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Overview ) 2=

=  Motivation:

= Need to model fracture in many industries:
= Aerospace/naval/defense
= Manufacturing

= Automobile

 § : .
Cathode Particle
Fracture

= Wind energy systems
= Batteries / energy storage
= Biological materials

= Most emphasis has been in brittle fracture, many relevant materials are ductile
= SIERRA users overwhelmingly use explicit time integration for dynamic simulations

= Objectives:
= Implement phase field model in SIERRA (fully 3-D, parallel, HPC-ready, multi-physics)
= High model credibility from verification & validation
= Computationally efficient
= Capable with implicit and explicit time integration



Common Models ) 2=

= Phase Field Fracture Concept:
Y = fﬂz,b dQ = fﬂtﬁe(ee) + PP (eP)dQ + fr G.dr
> [, 9()Pe(e®) + ()PP (eP) + f(c, Ve, )G dQ
= Fracture energy: volumetric expression replaces surface energy functional
= [-convergent: expressions equivalent in limit { - 0%

= (Classical, AT-2
~ ~ G
P =c? (z,be(ee) + lpp(ep)) + 4—;((1 — )2 + 412|Vc|?)
= Drawbacks:

= Damage everywhere
= Damage irreversibility not intrinsic to mathematical formulation

= Threshold, AT-1
P =2« ($°(e°) + PP (")) + 29 (1 — ©) + 12|V ]?)
= Damage only grows after critical energy condition reached, only in neighborhood of cracks

= Drawbacks:
= Damage irreversibility not intrinsic to mathematical formulation
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Capabilities L

= C(Classical (AT-2) & Threshold (AT-1) models implemented in common
framework:
= Euler-Lagrange equations derived by variational derivative of energy functional
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= Phase-field solve accomplished using a linear reaction-diffusion solver
= General form: Rc —DAc =S




Capabilities ) .

= |mplicit Mechanics / Implicit Phase-Field

= Explicit Mechanics / Implicit Phase-Field

= Explicit Mechanics / Explicit Phase-Field

= All are fully-3D & fully-parallelized / HPC ready Staggering

Scheme
= All are staggered solve:

= Mechanical update then phase-field update each step

= Option to update phase field less often:
= every “X” timesteps (especially for Explicit/Implicit)

“Local” Phase-

No Phase-_FieId Field Solve: Full P.hgse-FieId
= Explicit/Implicit Timing: Mochanioal oty £=S/m mplicit Salve
FeFp PFFeFp-L | PFFeFp-NL
At (s) cpu*time | cpu*time cpu*time
-1 1.75e-5 9Im2s 13m5s 27m23s Explicit/Implicit expensive!
motivation for explicit/explicit
=1/2 9.06e-6 5h9m 7h16m 11h39m model
ii =1/4 4.57e-6 53h41m 79h20m  155h18m 6




Capabilities UL

= Minimum qualification.... we can solve the mode-I fracture problem!
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Capabilities — Implicit/Implicit i

= Verification test: toughness

Geometry: compact tension specimen (ASTM E1820)
Prescribe fracture toughness G, in material model
Observe peak force at crack initiation

Calculate ideal peak force from toughness & geometry
using ASTM relation A2.2

Compare results

= Model results approximate the expected value

Possible explanations for discrepancy:
= Finite/coarse mesh density
= Finite length scale (convergent as | — 0%)

= Temporal sensitivity... wait 4 minutes!
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Capabilities — Explicit/Implicit e

= Explicit Mechanics / Implicit Phase-Field solve is costly
= Option to update phase field less often
= Every “X” timesteps
= A quick test on a dynamic problem
= ASTM E1820 compact tension specimen
= 6061-T6 Aluminum
= Quick loading: 1 in/s for 60ms
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= Very similar force/displacement & fracture energy responses
= Great simulation time savings realized
= Still to do.... testing on a less-dynamic problem




Capabilities — Explicit/Explicit )

= Addition of non-conservative viscosity term in Euler-Lagrange equation:

