

Ductile Fracture Representation Using the Phase-Field Model in SIERRA

A. Stershic, B. Talamini, J. Ostien, M. Tupek, M. Merewether

Sandia National Laboratories / California

WCCM13; Manhattan, NY; July 22-27, 2018

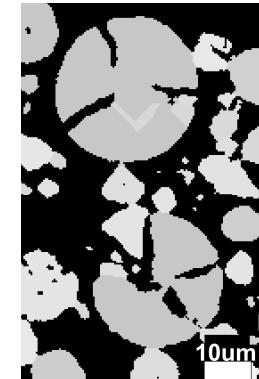
Overview

- Motivation & Objectives
- Common Models
 - Classical, “AT-2”
 - Threshold, “AT-1”
- Capabilities
 - Implicit & explicit & mixed integration
- Challenges, overcoming them
- Addressing Plasticity
 - Moving to cohesive model
- Future directions

Overview

- Motivation:
 - Need to model fracture in many industries:
 - Aerospace/naval/defense
 - Manufacturing
 - Automobile
 - Wind energy systems
 - Batteries / energy storage
 - Biological materials
 - Most emphasis has been in brittle fracture, many relevant materials are ductile
 - SIERRA users overwhelmingly use explicit time integration for dynamic simulations

- Objectives:
 - Implement phase field model in SIERRA (fully 3-D, parallel, HPC-ready, multi-physics)
 - High model credibility from verification & validation
 - Computationally efficient
 - Capable with implicit and explicit time integration



Cathode Particle
Fracture

Common Models

- Phase Field Fracture Concept:

$$\begin{aligned}\Psi &= \int_{\Omega} \psi \, d\Omega = \int_{\Omega} \tilde{\psi}^e(\varepsilon^e) + \tilde{\psi}^p(\varepsilon^p) \, d\Omega + \int_{\Gamma} G_c \, d\Gamma \\ &\rightarrow \int_{\Omega} \mathbf{g}(c) \tilde{\psi}^e(\varepsilon^e) + \mathbf{h}(c) \tilde{\psi}^p(\varepsilon^p) + \mathbf{f}(c, \nabla c, l) G_c \, d\Omega\end{aligned}$$

- Fracture energy: volumetric expression replaces surface energy functional
- Γ -convergent: expressions equivalent in limit $l \rightarrow 0^+$

- Classical, AT-2

$$\psi = c^2 * \left(\tilde{\psi}^e(\varepsilon^e) + \tilde{\psi}^p(\varepsilon^p) \right) + \frac{G_c}{4l} \left((1 - c)^2 + 4l^2 |\nabla c|^2 \right)$$

- Drawbacks:
 - Damage everywhere
 - Damage irreversibility not intrinsic to mathematical formulation

