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4 | Roberts research efforts

Multi-physics, multi-scale applied modeling & simulation

° Lead teams comprised of 14 PhD staff members, 3 post-docs,
2 graduate students, and 4 interns

> $2.9M in FY18 research funding

By

Li-ion + alkaline
battery mesoscale

EM railgun launcher performance Thermal protection\

system ablation
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Computational representation of Representation and role of Discrete element method

electrode mesostructures conductive binder morphology mesostructure generation

NMC cathode effective property

o ' Electrochemical-mechanical Future directions in electrode
prediction and upscaling discharge sims. of NMC half-cells mesoscale modeling

2/27/2018
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Imaging of cathode mesostructures

= i
g o
-
g o
.

-l
- i
F/

al
&
P

0
-y
-

LCO with binder from FIB/SEM, NMC from XRCT, LCO from XRCT,
35 nm resolution, 370 nm resolution, 64 nm resolution,
20 um domain. 757 wm domain. 22 um domain.
Hutzenlaub (2012) Ebner (2013) Yan (2012)

Imaging reveals complex networks; binder can be difficult to detect at scale
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Mesoscale geometry from CT data using CDFEM

Detailed 3D reconstruction and image processing necessary to get usable mesostructure data

Roberts et al JES 2014, Roberts et al JEECS 2016
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Solution verification establishes simulation correctness and domain/mesh size requirements

2/27/2018 Robetts, submitted to J. Comp. Phys.
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12 I What about the conductive binder?

Resolving conductive binder in 3D imaging difficult

° Binder often neglected, assuming non-active void space
is electrolyte

° Limited imaging results can hint at binder location

Amorphous binder 1s significantly nanoporous
o 47% Zielke (2015); 45% Grillet (2016)

> 5% ionic conductivity of pure electrolyte

(b) = graphite

s
s

,/ .'/‘,
ring fluorine

Superposition of
carbon & fluorine map

Graphite; Jaiser et al. (2017)

LCO; Komini Babu et al (2015)

Binder weight | Dense volume | Porous volume
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CBD filled Cathode,

How are electrode-scale properties affected by the inclusion of binder? How does the morphology matter?

2/27/2018



13 | Binder bridge morphology approach
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2/27/2018 Trembacki (2017)



14 | Effect of including binder on effective properties
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Binder morphology and mechanical coupling have a significant impact on effective properties; localization matters!

2/27/2018 Trembacki (2017)



5 | What about other morphologies and numerical methods
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Care must be taken when comparing results generated using different numerical methods; likely not converged!
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Both methods convergent on
voxelated meshes, but:

* At slow rates (1/4-order)

* From different directions

* Unrefined results 10x different

Trembacki, in preparation



16 I Porous binder and morphology considerations
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Dense CBD Nanoporous CBD

More particle surface area available with
non-uniform morphologies

Nanoporous binder decreases bare particle

surface area, but binder area is porous
Surface are much less than theoretical

Nanoporosity:

* Increases tortuosity  0.25]
Increases conductivity S 0.20/

S~
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Limiting cases of both morphology methods show similar (but not identical) behavior; nanoporosity is important!

Trembacki, in preparation
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Challenges with using CT mesoscale data

3D CT image data: (b) — graphite

> Expensive e

° Time consuming

> Conductive binder not visible v =
pondil ! binder/ —
ring fluorine

Superposition of
carbon & fluorine map

Graphite; Jaiser et al. (2017)

Hypothesis: Use DEM simulations to create AM+CBD mesostructures and CDFEM for physics predictions

Trembacki et al in preparation
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NMC particle [10 microns]  (CBD) particle [500 nm]

7/25/2018

Discrete Element Method (DEM) setup

LAMMPS solves Langevin equation for inertial Brownian motion
° 94:3:3 AM:CB:PVDF weight ratio

° (~100 um)? domain at 50% porosity
> 1,000 AM particles, 800,000 CBD particles

Inter-particle interactions

Fiotal = F]KR + Fyisc + Fbrown

Active Matter (AM): Carbon black + PVDF binder AES3
F, =
JKR 3a

Fyisc = 6mnav

210

4y .E
o

Forown = \/2kaT775(t)

Granular + Brownian motion to enable study of AM consolidation and CBD aggregation



19 | Mesostructure generation: Uniaxial compression

fixed
dimension
periodic
boundary

ot L

initial microstructure

height: 525 um (dryég)
width: 100 um

: compression
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(calendering)

compression -
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* periodic
boundary

uniaxial compression
periodic boundary
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porosity: 50%
height: 100 um
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compressed
microstructure
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height: 66 um
width: 100 um

7/25/2018

Uniaxial compression represents both drying and calendering



20 I Role of cohesion in CBD morphology
AN0K %

governing parameter

70a2

KT

increased string-like fractal
microstructure of CBD particles
resulting in non-uniform coating
around AM particles. CBD
phase behaves like a sticky

fluid

>

increased CBD diffusion results in a more uniform coating around AM particles

Cohestve surface energy drastically alters CBD morphology

7/25/2018
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23 | Effective electrode property calculations

Calculate effective transport properties for upscaling

o Particle specific surface area
> Electrical conductivity

> 'Tortuosity

NMC image data from Ebner (2013)
> 90, 92, 94, 96 wt% NMC (remainder 1:1 CB:PVDF)

