variety of DNN topologies
- No added time or complexity cost at inference
- Simple neuron requirements: Integrate and fire



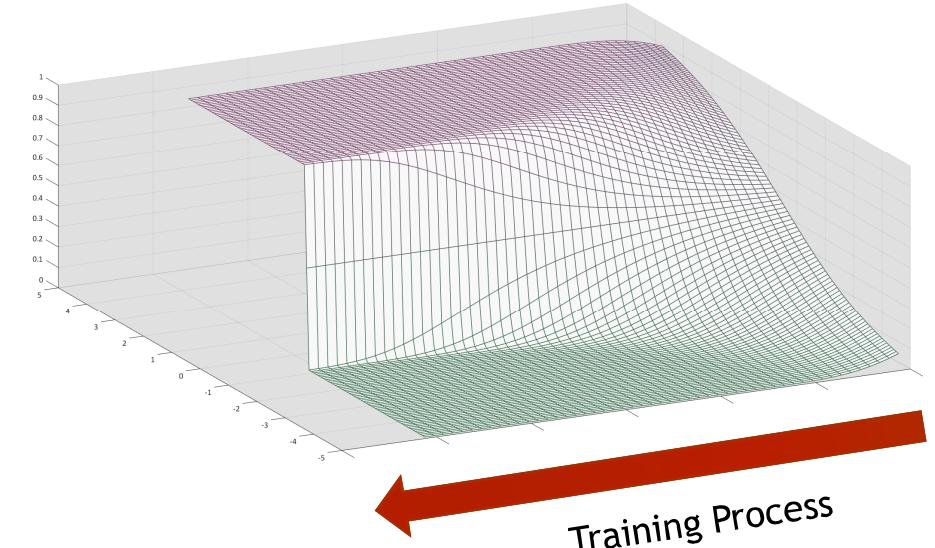
The real challenge for deep learning on spiking is the threshold activation function.

Using Whetstone, activation functions converge to a threshold activation *during training*.



Whetstone Overview

- Generally, gradient descent generates a sequence of weights A_i with the goal of minimizing the error of $f(A_i x)$ in predicting the ground truth y .
- We generalize this by replacing the activation function f with a sequence f_k such that $f_k \rightarrow_{L_1} f$, where f is now the threshold activation function.
- Now, the optimizer must minimize the error of $f_k(A_i x)$ in predicting y .
- Since the convergence in **neither i nor k is uniform**, this is a mathematically dangerous idea
- However, with a little care and a few tricks, the method reliably converges in many cases.



When/Where do we decide to ‘sharpen’ the activations?

1) Bottom-up Sharpening (The ‘toothpaste tube’ method)

- Begin sharpening at the bottom layer
- Wait until previous layer is fully sharpened
- Increases stability of convergence

2) Adaptive Sharpening Callback

- Hand-tuning sharpening rates is hard
- Instead, use loss as a guide for an *adaptive sharpener*
- Adaptive sharpener implemented as a callback automatically adjusts sharpening based on loss thresholds

```
Original Model Example
:
model.add(Dense(256))
model.add(Activation('relu'))
model.add(Dense(10))
model.add(Activation('softmax'))
:
model.fit(x,y)
:
```