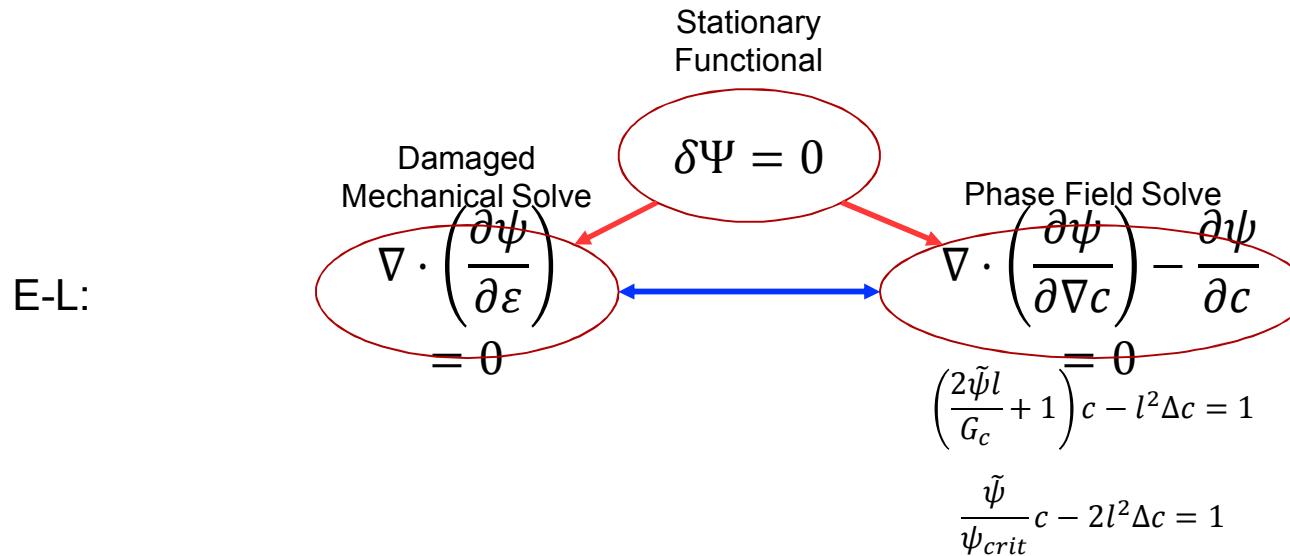
- Threshold, AT-1

$$\psi = c^2 * \left(\tilde{\psi}^e(\varepsilon^e) + \tilde{\psi}^p(\varepsilon^p) \right) + 2\psi_{crit} \left((1 - c) + l^2 |\nabla c|^2 \right)$$

- Damage only grows after critical energy condition reached, only in neighborhood of cracks
- Drawbacks:
 - Damage irreversibility not intrinsic to mathematical formulation

Capabilities

- Classical (AT-2) & Threshold (AT-1) models implemented in common framework:
 - Euler-Lagrange equations derived by variational derivative of energy functional

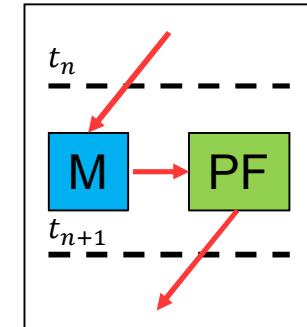


- Phase-field solve accomplished using a linear reaction-diffusion solver
 - General form:

$$Rc - D\Delta c = S$$

Capabilities

- Implicit Mechanics / Implicit Phase-Field
- Explicit Mechanics / Implicit Phase-Field
- Explicit Mechanics / Explicit Phase-Field
- All are fully-3D & fully-parallelized / HPC ready
- All are staggered solve:
 - Mechanical update then phase-field update each step
 - Option to update phase field less often:
 - every “X” timesteps (especially for Explicit/Implicit)



Staggering
Scheme

- Explicit/Implicit Timing:

