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Whetstone Overview

Whetstone provides a drop-in mechanism for tailoring a 
DNN to a spiking hardware platform (or other binary 
threshold activation platforms)
• Hardware platform agnostic
• Compatible with a wide variety of DNN topologies
• No added time or complexity cost at inference
• Simple neuron requirements: Integrate and fire
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Whetstone Overview

The real challenge for deep learning on spiking is the 
threshold activation function.

Using Whetstone, activation functions converge to a 
threshold activation during training.

Non-Spiking Loss Spiking Loss

In
it

ia
l 
A

ct
iv

a
ti

o
n

F
in

a
l 
A

ct
iv

a
ti

o
n

Non-Spiking Acc Spiking Acc

Layers
Convolution Dense

1

0.8

0.6

0.4

0.2

0

0.8

0.6

0.4

0.2

-0.5 0 0.5 1 1 5

0

-0.5 0 0.5 1 1.5



Whetstone Overview

• Generally, gradient descent generates a sequence of weights 

�� with the goal of

minimizing the error of �(���) in predicting the ground truth �.

• We generalize this by replacing the activation function �

with a sequence �� such that �� →��
�, where � is now the 

threshold activation function.

• Now, the optimizer must 

minimize the error of �� ��� in predicting y.

• Since the convergence in neither � nor � is uniform, this is a 

mathematically dangerous idea

• However, with a little care and a few tricks, the method 

reliably converges in many cases.
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Whetstone Overview

When/Where do we decide to ‘sharpen’ the activations?
1) Bottom-up Sharpening (The ‘toothpaste tube’ 

method)

• Begin sharpening at the bottom layer

• Wait until previous layer is fully sharpened

• Increases stability of convergence

2) Adaptive Sharpening Callback

• Hand-tuning sharpening rates is hard

• Instead, use loss as a guide for an adaptive 
sharpener

• Adaptive sharpener implemented as a 
callback automatically adjusts sharpening 
based on loss thresholds

⋮
model.add(Dense(256))
model.add(Activation(‘relu’))
model.add(Dense(10))
model.add(Activation(‘softmax’))
⋮
model.fit(x,y)
⋮

⋮
model.add(Dense(256))
model.add(Spiking_BRelu())
model.add(Dense(10))
model.add(Spiking_Brelu())
Model.add(Softmax_Decode(key))
⋮
sharpener = AdaptiveSharpener()
model.fit(x,y,callbacks=[sharpener])
⋮
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Preliminary Results

Filter Size
7x7  5x5 3x3

Network Topologies
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Filter Size
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Established Deep Learning Techniques

• Batch Normalization helps training stability and network performance
• Improvements across network sizes
• Sharpnening loss, particularly on first sharpening layer, is significantly less
• At inference time, bias (threshold) and weights are modulated according to stats 

collected during training

Fashion MNIST with Batch Normalization
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Established Deep Learning Techniques

• Sharpening process is sensitive to 

optimizer selection

• Adaptive optimizers often work 

better

• Learning rate modulation by 

moving average seems to help 

stability

• A custom Whetstone-aware 

optimizer is in early stages
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Established Deep Learning Techniques

• The trained neurons can be unreliable

• Redundant output encodings help 

mitigate this problem

• Similar to ensemble methods

• Reactive neurons feed into softmax

during training (for classification)

• During inference, ‘best-matched’ group 

is used

• On simple datasets, 4-way redundancy 

is sufficient
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Effective Across Various Topologies, Datasets, and Tasks

Semantic Segmentation (Trained on COCO Dataset; Videos from HMDB51 Dataset) 

Residual Networks with Skip Connections Autoencoders DQN
Accuracy and Loss
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Enabling Wide and Easy-to-Implement Adoption

Neuromorphic hardware platforms are appealing for a wide 
variety of low-power, embedded applications

Sophistication and expertise required to make use of these 
platforms creates a high barrier of entry

Whetstone enables deep learning experts to easily incorporate 
spiking hardware architectures
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Enabling Wide and Easy-to-Implement Adoption

Networks are portable and hardware-agnostic

Low barrier of entry; built on standard libraries (Keras, Tensorflow, CUDA, etc.)

No post-hoc analysis; no added time complexity

Only simple integrate-and-fire neurons are required

Compatible with standard techniques like dropout and batch normalization

I