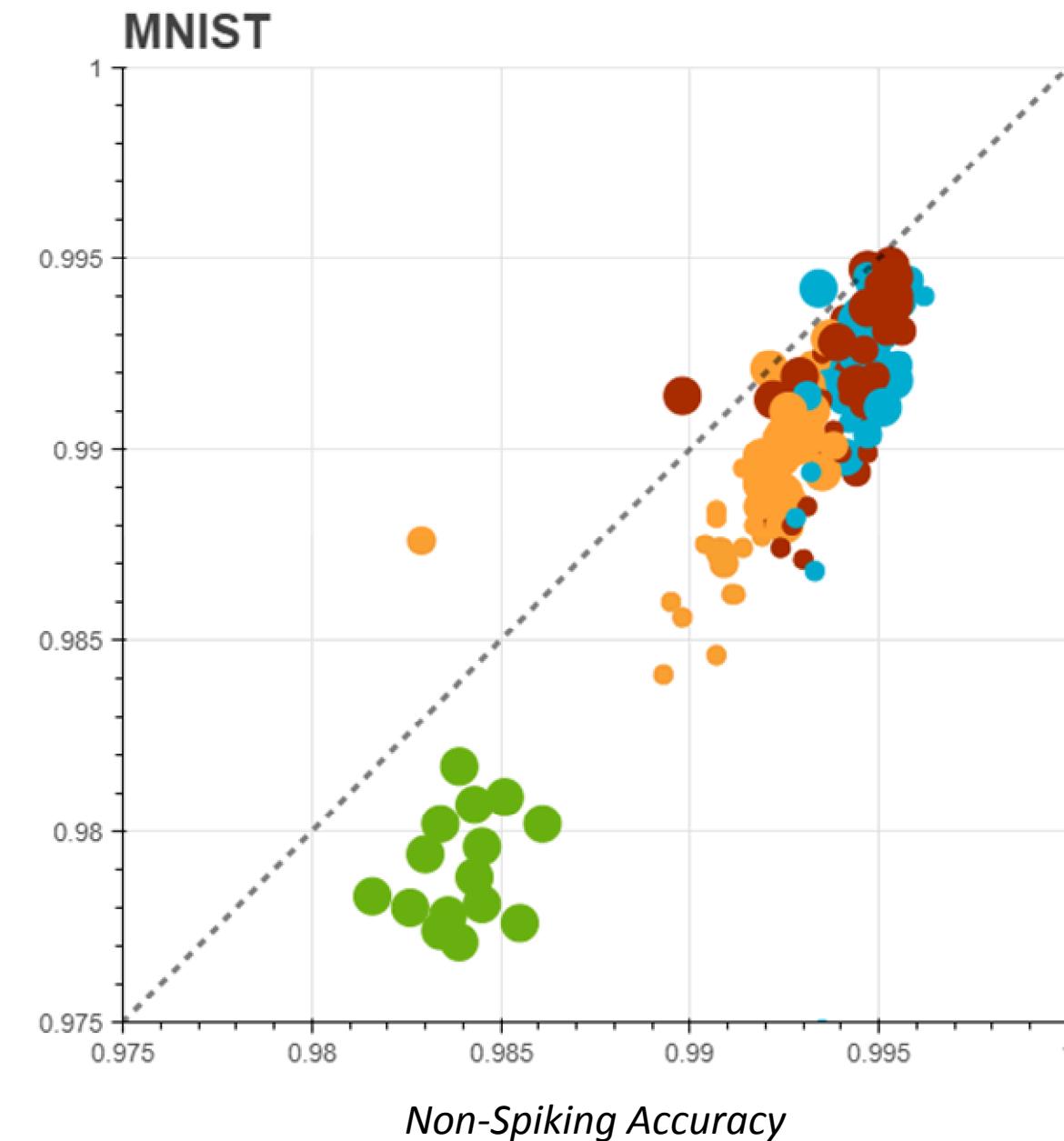
```
Modified Model Example
:
model.add(Dense(256))
model.add(Spiking_BRelu())
model.add(Dense(10))
model.add(Spiking_Brelu())
Model.add(Softmax_Decode(key))
:
sharpener = AdaptiveSharpener()
model.fit(x,y, callbacks=[sharpener])
:
```

