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Overview

 Motivation & Objectives

 Common Models
 Classical, “AT-2”

 Threshold, “AT-1”

 Capabilities
 Implicit & explicit & mixed integration

 Challenges, overcoming them

 Addressing Plasticity
 Moving to cohesive model

 Future directions
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Overview

 Motivation:
 Need to model fracture in many industries:

 Aerospace/naval/defense

 Manufacturing

 Automobile

 Wind energy systems

 Batteries / energy storage

 Biological materials

 Most emphasis has been in brittle fracture, many relevant materials are ductile

 SIERRA users overwhelmingly use explicit time integration for dynamic simulations

 Objectives:
 Implement phase field model in SIERRA (fully 3-D, parallel, HPC-ready, multi-physics)

 High model credibility from verification & validation

 Computationally efficient

 Capable with implicit and explicit time integration
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Common Models

 Phase Field Fracture Concept:

Ψ = ∫ � �Ω
�

= ∫ ��� �� + ��� �� �Ω
�

+ ∫ ���Γ
�

∫ � � ��� �� + ℎ � ��� �� + � �, ∇�, � �� �Ω
�

 Fracture energy: volumetric expression replaces surface energy functional

 Γ-convergent: expressions equivalent in limit � → 0�

 Classical, AT-2

� = c� ∗ ��� �� + ��� �� +
��

4�
1 − � � + 4�� ∇� �

 Drawbacks:

 Damage everywhere

 Damage irreversibility not intrinsic to mathematical formulation

 Threshold, AT-1

� = c� ∗ ��� �� + ��� �� + 2����� 1 − � + �� ∇� �

 Damage only grows after critical energy condition reached, only in neighborhood of cracks

 Drawbacks:

 Damage irreversibility not intrinsic to mathematical formulation
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Capabilities

 Classical (AT-2) & Threshold (AT-1) models implemented in common 
framework:
 Euler-Lagrange equations derived by variational derivative of energy functional

 Phase-field solve accomplished using a linear reaction-diffusion solver
 General form: �� − �Δ� = �
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Capabilities

 Implicit Mechanics / Implicit Phase-Field

 Explicit Mechanics / Implicit Phase-Field

 Explicit Mechanics / Explicit Phase-Field

 All are fully-3D & fully-parallelized / HPC ready

 All are staggered solve:
 Mechanical update then phase-field update each step

 Option to update phase field less often:

 every “X” timesteps (especially for Explicit/Implicit)

 Explicit/Implicit Timing:
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Capabilities

 Minimum qualification…. we can solve the mode-I fracture problem!
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Capabilities – Implicit/Implicit

 Verification test: toughness
 Geometry: compact tension specimen (ASTM E1820)

 Prescribe fracture toughness �� in material model

 Observe peak force at crack initiation

 Calculate ideal peak force from toughness & geometry
using ASTM relation A2.2

 Compare results

 Model results approximate the expected value
 Possible explanations for discrepancy:

 Finite/coarse mesh density

 Finite length scale (convergent as � → 0�)

 Temporal sensitivity… wait 4 minutes!
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Capabilities – Explicit/Implicit

 Explicit Mechanics / Implicit Phase-Field solve is costly
 Option to update phase field less often

 Every “X” timesteps

 A quick test on a dynamic problem
 ASTM E1820 compact tension specimen

 6061-T6 Aluminum

 Quick loading: 1 in/s for 60ms

 Very similar force/displacement & fracture energy responses

 Great simulation time savings realized

 Still to do…. testing on a less-dynamic problem 9
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Capabilities – Explicit/Explicit

 Addition of non-conservative viscosity term in Euler-Lagrange equation:

 Viscous Dissipation: � =
�

�
��̇�

 Euler-Lagrange: ∇ ⋅
��

�∇�
−

��

��
= −

��

��̇

 Phase-Field update: ��̇ = �
2��� −

��

��
1 − � − 2���Δ�

2��� − 2����� − 4�������Δ�
& ċ ≥ 0

 Damage irreversibility not intrinsic to mathematical formulation, artificial dissipation

 Stability:
 Parabolic systems inherently transmit information instantaneously

 Limit timestep to keep crack/damage propagation speed at/under elastic wave speed, ��

 Strategy: choose smallest phase viscosity � such that Δ� � ≤ Δ� ��

�

Δ� ��
≥

2���

Δ� �
,
4�������

Δ� �
→ Δ� �� ≤

� Δ� �
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,
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� ≥ �� =
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Capabilities – Explicit/Explicit

 New capability….

 A quick test on a dynamic problem
 ASTM E1820 compact tension specimen

 6061-T6 Aluminum

 Quick loading: 1 in/s for 60ms

 Similar force/displacement response

 Drawback of viscosity model: sensitivity (excess dissipation)

 Still need to do…
 Timing study to quantify efficiency gains

 A less-dynamic problem to verify toughness returned 11
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Overcoming Challenges

 Stability (Explicit/Explicit):
 For stability, need to maintain Δ� � ≤ Δ� ��

 When mechanical timestep grows… trouble for phase field

 Solutions:

 Increase viscosity parameter � from the beginning

– Increases artificial dissipation…

 Adaptively set � based on mechanical timestep

 Sub-zero coherence (Explicit/Explicit):
 Possible for � < 0 due to explicit integration

 Solutions:

 Bound � at quadrature points or nodes

 Lagrange multiplier constraint
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Overcoming Challenges

 Temporal sensitivity (Implicit/Implicit):
 Artifact of staggered solve

 Example from “local” (no gradient term) phase field solve

 Solutions:

 Monolithic solve

 Iteration within staggered solve
13
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Addressing Plasticity

 Material scale continuum…
two perspectives of plasticity in traditional approaches:

 Length scale interpretation:

 Phase-field models Γ-convergent to Griffith fracture as � → 0�

 If length scale too small, plasticity dominates fracture process

 If length scale too large, plasticity enveloped by fracture regularization

 Numerical regularization length scale �� incompatible with physical length scale ��

 Stress interpretation:

 Regularization length scale � associated with a critical stress ��(�)

 Phase-field models Γ-convergent to Griffith fracture as � → 0�

 Associated critical stress grows correspondingly: �� → ∞

 Numerical critical stress �� incompatible with physical yield stress ��

 Motivation to move toward cohesive/Lorentz-type model 14
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Future Directions

 Explicit/Explicit:
 Timing study to demonstrate efficiency improvement

 Toughness verification with “Pacman” geometry & K-field solution to eliminate dynamic 
effects

 Capability:
 Integrate with rate-dependent material models

 Integrate with XFEM

 Quality:
 Iteration within staggered implicit solve

 Implement cohesive/Lorentz-type model and non-linear update PDE solve

 More intelligently address damage irreversibility & sub-zero coherence

 Perhaps with Lagrange multipliers

 Efficiency:
 Integrate with adaptive mesh refinement/coarsening for greater efficiency

 Acknowledgement: John Dolbow & Rudy Geelen (Duke University)
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Thank you!
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