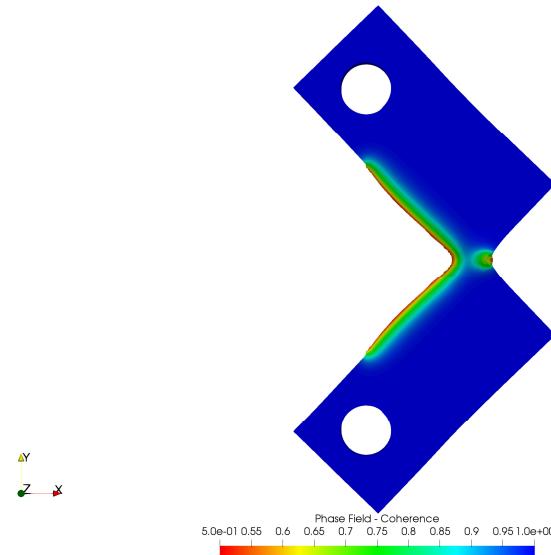
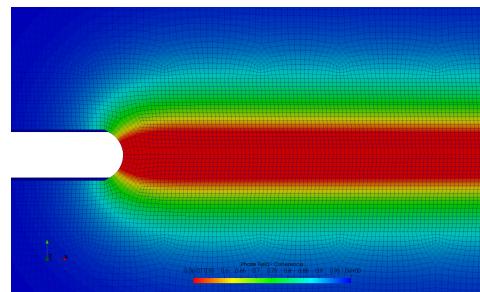
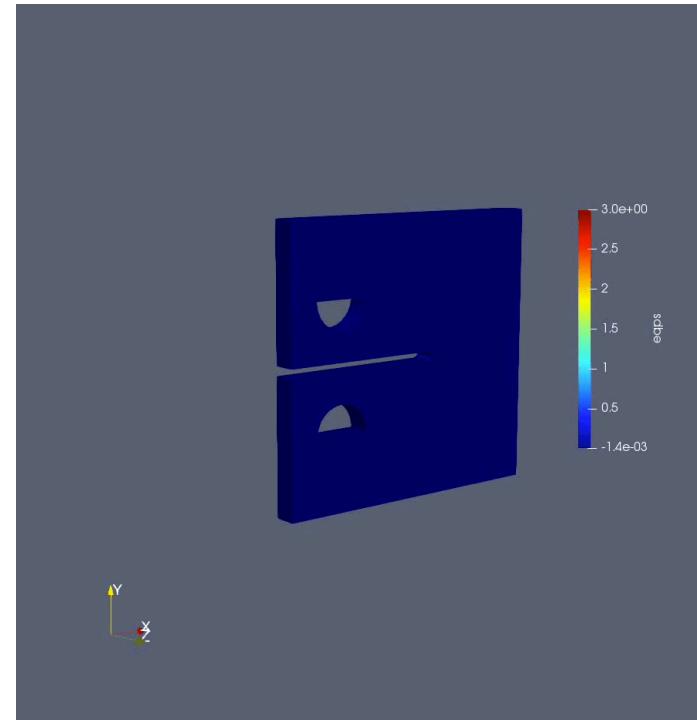
No Phase-Field Solve: Mechanical only	“Local” Phase- Field Solve: $D = 0 \rightarrow c = S/R$	Full Phase-Field Implicit Solve $Rc - D\Delta c = S$
---	---	--

Mesh	Δt (s)	FeFp cpu*time	PFFeFp-L cpu*time	PFFeFp-NL cpu*time
$\tilde{h} = 1$	1.75e-5	9m2s	13m5s	27m23s
$\tilde{h} = 1/2$	9.06e-6	5h9m	7h16m	11h39m
$\tilde{h} = 1/4$	4.57e-6	53h41m	79h20m	155h18m

Explicit/Implicit expensive!
motivation for explicit/explicit
model

Capabilities

- Minimum qualification.... we can solve the mode-I fracture problem!

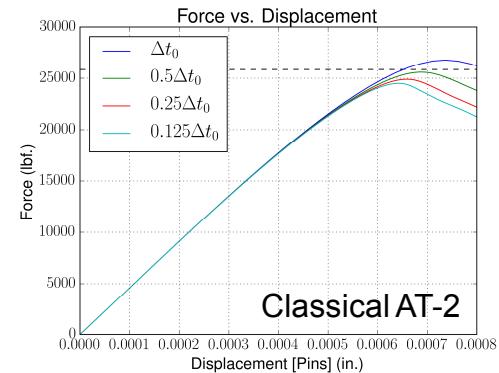
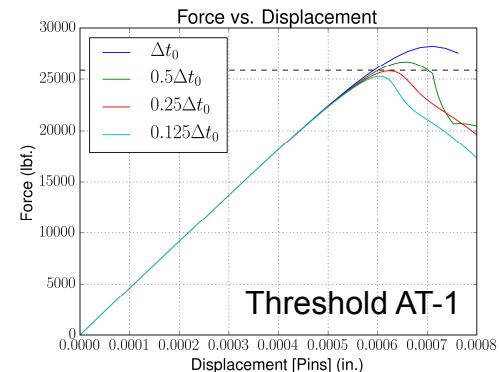


Visual threshold at $c = 0.5$

Undeformed View (No visual threshold, zoomed):