Preliminary Results

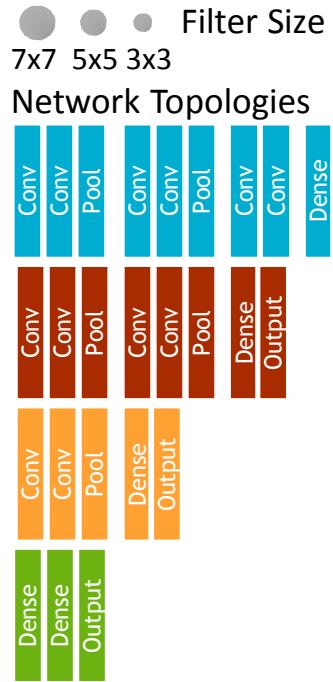
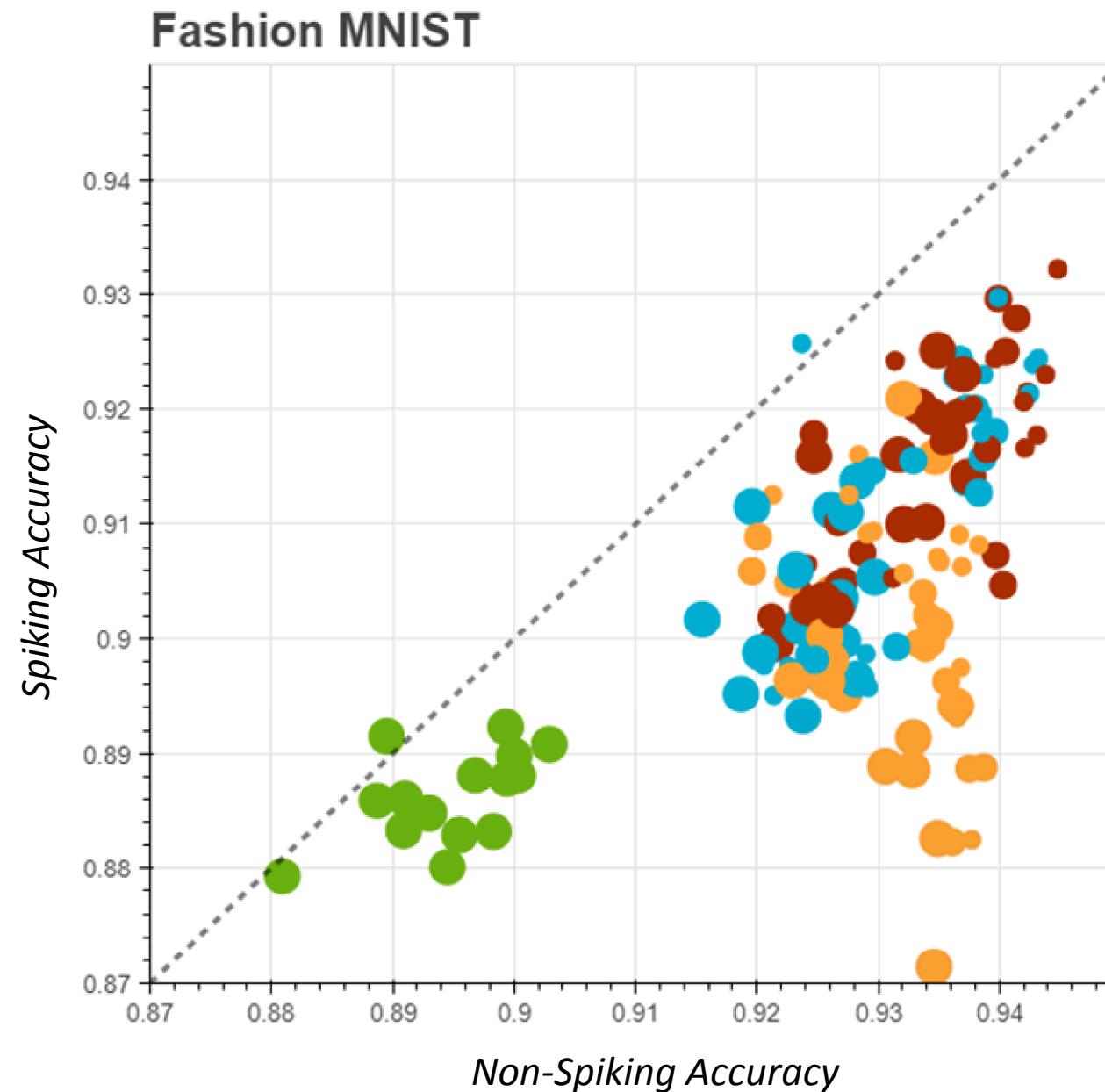
Filter Size
7x7 5x5 3x3

