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Introduction

• Motivation

• Data assimilation for high resolution numerical models.

• Objective

• Develop scalable parallel algorithms for sequential data
assimilation.
Scalability: Solve n-times larger problem using n-times more processors/cores without substantially

increasing the execution time.

• Methodology

• Exploit scalable intrusive polynomial chaos expansion-based
non-overlapping domain decomposition for distributed
implementation of data assimilation algorithms.



Bayesian Estimation using Nonlinear Filtering

• Model Equation

Uk+1 = b k (Uk, f k, qk) — Forecast Step

• Measurement Equation

dk = hk (Uk, Ek) -- Assimilation Step
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R



UQ Framework

?.; Probabilistic Model
Stochastic PDE

Characterization
of Uncertainty

KLE/PCE
—JO.

-
tri E

in

SSFEM Discretization
FEM/PCE

Large-Scale Linear
System Solver

DDM

J

Response Statistics
PCE coefficients
mean/variance

Data Assimilation
Sensitivity Analysis

PCKF/GSA

❑ 5



UQ 
_

riameworic

GMSH METIS FORTRAN
mesh-generator mesh-partitioner mesh-data

UQTk MESHIO
KLE/PCE-clata mesh-converter

FEniCS
local finite element assembly

PErSc
local stochastic assembly & computations



Draurin. nprnmnn.citinn MPth.nrl fnr .cirne.h.n.cfir PDFg

(Forecast Step)

• Spatial decomposition
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• Polynomial Chaos expansion
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Domain Decomposition Method for Stochastic PDEs

• Galerkin projection
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Sarkar, A. Benabbou, N. and Ghanern, R., IJNME, 2009.



Block Sparsity Structure

Figure : Block-sparse structures of the stochastic system matrices for a
fixed mesh resolution with L = 3 and pi, = 4,5

Figure : Block-sparse structures of the stochastic system matrices for a
fixed mesh resolution with pu = 3 and L = 4,5



The Extended Interface Problem

• The Extended Schur Complement System

SUr = gr.

n,

S = E RsT[Asrr — ASH (A)-1A7r]R.s.

• Develop parallel iterative algorithms.
• Formulate scalable preconditioners.
• Application to 2D and 3D Stochastic PDEs with non-Gaussian

coefficients.
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Two-Level Domain Decomposition Methods for SPDEs

ns
A/1-1 >_:: R,s, T [sn —194sf + Rj-[sci-17_10,

s=1

• Condition Number Bound of Deterministic System

• One-level preconditioner

1 H 2
K(A4-1.5) < C ITO. + log T)

• Two-level preconditioner

H 2
k(A4-1.5) < C(1 + log Ti )



Two-Level Domain Decomposition Methods for SPDEs

• Partitioning the interface nodes into remaining (M) and corner(•) nodes
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Probabilistic Balancing Domain Decomposition with Constraints
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Probabilistic Dual Primal Domain Decomposition
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Two-Level Domain Decomposition Methods for SPDEs
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a) Neumann-Neumann with Coarse grid, b) Primal-Primal,c) Dual-Primal Operator.

Investigated numerical and parallel scalabilities:
Subber, W. and Sarkar, A., JCP, 2014

Subber, W. and Sarkar, A., CMAME, 2013
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Problem Setup for Numerical Experiments

• Model Problem:

—V • ( cd(x, 0) Vu(x. 0) ) = F(x). Q x

u(x. 0) = 0, SQ x

• Diffusion coefficient cd modelled as a lognormal process with

the underlying a Gaussian process having mean variance a2
and exponential covariance function C (on a 2D domain).

,X2 y2) Cr2
C(x1, yi; e—lx2—xil/bi —1)/2 —Yi Vb2



Intrusive SSFEM System Matrix: Block-Sparsity Structures
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Errors Analysis of PCE Coefficients of Solution Process:

Intrusive Vs Non-Intrusive
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Scalability with Number of Stochastic Dimensions:

Intrusive Vs Non-Intrusive (Sparse Grid)
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Scalability With Respect to Number of Random Variables: NNC/BDDC
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Scalability With Respect To Number of Random Variables: NNC/BDDC
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Parallel Scalabzlzty (Strong): NNC/BDDC
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Scalability uszng Large-Scale HPC Cluster
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Scalability using Large-Scale HPC Cluster
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Probabilistic Coarse Grid in Three Dimensions:

Extended Wirebasket Grid

Schematic representation of a simple wirebasket coarse grid for a
cube partitioned into two subdomains. (-) for the global interface
edge, (40) for vertices (*) for interface-edges and (.) for
interface-faces.



Probabilistic Coarse Grid in Three Dimensions:

Extended Wirebasket Grid

Schematic representation of the wirebasket coarse grid (consist of
• and *) for a cube partitioned into four and eight subdomains
(exclude interface-edges * to get vertex-grid).



Deterministic Setting: Condition Number Bound

Vertex vs Wirebasket-based Methods

For the vertex-based method in two dimensions

k < C(1 + log(H/h))2,

For the vertex-based method in three dimensions

k < C(H/h)(1 + log(H/h)).