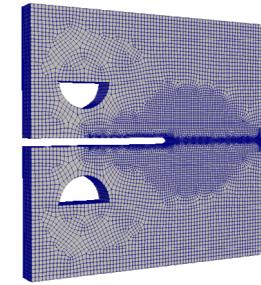
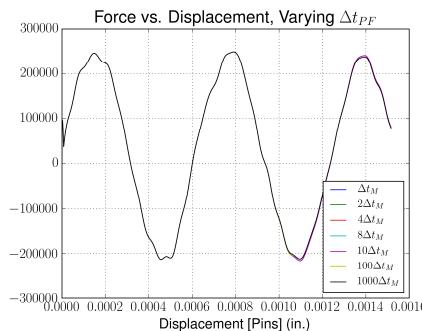
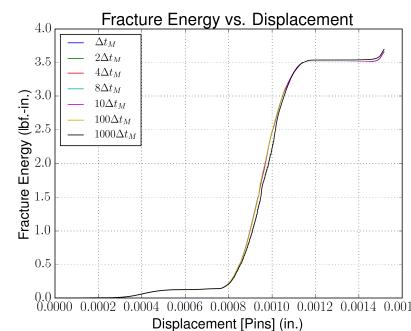
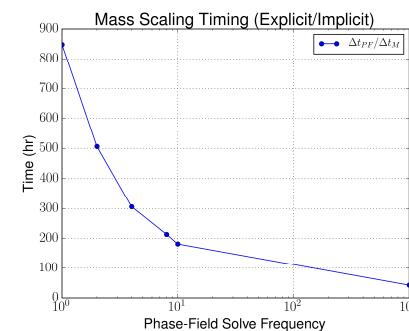
Capabilities – Implicit/Implicit

- Verification test: toughness
 - Geometry: compact tension specimen (ASTM E1820)
 - Prescribe fracture toughness G_c in material model
 - Observe peak force at crack initiation
 - Calculate ideal peak force from toughness & geometry using ASTM relation A2.2
 - Compare results
- Model results approximate the expected value
 - Possible explanations for discrepancy:
 - Finite/coarse mesh density
 - Finite length scale (convergent as $l \rightarrow 0^+$)
- Temporal sensitivity... wait 4 minutes!



Capabilities – Explicit/Implicit

- Explicit Mechanics / Implicit Phase-Field solve is costly
 - Option to update phase field less often
 - Every “X” timesteps
- A quick test on a dynamic problem
 - ASTM E1820 compact tension specimen
 - 6061-T6 Aluminum
 - Quick loading: 1 in/s for 60ms



- Very similar force/displacement & fracture energy responses
- Great simulation time savings realized
- Still to do.... testing on a less-dynamic problem

Capabilities – Explicit/Explicit

- Addition of non-conservative viscosity term in Euler-Lagrange equation:
 - Viscous Dissipation: $V = \frac{1}{2} \eta \dot{c}^2$
 - Euler-Lagrange: $\nabla \cdot \left(\frac{\partial \psi}{\partial \nabla c} \right) - \frac{\partial \psi}{\partial c} = - \frac{\partial V}{\partial \dot{c}}$
 - Phase-Field update: $\eta \dot{c} = \begin{cases} 2\tilde{\psi}c - \frac{G_c}{2l}(1-c) - 2G_c l \Delta c & \text{if } \dot{c} \geq 0 \\ 2\tilde{\psi}c - 2\psi_{crit} - 4\psi_{crit} l^2 \Delta c & \text{if } \dot{c} < 0 \end{cases}$
 - Damage irreversibility not intrinsic to mathematical formulation, artificial dissipation
- Stability:
 - Parabolic systems inherently transmit information instantaneously
 - Limit timestep to keep crack/damage propagation speed at/under elastic wave speed, v_c
 - Strategy: choose smallest phase viscosity η such that $(\Delta t)_M \leq (\Delta t)_{PF}$