Network Topologies

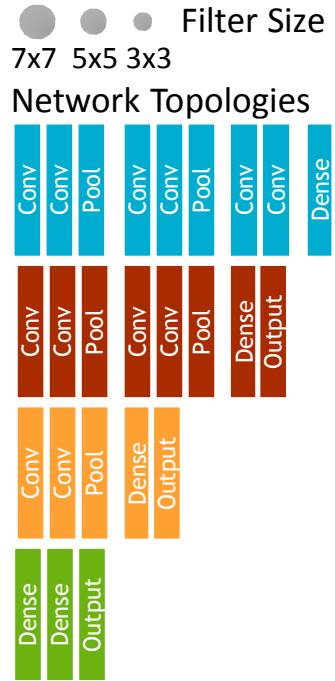
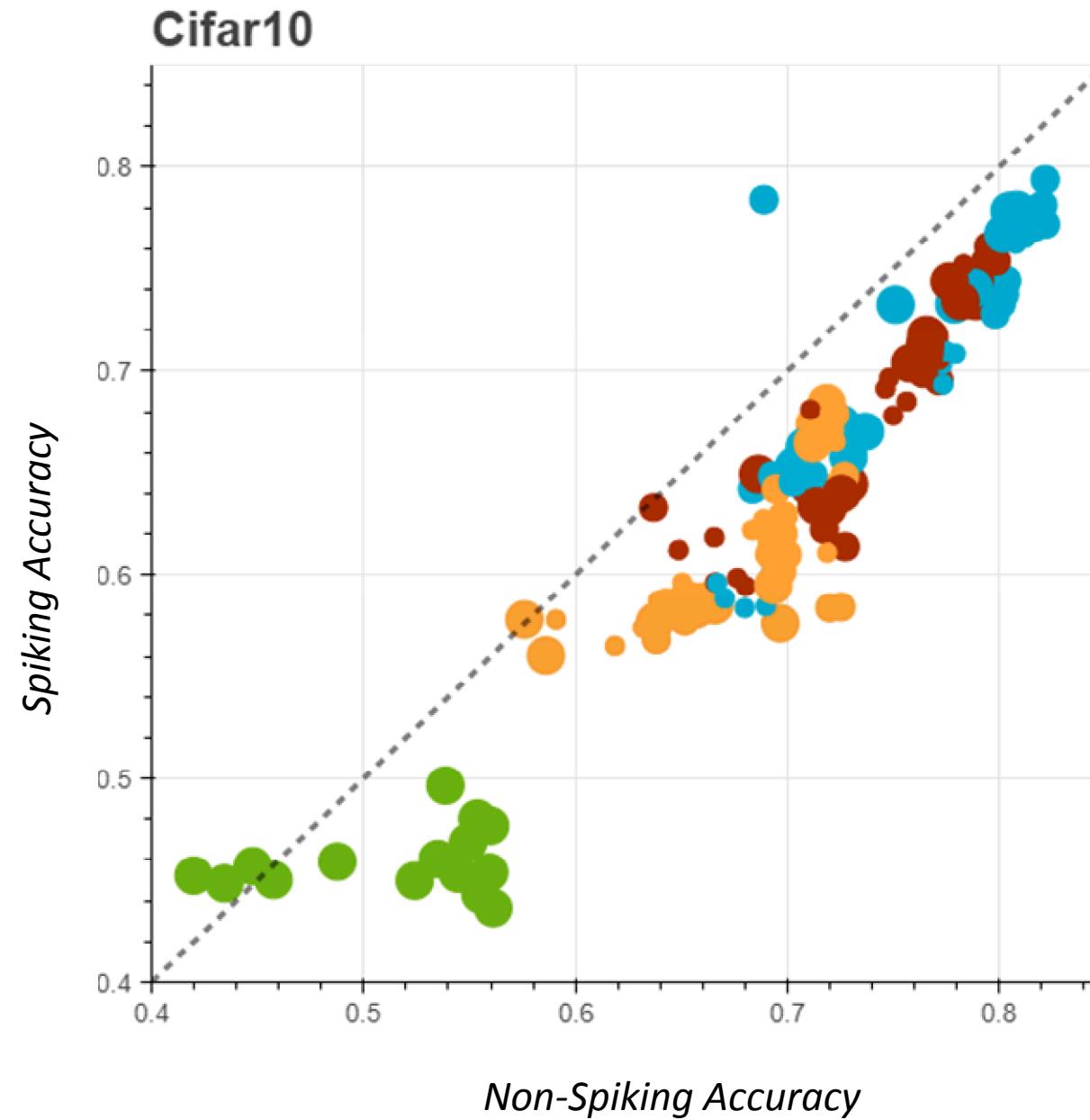
Spiking Accuracy



