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Sandia National Laboratories
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Sandia is the nation’s premiere engineering DOE laboratory
◦ Established in 1949 from Los Alamos Z Division

◦ Primary locations: Albuquerque, NM; Livermore, CA

◦ 12,200 employees (52% R&D)
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Advanced Science & Technology

2/27/2018

3

Research Foundations play an integral role in mission delivery

Nanodevices & 
Microsystems

Engineering Science

Radiation Effects & High Energy Density
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Roberts research efforts
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Multi-physics, multi-scale applied modeling & simulation
◦ Lead teams comprised of  14 PhD staff  members, 3 post-docs, 

2 graduate students, and 4 interns

◦ $2.9M in FY18 research funding

Li-ion + alkaline 
battery mesoscale

Thermal protection 
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Outline
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Computational representation of  
electrode mesostructures 

Representation and role of  
conductive binder morphology

Future directions in electrode 
mesoscale modeling

Electrochemical-mechanical 
discharge sims. of  NMC half-cells

Discrete element method
mesostructure generation

NMC cathode effective property 
prediction and upscaling
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Imaging of cathode mesostructures
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Imaging reveals complex networks; binder can be difficult to detect at scale

LCO with binder from FIB/SEM, 
35 nm resolution, 
20 µm domain.  

Hutzenlaub (2012)

NMC from XRCT, 
370 nm resolution, 
757 µm domain.  

Ebner (2013)

LCO from XRCT, 
64 nm resolution, 
22 µm domain.  

Yan (2012)



Labeling

Mesoscale geometry from CT data using CDFEM
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Detailed 3D reconstruction and image processing necessary to get usable mesostructure data

3D Image Data
(X-ray CT)

Segmentation
(manual!)

CDFEM

Exodus mesh

Roberts et al JES 2014, Roberts et al JEECS 2016

i 



Solution verification for credible mesostructure simulations
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Solution verification establishes simulation correctness and domain/mesh size requirements
Roberts, submitted to J. Comp. Phys.

Understand mesh resolution requirements
for accurate prediction of  QOIs

Quantify 
representative 
volume element 
(RVE, domain 
size)

Adaptive mesh 
refinement 
drastically 

reduces cost of  
physics solve

Separate particle 
representations 
required for 
optimal 
convergence
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What about the conductive binder?
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Resolving conductive binder in 3D imaging difficult
◦ Binder often neglected, assuming non-active void space 

is electrolyte

◦ Limited imaging results can hint at binder location

Amorphous binder is significantly nanoporous
◦ 47% Zielke (2015); 45% Grillet (2016)

◦ 5% ionic conductivity of  pure electrolyte

How are electrode-scale properties affected by the inclusion of  binder?  How does the morphology matter?

Graphite; Jaiser et al. (2017)

Binder weight 
fraction

Dense volume 
binder:particle

Porous volume 
binder:particle

0.04 0.10 0.15

0.06 0.16 0.23

0.08 0.22 0.31

0.10 0.28 0.40

LCO; Zielke et al (2015)

LCO; Komini Babu et al (2015)
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Binder bridge morphology approach
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Binder bridge mimics experimental observations; properties are lithiation-dependent
Trembacki (2017)

Mathematical 
description of  

“binder bridges”

Raw image

Coating

Binder bridge

NMC has lithiation-dependent properties

Kam (2012)

Charge

Amin (2016)

Binder has strain- (e.g. lithiation-) dependent properties

Grillet (2016)
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Effect of including binder on effective properties
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Binder morphology and mechanical coupling have a significant impact on effective properties; localization matters!
Trembacki (2017)

Presence of  binder increases 
electrical conductivity. Mechanics 

further increase conductivity.

Binder morphology and current 
localization matters.  Binder bridge 

forces current flow through 
particles.
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What about other morphologies and numerical methods

2/27/2018

15

Care must be taken when comparing results generated using different numerical methods; likely not converged!
Trembacki, in preparation

Coating Bridge/Secondary

SNL
FEM

Voxelated

Purdue
FVM

Voxelated

Both methods convergent on 
voxelated meshes, but:
• At slow rates (1/4-order)
• From different directions
• Unrefined results 10x different

1

Re
la

ti
ve

 E
rr
or
 M
a
g
n
i
t
u
d
e
 

101

10,

10-1

/
/
/
/
/
/
/
/
/
/
/
/
I -
/ ..., -

00
00 ....