= Viscous Dissipation: V= %nc’z
. _ : . ﬂ) __ _
Euler-Lagrange: \Y (6Vc e = 3¢

e —%1 -0 —
thc ” (1—-c)—2G.lAc %e>0
2Yc — 2y — 4¢critleC
= Damage irreversibility not intrinsic to mathematical formulation, artificial dissipation
= Stability:

= Parabolic systems inherently transmit information instantaneously

= Phase-Field update:  nc¢ =

= Limit timestep to keep crack/damage propagation speed at/under elastic wave speed, v,

= Strategy: choose smallest phase viscosity 17 such that (At)y < (At)pg
n - { 26,1 4‘¢critlz} S (ADpp < {U(Ax)z U(Ax)z }
(A)pr ~ ((Ax)2" (Ax)? T 26 W ul?)
S 5 — 2Gcl 4"1bcritl2
=0 Ax v, Ax v,
Reference: Tupek, MR. “Cohesive phase-field fracture and a PDE constrained optimization approach to fracture inverse

problems”. SAND2016-9510. 2016. 10
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Capabilities — Explicit/Explicit )

= New capability....

= A quick test on a dynamic problem

= ASTM E1820 compact tension specimen
= 6061-T6 Aluminum
= Quick loading: 1 in/s for 60ms

.. . Interior Midplane Exterior
= Similar force/displacement response P

= Drawback of viscosity model: sensitivity (excess dissipation)
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= Still need to do...
= Timing study to quantify efficiency gains
= Aless-dynamic problem to verify toughness returned 11




Overcoming Challenges ) i

Stability (Explicit/Explicit):

For stability, need to maintain (At)y < (At)pp

When mechanical timestep grows... trouble for phase field
= Solutions:

Increase viscosity parameter 1 from the beginning
— Increases artificial dissipation...

Adaptively set  based on mechanical timestep

= Sub-zero coherence (Explicit/Explicit):

Possible for ¢ < 0 due to explicit integration
= Solutions:

o . phase_1
2.000e+00

. x 1.508e+00

Bound c at quadrature points or nodes ‘ 5 ore0l
Lagrange multiplier constraint

3.005€-02



Overcoming Challenges .

= Temporal sensitivity (Implicit/Implicit):
= Artifact of staggered solve

= Example from “local” (no gradient term) phase field solve

h=1/2

h=1/4

At < 0.001 At < 0.0001
Solutions:
= Monolithic solve Proposed

= |teration within staggered solve
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Addressing Plasticity ) .

= Material scale continuum...
two perspectives of plasticity in traditional approaches:

= Length scale interpretation:
= Phase-field models I'-convergent to Griffith fractureas! —» 07
= If length scale too small, plasticity dominates fracture process
= If length scale too large, plasticity enveloped by fracture regularization
= Numerical regularization length scale [y incompatible with physical length scale 1,

O'y > O'f O'y = O'f O'y K O'f
Ty K1 T =~ 1 T > 1
< ] ] ] .
° 1 1 1 g
Brittle LEFM EPFM Large-scale Yielding Ductile

= Stress interpretation:
= Regularization length scale [ associated with a critical stress oy (1)
= Phase-field models I'-convergent to Griffith fractureas! —» 07
" Associated critical stress grows correspondingly: g —

= Numerical critical stress o incompatible with physical yield stress g,

= Motivation to move toward cohesive/Lorentz-type model 14




Future Directions ) 2=

Explicit/Explicit:
= Timing study to demonstrate efficiency improvement

=  Toughness verification with “Pacman” geometry & K-field solution to eliminate dynamic
effects

Capability:
" Integrate with rate-dependent material models
" Integrate with XFEM

= Quality:
= |teration within staggered implicit solve
= Implement cohesive/Lorentz-type model and non-linear update PDE solve
= More intelligently address damage irreversibility & sub-zero coherence
= Perhaps with Lagrange multipliers

Efficiency:

= Integrate with adaptive mesh refinement/coarsening for greater efficiency

P U N W N

= Acknowledgement:  John Dolbow & Rudy Geelen (Duke University) s



Thank you!

Thanks to conference & minisymposia organizers!

iy

Sandia National Laboratories,
Livermore, CA

. ‘ . . 16
-

SAND2017-7186 C