Preliminary Results



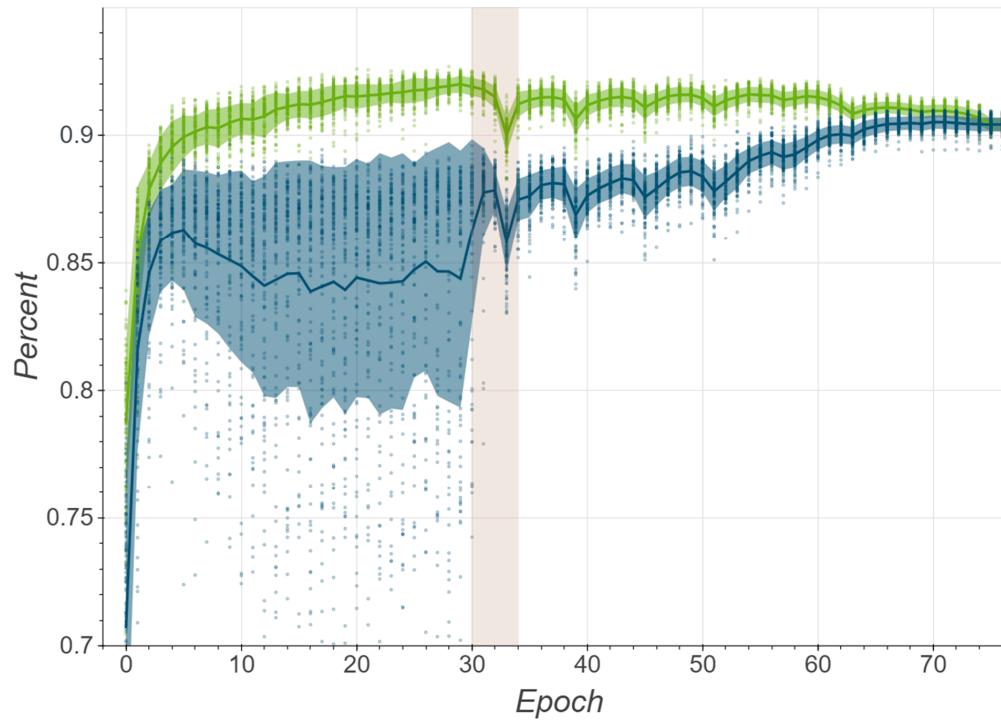
Preliminary Results



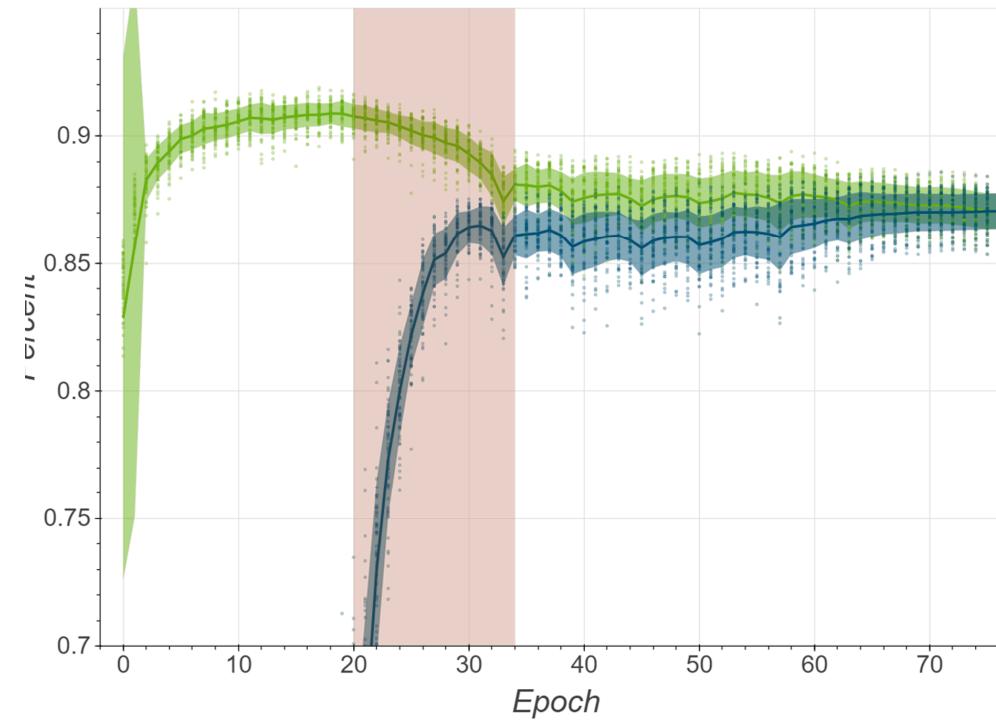
Established Deep Learning Techniques

- Batch Normalization helps training stability and network performance
- Improvements across network sizes
- Sharpening loss, particularly on first sharpening layer, is significantly less
- At inference time, bias (threshold) and weights are modulated according to stats collected during training