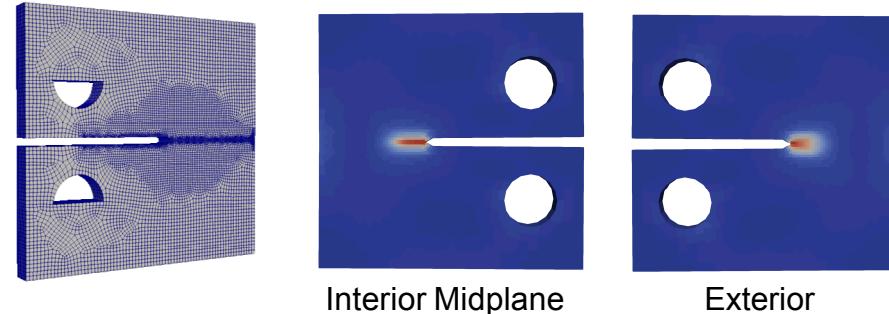
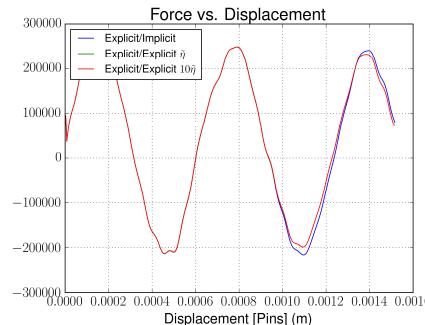
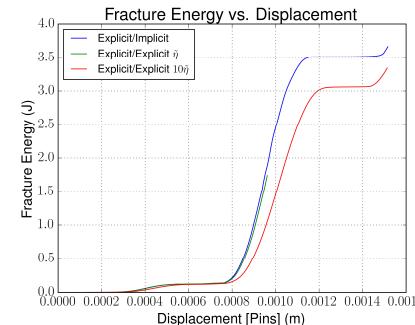
$$\frac{\eta}{(\Delta t)_{PF}} \geq \left\{ \frac{2G_c l}{(\Delta x)^2}, \frac{4\psi_{crit} l^2}{(\Delta x)^2} \right\} \rightarrow (\Delta t)_{PF} \leq \left\{ \frac{\eta(\Delta x)^2}{2G_c l}, \frac{\eta(\Delta x)^2}{4\psi_{crit} l^2} \right\}, (\Delta t)_M \leq \frac{\Delta x}{v_c}$$

$$\eta \geq \tilde{\eta} = \left\{ \frac{2G_c l}{\Delta x v_c}, \frac{4\psi_{crit} l^2}{\Delta x v_c} \right\}$$

Reference: Tupek, MR. "Cohesive phase-field fracture and a PDE constrained optimization approach to fracture inverse problems". SAND2016-9510. 2016.

Capabilities – Explicit/Explicit

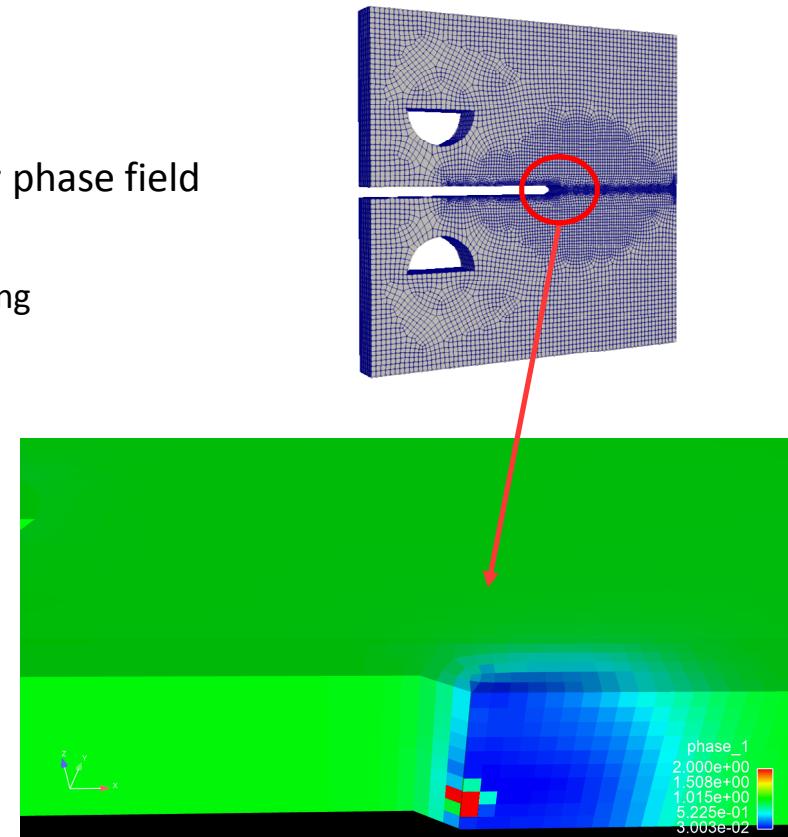
- New capability....
- A quick test on a dynamic problem
 - ASTM E1820 compact tension specimen
 - 6061-T6 Aluminum
 - Quick loading: 1 in/s for 60ms
- Similar force/displacement response
- Drawback of viscosity model: sensitivity (excess dissipation)