.000 
.0...

/
/
/
/
/

...
/
/
//.0

.0
'7

.. ... 
00 00 

00

—•— FEM
—A— FVM

1st Order
1/4 Order

10-3 10-2 10-1
Computational Element Edge Size

0.40

0.35

0.30

'.67, 0.25
u

u 0.20

a) 0.15

0.10

0.05

100 10-2 10-1
Computational Element Edge Size

FEM
FVM
Exact

100



Porous binder and morphology considerations
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Limiting cases of  both morphology methods show similar (but not identical) behavior; nanoporosity is important!
Trembacki, in preparation

• More particle surface area available with 
non-uniform morphologies

• Nanoporous binder decreases bare particle 
surface area, but binder area is porous

• Surface are much less than theoretical

Non-uniform binder:
• Increases tortuosity

• Decreases conductivity

Nanoporosity:
• Increases tortuosity

• Increases conductivity
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Challenges with using CT mesoscale data
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3D CT image data:
◦ Expensive 

◦ Time consuming

◦ Conductive binder not visible

Hypothesis: Use DEM simulations to create AM+CBD mesostructures and CDFEM for physics predictions

Graphite; Jaiser et al. (2017)
LCO; Zielke et al (2015)

Trembacki et al in preparation
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Discrete Element Method (DEM) setup
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LAMMPS solves Langevin equation for inertial Brownian motion
◦ 94:3:3 AM:CB:PVDF weight ratio

◦ (~100 µm)3 domain at 50% porosity

◦ 1,000 AM particles, 800,000 CBD particles 

Granular + Brownian motion to enable study of  AM consolidation and CBD aggregation

Inter-particle interactions

Active Matter (AM): 
NMC particle [10 microns]

Carbon black + PVDF binder
(CBD) particle [500 nm]
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Mesostructure generation: Uniaxial compression
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Uniaxial compression represents both drying and calendering

• uniaxial compression
• periodic boundary

initial microstructure

• porosity: 90%
• height: 525 um 
• width: 100 um

compression
(drying)

intermediate
microstructure

• porosity: 50%
• height: 100 um 
• width: 100 um

compression
(calendering)

compressed
microstructure

• porosity: 20%
• height: 66 um 
• width: 100 um

• fixed 
dimension

• periodic 
boundary

• fixed 
dimension

• periodic 
boundary

constant strain-rate 
compression



Role of cohesion in CBD morphology
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Cohesive surface energy drastically alters CBD morphology

governing parameter

increased CBD diffusion results in a more uniform coating around AM particles

increased string-like fractal
microstructure of  CBD particles
resulting in non-uniform coating
around AM particles. CBD
phase behaves like a sticky
fluid

Annu conu •
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Conformal Decomposition Finite Element Method (CDFEM)

7/25/2018
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Effective electrode property calculations
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Calculate effective transport properties for upscaling
◦ Particle specific surface area

◦ Electrical conductivity

◦ Tortuosity

NMC image data from Ebner (2013)
◦ 90, 92, 94, 96 wt% NMC (remainder 1:1 CB:PVDF)

◦ 0, 300, 600 & 2000 bar calendering

◦ 100 µm x 100 µm x 60 µm domain (20 realizations each)

◦ Binder bridge (porous) morphology approach

Effective properties are an important first step for upscaling mesoscale data
Ferraro, in preparation
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Effective electrode property calculation results – Transport 
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Bruggeman relationships must be re-calibrated to fit simulated data

Out-of-plane tortuosity Out-of-plane conductivity

1
7

6-

2

  = E-0 5 (Bruggeman)

  r = 0.926E-'8° (Best Fit)