For the wirebasket-based methods in three dimensions

k < C(1 + log(H/h))2.



Probabilistic BDDC/NNC using Extended Wirebasket-based Coarse Grid

1-14/14/ 111/1/ = 61/
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AInmeriral Fr.nerimpnLq• Wirebasket based BDDC/NNC solver

• Model Problem: Diffusion equation in three dimensions

—7 ( cd(x, 0) 7u(x,0) ) = F(x), Q x W,

u(x,0) = 0, 6C2 x

• Diffusion coefficient cd modeled as a lognormal process with

the underlying a Gaussian process having mean ft, variance (72

and exponential covariance function C (on a 3D domain),

C(xi = 0_2e—lx2—x11/bx-13,2-31.1/by—lz2—z11/ bz, z1; X2 , y2, z2) 

'CI 5 1. 4 M °LC'
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Figure : Mean and standard deviation of the solution process.



Characteristics of the Solution Process:

Diffusion Equation in Three Dimensions
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Figure : Iteration count versus number of subdomains for the fixed mesh
resolution with fixed number of PCE terms.
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Figure : Iteration count versus number of subdomains for fixed problem
size per subdomain with increasing number of PCEs (fixed mesh
resolution).
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Figure : Execution time versus number of subdomains for fixed problem
size per subdomain with increasing number of PCEs (fixed mesh
resolution).
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Figure : Iteration count versus number PCE terms for the fixed mesh
resolution with fixed number of subdomains.



Figure : Iteration count versus number of subdomains for the fixed mesh
resolution with fixed number of PCE terms.
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Figure : Iteration count versus number of subdomains for the fixed
problem size per core with increasing mesh resolution (fixed number of
PCE terms).
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Figure : Execution time versus number of subdomains with the fixed
mesh resolution and the number of PCE terms.
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Figure : Execution time versus number of subdomains for the fixed
problem size per core with increasing mesh resolution (fixed number of
PCE terms).
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Figure : Iteration count versus number PCE terms for the fixed mesh
resolution with fixed number of subdomains.
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Figure : Iteration count versus number of subdomains for the fixed
problem size per core with increasing number of PCE terms (fixed mesh
resolution).
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Figure : Execution time versus number of subdomains for fixed problem
size per subdomain with increasing number of PCEs (fixed mesh
resolution).
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resolution with fixed number of subdomains (fixed number of RV5).



Numerical Experiments: Wirebasket based BDDC/NNC solver for Coupled

PDE System

• Model Problem: Equations of Linear Elasticity in 3D,

—V • a (11(x, 8)) = F(x) in D,

(11(x, 6)) • n= b7- on I-i = 6D\ ro,

74(x, 8) = 0 on Fo.

Where the stress tensor, a can be written as,

a (14(x, 8)) = (V • /4(x, 8)) I + Zue (u(x, 0)),

Ev 
—20where A =(1+0(1 and p, 2(1E-Pv)=   are Lame elasticity

parameters.

• Young's modulus E is modeled as a lognormal stochastic
process (similar to the previous case).



Characteristics of the Solution Process:

Equations of Linear Elasticity in Three Dimensions

" U Magnitude
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Mean magnitude of the beam deflection subjected to self-weight



Characteristics of the Solution Process:

Equations of Linear Elasticity in Three Dimensions
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x, y and z components of the mean and standard deviation of the
solution process.



Characteristics of the Solution Process:

Equations of Linear Elasticity in Three Dimensions

x, y and z components of the selected PCE coefficients of the
solution process.
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Figure : Iteration count versus number of subdomains for the fixed mesh
resolution with fixed number of PCE terms.
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Figure : Iteration count versus number of subdomains for fixed problem
size per subdomain with increasing number of PCEs (fixed mesh
resolution).
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Figure : Execution time versus number of subdomains for fixed problem
size per subdomain with increasing number of PCEs (fixed mesh
resolution).
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resolution with fixed number of subdomains.
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Figure : Iteration count versus number of subdomains for the fixed mesh
resolution with fixed number of PCE terms.
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Figure : Iteration count versus number of subdomains for the fixed
problem size per core with increasing mesh resolution (fixed number of
PCE terms).
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Figure : Execution time versus number of subdomains with the fixed
mesh resolution and the number of PCE terms.
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Figure : Execution time versus number of subdomains for the fixed
problem size per core with increasing mesh resolution (fixed number of
PCE terms).
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Figure : Iteration count versus number of PCE terms for the fixed mesh

resolution with fixed number of subdomains.
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Figure : Iteration count versus number of subdomains for the fixed
problem size per core with increasing number of PCE terms (fixed mesh
resolution).
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Figure : Iteration count versus order of expansion for the fixed mesh
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Conclusion

• Development of parallel PCKF that exploits available two-level
domain decomposition algorithms for SPDEs.

• Distributed implementation and scalability studies of the

parallel PCKF using a stationary stochastic diffusion problem.
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