Fashion MNIST with Batch Normalization

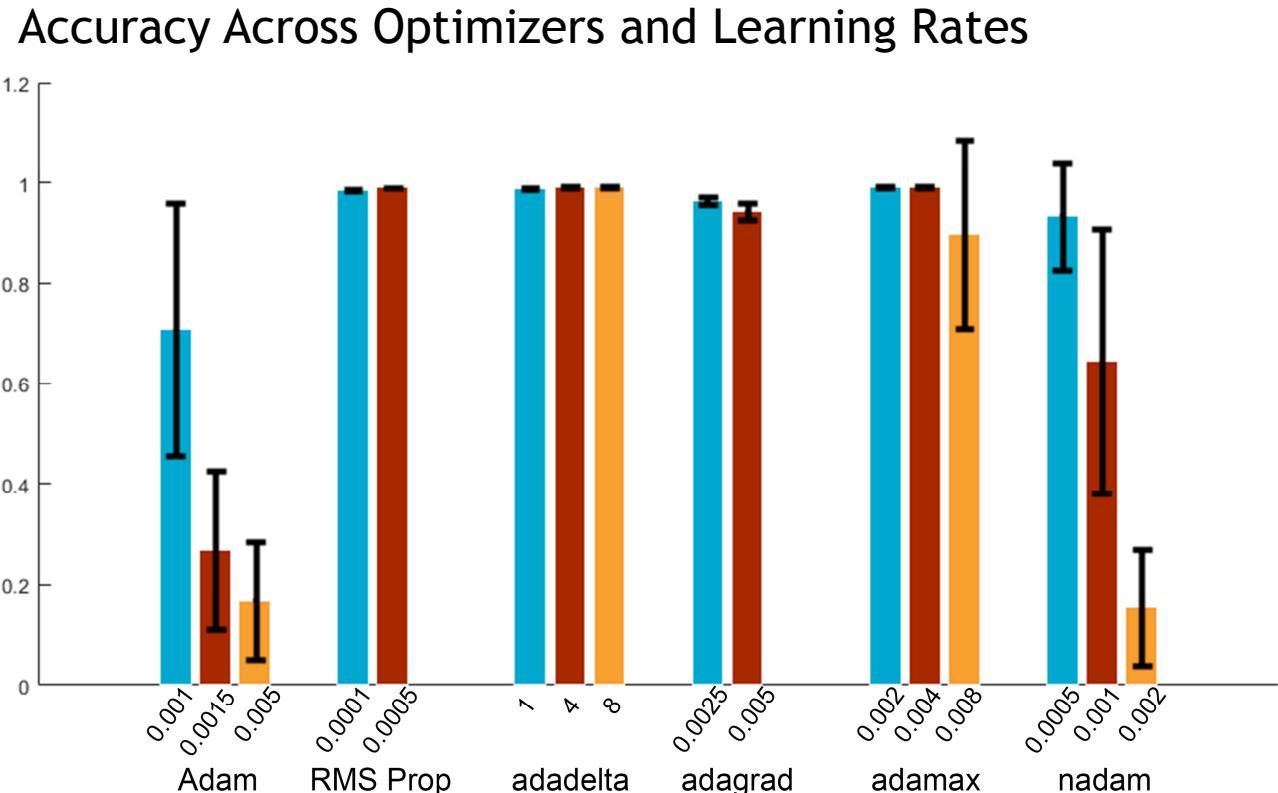


Fashion MNIST without Batch Normalization



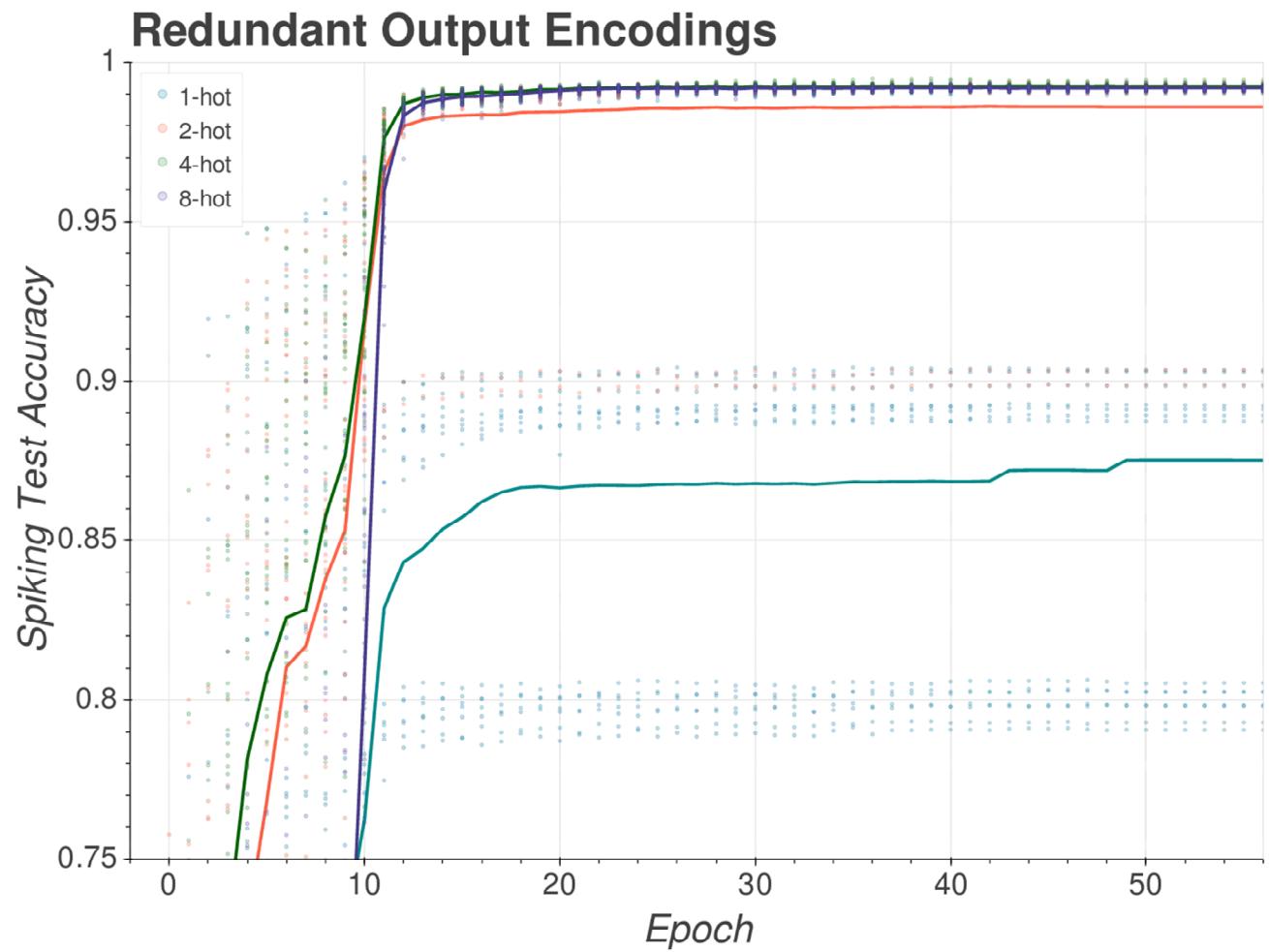
Established Deep Learning Techniques

- Sharpening process is sensitive to optimizer selection
- Adaptive optimizers often work better
- Learning rate modulation by moving average seems to help stability
- A custom Whetstone-aware optimizer is in early stages