- Still need to do...
 - Timing study to quantify efficiency gains
 - A less-dynamic problem to verify toughness returned

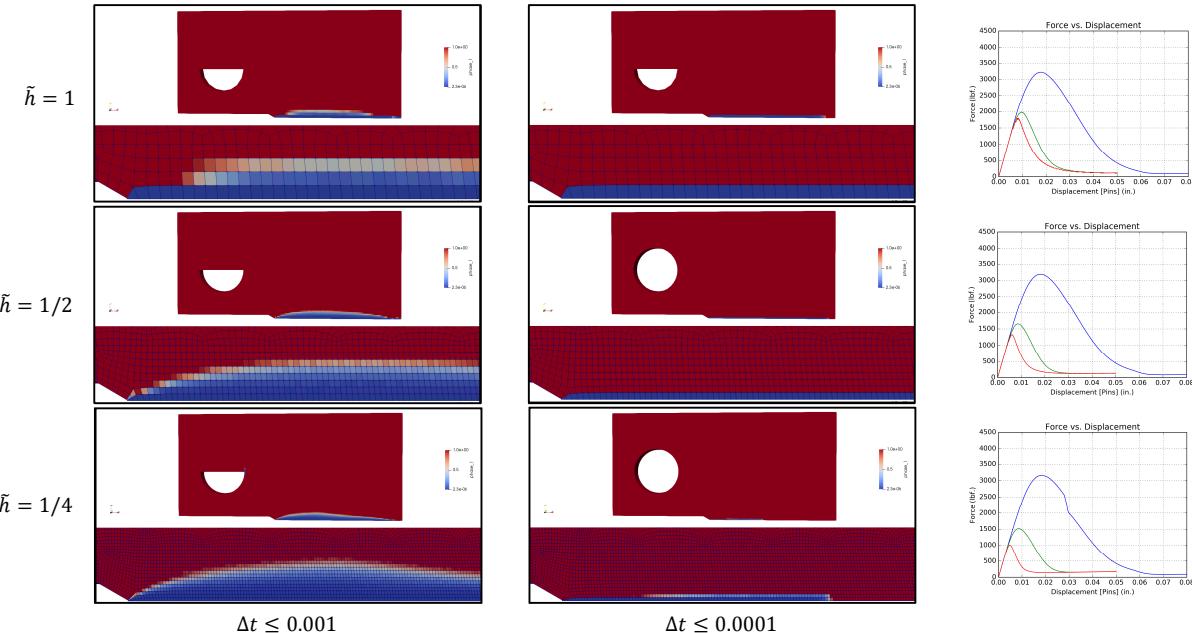
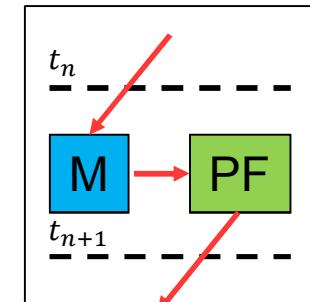
Overcoming Challenges