♦ 90wt% NMC
▪ 92wt% NMC
♦ 94wt% NMC

96wt% NMC

0.1 0.2 0.3
Porosity

0.4 0.5

3.5

3.0

2.5

cu

o
1.5

O
-

b 1.0-

0.5

0.0
0.0 0.1

  (=Jeff = 3.66(1 — E)2.32

geff = 3.03(1 — E)2.62

Greif = 2.24(1 — E)2.92

Greif = 1.25(1 — E)2 71

geff = CfNMC(1— 01.5

♦ 90wt% NMC
▪ 92wt% NMC
♦ 94wt% NMC
4 96wt% NMC

0.2 0.3 0.4 0.5 0.6
Porosity



Effective electrode property calculation results – Mechanical 
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Stiffness increases with NMC content but also varies with calendaring
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Effective electrode property calculation results – Surface area
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Binder morphology significantly reduces particle surface area available for chemical reaction
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Upscaling effective properties for pouch-level modeling
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Functional forms as function of  porosity integrated into 
VIBE/OAS and compared to simulation

◦ 10 cell pouch with 80 µm electrodes

◦ Indented with 13 mm diameter spherical indenter

◦ Modeled mechanics of  indentation (porosity change)

◦ Simulated 1C discharge

Pouch simulation with effective properties shows similar-scale capacity decrease; demonstrates mesoscale integration
Allu, in preparation
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Comparison of image- and DEM-based mesostructures
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Calendaring  lower porosity  more CBD connectivity  higher conductivity and tortuosity

All simulations for T=600, γ=10-5, AM=94 wt%, 0 bar calendaring
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Coupled electrochemical-mechanical half-cell discharge simulations

2/27/2018

Predictions of  discharge curves, effects of  mechanics, rate effects, and spatial variations in performance

Particles:
• Species – Li transport

• Chemical potential
• Stress potential

• Electrical – Ohm’s law
• Mechanics - Elastic

• Li-induced swelling

Particle Interface:
• Butler-Volmer reaction
• OCV from Smekens (2015)

Electrolyte:
• Species – Li+ transport

• Nernst-Planck fluxes
• Electroneutrality for PF6

-

• Current conservation

Conductive binder:
• Species – Porous Li+ transport
• Electrical

• Solid: Porous Ohm’s law
• Strain-dependent

electrical conductivity
• Liquid: Ionic conservation

& electroneutrality
• Mechanics – Elastic

Current collector: I(t)

Separator: Vl = 0

Mathematical formulation builds off  of  Mendoza (2016) LCO studies

Ferraro, in preparation



Demonstration of NMC half-cell discharge simulation at C/2
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Coupled electrochemical-mechanical simulation yields detailed insight, predicts electrode-scale response
Ferraro, in preparation
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Effect of solids loading, calendering pressure

2/27/2018

32

Significantly higher mechanical stresses for higher NMC loadings and higher calendering pressures
Ferraro, in preparation
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Details at the mesoscale influence cell performance … and vice versa!
Mendoza (2016)

LCO is a non-ideal solution, gradients 
not as dominant as some believe

Separator/collector stiffness/boundary conditions 
influence electrode mesostructure evolution
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Future extensions of current work
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Effective property calculation, correlation, and upscaling
◦ Effective properties for all 16 NMC data sets from Ebner (2013)
◦ Effective properties from DEM simulations, validation to experiment

Graphite anode mesoscale analysis (current student with P. Mukherjee)
◦ Recent image data from V. Wood group

Coupled electrochemical-mechanical simulations
◦ Study of  binder fraction, calendering, and discharge rate
◦ More appropriate boundary conditions (separator/collector stiffness/transport, V. Wood/C. Arnold)

◦ Multiple charge-discharge cycles
◦ Full-cell (cathode, separator, anode) analysis

Upscaling and integration with cell-level codes (i.e. CAEBAT/OAS/VIBE)

Automated image-to-simulation – machine learning (LDRD just funded)

Silicon anode mesoscale analysis
◦ Inelastic binder mechanics (viscoelasticity, delamination, etc.)

◦ Large deformation multi-physics framework

Application to 3D printed batteries, lithium plating and growth (2 current proposals to EERE/VTO)

There’s still much work to be done in the areas discussed here
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