Established Deep Learning Techniques

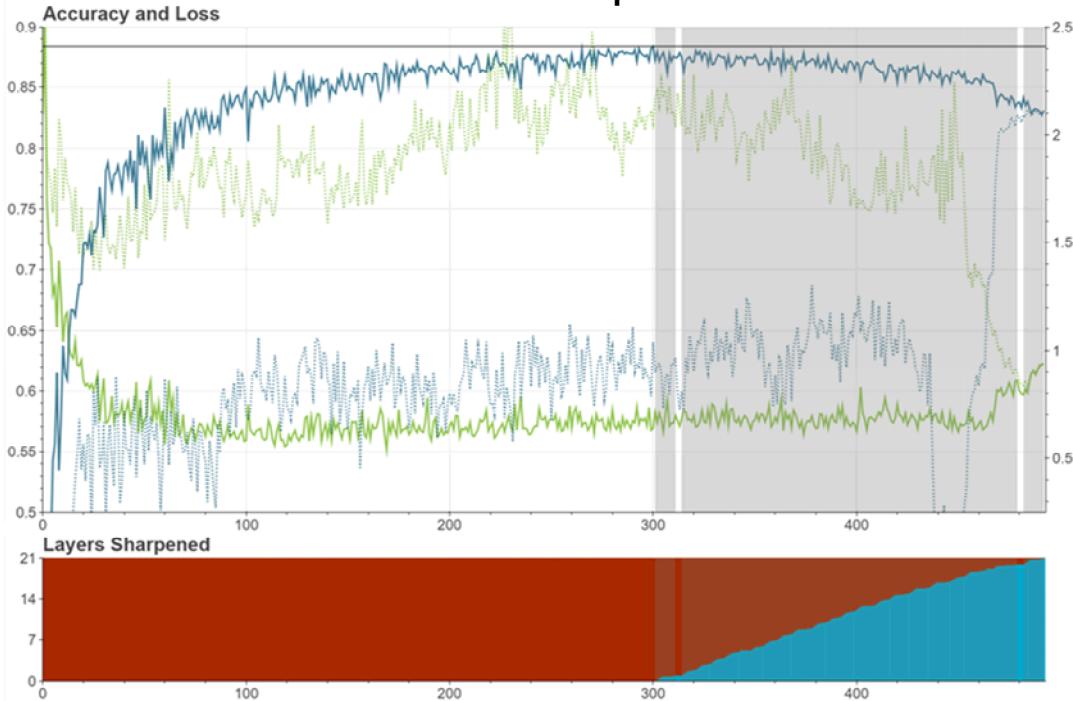
- The trained neurons can be unreliable
- Redundant output encodings help mitigate this problem
- Similar to ensemble methods
- Reactive neurons feed into softmax during training (for classification)
- During inference, ‘best-matched’ group is used
- On simple datasets, 4-way redundancy is sufficient



Effective Across Various Topologies, Datasets, and Tasks

Semantic Segmentation (Trained on COCO Dataset; Videos from HMDB51 Dataset)

Residual Networks with Skip Connections



Autoencoders

7	7	2	2	1	1	0	0	4	4	1	1	4	4	9	9	
5	5	9	9	0	0	6	6	9	9	0	0	1	1	5	5	
9	9	7	7	8	3	4	4	9	9	6	6	6	4	5	5	
4	4	0	0	7	7	4	4	0	0	1	1	3	3	1	1	
3	3	4	4	0	7	7	2	2	7	7	1	1	2	2	1	1
1	1	7	7	4	4	2	2	3	3	5	5	1	1	2	2	
4	4	4	4	6	6	3	3	5	5	5	5	6	6	0	0	
4	4	1	1	9	9	5	5	7	7	8	8	9	9	3	3	
7	7	4	3	6	0	4	4	3	3	0	0	7	7	0	0	
2	2	9	9	2	1	1	7	7	3	3	2	2	9	9	7	7
7	7	6	6	2	2	7	7	8	8	4	4	7	7	3	3	
6	6	1	1	3	3	6	6	9	9	3	3	1	1	4	4	
1	1	7	7	6	0	9	9	6	6	0	0	5	5	4	4	
9	9	9	9	2	2	1	1	9	9	4	4	8	8	7	7	
3	3	9	9	7	7	4	4	4	4	4	4	9	9	2	2	
5	5	4	4	7	7	6	6	7	7	9	9	0	0	5	5	

DQN

Enabling Wide and **Easy-to-Implement** Adoption

Neuromorphic hardware platforms are appealing for a wide variety of low-power, embedded applications

Sophistication and expertise required to make use of these platforms creates a high barrier of entry

Whetstone enables deep learning experts to easily incorporate spiking hardware architectures

Enabling Wide and **Easy-to-Implement** Adoption

Networks are portable and hardware-agnostic

Low barrier of entry; built on standard libraries (Keras, Tensorflow, CUDA, etc.)

No post-hoc analysis; no added time complexity

Only simple integrate-and-fire neurons are required

Compatible with standard techniques like dropout and batch normalization