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Whetstone Overview

Whetstone provides a drop-in mechanism for tailoring a
DNN to a spiking hardware platform (or other binary
threshold activation platforms)

 Hardware platform agnostic

e Compatible with a wide variety of DNN topologies

* No added time or complexity cost at inference
 Simple neuron requirements: Integrate and fire
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Whetstone Overview

The real challenge for deep learning on spiking is the
threshold activation function. ‘

Using Whetstone, activation functions converge to a
threshold activation during training.
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Whetstone Overview

» Generally, gradient descent generates a sequence of weights
A; with the goal of

minimizing the error of f(A4;x) in predicting the ground truth y.

« We generalize this by replacing the activation function f
with a sequence f such that f;, -, f, where f is now the

threshold activation function.

* Now, the optimizer must

minimize the error of f,(4;x) in predicting v.

 Since the convergence in neither i nor k is uniform, this is a

mathematically dangerous idea
 However, with a little care and a few tricks, the method

reliably converges in many cases.



Whetstone Overview

When/Where do we decide to ‘sharpen’ the activations?

1) Bottom-up Sharpening (The ‘toothpaste tube’
method)

« Begin sharpening at the bottom layer
« Wait until previous layer is fully sharpened
* Increases stability of convergence
2) Adaptive Sharpening Callback
« Hand-tuning sharpening rates is hard nodel. add (Dense(256))

* Instead, use loss as a guide for an adaptive model.add(Spiking_BRelu())
model.add(Dense(10))
sharpener

model.add(Spiking Brelu())
+ Adaptive sharpener implemented as a HOCE O (ST ER e G
callback automatically adjusts sharpening
based on loss thresholds

model.add(Dense(256)) ‘
model.add(Activation(‘relu’))
model.add(Dense(10))
model.add(Activation( ‘softmax’))

model.fit(x,y)

Original Model Example

sharpener = AdaptiveSharpener()
model.fit(x,y,callbacks=[sharpener])

Modified Model Example



Preliminary Results
MNIST
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Preliminary Results

Fashion MNIST
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Preliminary Results
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Established

« Batch Normalization helps training stability and network performance
« Improvements across network sizes
« Sharpnening loss, particularly on first sharpening layer, is significantly less

« At inference time, bias (threshold) and weights are modulated according to stats
collected during training

Fashion MNIST with Batch Normalization Fashion MNIST without Batch Normalization
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Established

« Sharpening process is sensitive to
optimizer selection

« Adaptive optimizers often work
better

* Learning rate modulation by
moving average seems to help
stability

* A custom Whetstone-aware

optimizer is in early stages

Accuracy Across Optimizers and Learning Rates
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Established

« The trained neurons can be unreliable

* Redundant output encodings help
mitigate this problem

« Similar to ensemble methods

» Reactive neurons feed into softmax
during training (for classification)

» During inference, ‘best-matched’ group
is used

* On simple datasets, 4-way redundancy

is sufficient
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| Effective Across Various Topologies, Datasets, and Tasks

Semantic Segmentation (Trained on COCO Dataset; Videos from HMDB51 Dataset)

Autoencoders
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Enabling Wide and Easy-to-Implement Adoption

Neuromorphic hardware platforms are appealing for a wide ‘
variety of low-power, embedded applications |

Sophistication and expertise required to make use of these
platforms creates a high barrier of entry

Whetstone enables deep learning experts to easily incorporate |
spiking hardware architectures



Enabling Wide and Easy-to-Implement Adoption

Networks are portable and hardware-agnostic ‘
Low barrier of entry; built on standard libraries (Keras, Tensorflow, CUDA, etc.)
No post-hoc analysis; no added time complexity
Only simple integrate-and-fire neurons are required

Compatible with standard techniques like dropout and batch normalization