> 0, 300, 600 & 2000 bar calendering
© 100 um x 100 um x 60 um domain (20 realizations eac
> Binder bridge (porous) morphology approach

Effective properties are an important first step for upscaling mesoscale data

2/27/2018 Ferraro, in preparation




24 | Effective electrode property calculation results — Transport

; Out-of-plane tortuosity Out-of-plane conductivity
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Bruggeman relationships must be re-calibrated to fit simulated data

2/27/2018




25 | Effective electrode property calculation results — Mechanical
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2/27/2018



26 | Effective electrode property calculation results — Surface area
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Binder morphology significantly reduces particle surface area available for chemical reaction

2/27/2018




27 | Upscaling effective properties for pouch-level modeling

Functional forms as function of porosity integrated into

VIBE/OAS and compared to simulation
° 10 cell pouch with 80 um electrodes

° Indented with 13 mm diameter spherical indenter

> Modeled mechanics of indentation (porosity change)

© SlmUIated 1C diSChaI'gC 3:8 & © Before Indentation

O After Indentation
3.7

3.6

s
o 35
o0 SR
._E 3.4 SN
Solid Phase S 33 5
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Potential a2 e nn 3.0 — — 0%
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41
Capacity (Ahr)
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Pouch simulation with effective properties shows similar-scale capacity decrease; demonstrates mesoscale integration

2/27/2018 Allu, in preparation



28 I Comparison of image- and DEM-based mesostructures
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Coupled electrochemical-mechanical half-cell discharge simulations

Current collector: I(t) Electrolyte:
* Species — Li" transport

* Nernst-Planck fluxes

* Electroneutrality for PF,
* (Current conservation

Particle Interface:
*  Butler-Volmer reaction

*  OCV from Smekens (2015)

Particles:

* Species — Li tt
* Chemica
* Stress pc

* FElectrical — O

* Mechanics - F
e Li-induc

Conductive binder:
* Species — Porous Li* transport
* FElectrical
e Solid: Porous Ohm’s law
* Strain-dependent
electrical conductivity

* Liquid: Ionic conservation
& electroneutrality
* Mechanics — Elastic

X Separator: V, =0

Mathematical formulation builds off of Mendoza (2016) LCO studies

Predictions of discharge curves, effects of mechanics, rate effects, and spatial variations in performance

2/27/2018 Ferraro, in preparation



31 | Demonstration of NMC half-cell discharge simulation at C/2

0 0.5 1 1.5 2
Time [hr]

Lix - Lix_mean VM Stress [GPa] Current[]  Overpotential [mV]
3e-02

4
: 1e-02 3 : 7.5 75

0e+00 2 "/L 5.0 20 %20 05 1 15 2
~-1e-02 1 Y %.8 23 Time [hr]

-3e-02 0

Coupled electrochemical-mechanical simulation yields detailed insight, predicts electrode-scale response

2/27/2018 Ferraro, in preparation



2 | Effect of solids loading, calendering pressure

(

Time = O 00 hr 1

Mean VM Stress [GPa]
o
(&)

90% NMC, 0 bar 96% NMC, 600 bar 0.25

T 90% Obar (left)
~T96% 600Dbar ( right)

0
0 0.5 1

IXx_mean VM Stress [GPaq Time [hr]

1.5

2/27/2018

Significantly higher mechanical stresses for higher NMC loadings and higher calendering pressures

Ferraro, in preparation



33

ALi, (interior - interface)

What can you learn from coupled half-cell simulations? LCO

(_Beneral SOC = 0.3500

Ideal

35 le-2

3.0¢

2.5¢

2.0-
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1.5¢

X [ T ineN —
'\ -0.04 -0.02 0.00 0.02 0.04

1.0t

-
-
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-~
---------
- -y

0.5h

0.0 — General
== |deal Solution

_O' 1 1 Il 1
8.0 0.2 0.4 0.6 0.8 1.0
State of charge

LCO 1s a non-ideal solution, gradients
not as dominant as some believe

2'5 le—3 : : - : “— — ~r
: .
| ’
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o .
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o o o
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Volume change partition

o
N
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Separator/collector stiffness/boundary conditions

influence electrode mesostructure evolution

2/27/2018

Details at the mesoscale influence cell performance ... and vice versal

Mendoza (2016)
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Future extensions of current work

Effective property calculation, correlation, and upscaling
> Effective properties for all 16 NMC data sets from Ebner (2013)

o Effective properties from DEM simulations, validation to experiment

Graphite anode mesoscale analysis (current student with P. Mukherjee)
> Recent image data from V. Wood group

Coupled electrochemical-mechanical simulations
o Study of binder fraction, calendering, and discharge rate
> More appropriate boundary conditions (separator/collector stiffness/transport, V. Wood/C. Arnold)
> Multiple charge-discharge cycles
o Full-cell (cathode, separator, anode) analysis

Upscaling and integration with cell-level codes (i.e. CAEBAT/OAS/VIBE)
Automated image-to-simulation — machine learning (LDRD just funded)

Silicon anode mesoscale analysis
> Inelastic binder mechanics (viscoelasticity, delamination, etc.)

° Large deformation multi-physics framework

Application to 3D printed batteties, lithium plating and growth (2 current proposals to EERE/VTO)

There’s still much work to be done in the areas discussed here
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