- Stability (Explicit/Explicit):
 - For stability, need to maintain $(\Delta t)_M \leq (\Delta t)_{PF}$
 - When mechanical timestep grows... trouble for phase field
 - Solutions:
 - Increase viscosity parameter η from the beginning
 - Increases artificial dissipation...
 - Adaptively set η based on mechanical timestep
- Sub-zero coherence (Explicit/Explicit):
 - Possible for $c < 0$ due to explicit integration
 - Solutions:
 - Bound c at quadrature points or nodes
 - Lagrange multiplier constraint

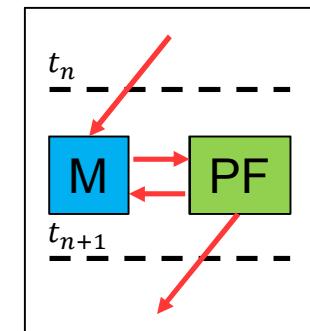


Overcoming Challenges

- Temporal sensitivity (Implicit/Implicit):
 - Artifact of staggered solve
 - Example from “local” (no gradient term) phase field solve



Current

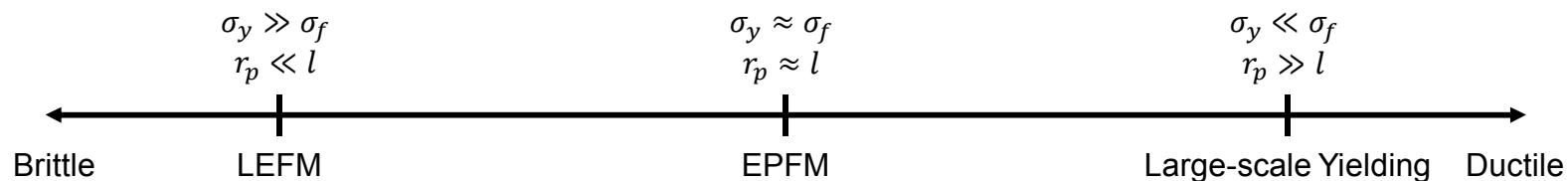


Proposed

- Solutions:
 - Monolithic solve
 - Iteration within staggered solve

Addressing Plasticity

- Material scale continuum...
 - two perspectives of plasticity in traditional approaches:
 - Length scale interpretation:
 - Phase-field models Γ -convergent to Griffith fracture as $l \rightarrow 0^+$
 - If length scale too small, plasticity dominates fracture process
 - If length scale too large, plasticity enveloped by fracture regularization
 - Numerical regularization length scale l_f incompatible with physical length scale r_p



- Stress interpretation:
 - Regularization length scale l associated with a critical stress $\sigma_f(l)$
 - Phase-field models Γ -convergent to Griffith fracture as $l \rightarrow 0^+$
 - Associated critical stress grows correspondingly: $\sigma_f \rightarrow \infty$
 - Numerical critical stress σ_f incompatible with physical yield stress σ_y
- Motivation to move toward cohesive/Lorentz-type model

Future Directions

- Explicit/Explicit:
 - Timing study to demonstrate efficiency improvement
 - Toughness verification with “Pacman” geometry & K-field solution to eliminate dynamic effects
- Capability:
 - Integrate with rate-dependent material models
 - Integrate with XFEM
- Quality:
 - Iteration within staggered implicit solve
 - Implement cohesive/Lorentz-type model and non-linear update PDE solve
 - More intelligently address damage irreversibility & sub-zero coherence
 - Perhaps with Lagrange multipliers
- Efficiency:
 - Integrate with adaptive mesh refinement/coarsening for greater efficiency
- Acknowledgement: John Dolbow & Rudy Geelen (Duke University)

Thank you!

Thanks to conference & minisymposia organizers!

Sandia National Laboratories,
Livermore, CA