This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Domain Decomposition of Stocha SAND2018-7957C
Developments

Ajit Desai 1, Mohammad Khalil 2, Chris Pettit 3, Dominique Poirel 4
and Abhijit Sarkar !

1Depar‘tment of Civil and Environmental Engineering
Carleton University, Canada
2Quantitative Modeling & Analysis
Sandia National Laboratories, Livermore, California 94551, USA

3Aerospace Engineering Department

United States Naval Academy, Annapolis, Maryland, USA

4Department of Mechanical and Aerospace Engineering

Royal Military College of Canada

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the
U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

July 19, 2017



Introduction

e Motivation
e Data assimilation for high resolution numerical models.

e Objective
e Develop scalable parallel algorithms for sequential data
assimilation.

Scalability: Solve n-times larger problem using n-times more processors/cores without substantially

increasing the execution time.

e Methodology
e Exploit scalable intrusive polynomial chaos expansion-based
non-overlapping domain decomposition for distributed
implementation of data assimilation algorithms.



Bayesian Estimation using Nonlinear Filtering
e Model Equation
ugr1 = ¥y (uk, fx,q,) — — Forecast Step
e Measurement Equation

d, = hy (ug, €f) —— Assimilation Step
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Domain Decomposition Method for Stochastic PDFEs

(Forecast Step)

e Spatial decomposition
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e Polynomial Chaos expansion
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Domain Decomposition Method for Stochastic PDFEs

e Galerkin projection
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Sarkar, A. Benabbou, N. and Ghanem, R., IJNME, 2009.



Block Sparsity Structure
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Figure : Block-sparse structures of the stochastic system matrices for a
fixed mesh resolution with L = 3 and p, = 4,5
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Figure : Block-sparse structures of the stochastic system matrices for a
fixed mesh resolution with p, =3 and L =4,5



The Extended Interface Problem
e The Extended Schur Complement System

SUr =Gr.

ns
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e Develop parallel iterative algorithms.
e Formulate scalable preconditioners.
e Application to 2D and 3D Stochastic PDEs with non-Gaussian

coefficients.




Two-Level Domain Decomposition Methods for SPDFEs

M= HETISE T HE + HY (S Ho,
s=1

e Condition Number Bound of Deterministic System
e One-level preconditioner

2

1 H
k(M™1S) < Cm(l + log F)

e Two-level preconditioner
2

k(M™1S) < C(1+ Iog%)



Two-Level Domain Decomposition Methods for SPDFEs

® Partitioning the interface nodes into remaining (M) and corner(®) nodes




Probabilistic Balancing Domain Decomposition with Constraints
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Probabilistic Dual Primal Domain Decomposition
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Two-Level Domain Decomposition Methods for SPDFEs
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Investigated numerical and parallel scalabilities:

Subber, W. and Sarkar, A., JCP, 2014

Subber, W. and Sarkar, A., CMAME, 2013




Problem Setup for Numerical Fxperiments

e Model Problem:

—V - (ci(x,0) Vu(x,0)) = F(x), QxW,
u(x,0) = 0, 0 x W,
e Diffusion coefficient ¢4 modelled as a lognormal process with

the underlying a Gaussian process having mean p, variance o
and exponential covariance function C (on a 2D domain).
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Intrusive SSFEM System Matrix: Block-Sparsity Structures
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Intrusive system matrices for fixed mesh resolution N =~ 150, fixed
order of expansion P, =3 with L =4 and L =5.

2
I
m
it




Errors Analysis of PCE Coefficients of Solution Process:

Intrusive Vs Non-Intrusive
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Scalability with Number of Stochastic Dimensions:

Intrusive Vs Non-Intrusive (Sparse Grid)
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third order PCE for intrusive. Smolyak sparse grid with / = 3 and
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Scalability With Respect to Number of Random Variables: NNC/BDDC
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Fixed mesh resolution (52704 nodes and 105410 elements), fixed
problem size per subdomain (= 60,000) and third order PCE
(linear system of order max. ~ 93 million)



Scalability With Respect To Number of Random Variables
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Parallel Scalability (Strong): NNC/BDDC
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Fixed global problem, mesh with (52704 nodes and 105410
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Scalability using Large-Scale HPC' Cluster
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For the fixed mesh resolution (0.332 million nodes and 0.664
million elements.) and fixed number of PCE terms (P, = 56).



Scalability using Large-Scale HPC' Cluster
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Probabilistic Coarse Grid in Three Dimensions:

FExtended Wirebasket Grid
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Schematic representation of a simple wirebasket coarse grid for a
cube partitioned into two subdomains. (-) for the global interface
edge, (e) for vertices (x) for interface-edges and () for
interface-faces.



Probabilistic Coarse Grid in Three Dimensions:

FExtended Wirebasket Grid
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Schematic representation of the wirebasket coarse grid (consist of
e and *) for a cube partitioned into four and eight subdomains
(exclude interface-edges * to get vertex-grid).



Deterministic Setting: Condition Number Bound

Vertex vs Wirebasket-based Methods

For the vertex-based method in two dimensions
k< C(1+log(H/h))2,
For the vertex-based method in three dimensions

K < C(H/h)(1 +log(H/h)).

For the wirebasket-based methods in three dimensions

k< C(1+log(H/h))>.



Probabilistic BDDC/NNC' using Extended Wirebasket-based Coarse Grid
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Numerical Ezperiments: Wirebasket based BDDC/NNC' solver
e Model Problem: Diffusion equation in three dimensions
—V - (c(x,0) Vu(x,0)) = F(x), QxW,
u(x,0) = 0, 02 x W,

e Diffusion coefficient ¢4 modeled as a lognormal process with
the underlying a Gaussian process having mean p, variance o
and exponential covariance function C (on a 3D domain),

Clxa,y1, 215 %2, Y2, 22) = o2 e~ Pemxal/bxmlyonl/by—lz=al/b:
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Figure : Mean and standard deviation of the solution process.



Characteristics of the Solution Process:

Diffusion Equation in Three Dimensions
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Selected PCE coefficients of the solution process.
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Figure : |teration count versus number of subdomains for fixed problem
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resolution).
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Figure : Iteration count versus number of subdomains for the fixed mesh
resolution with fixed number of PCE terms.
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problem size per core with increasing mesh resolution (fixed number of
PCE terms).
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Figure : Execution time versus number of subdomains with the fixed
mesh resolution and the number of PCE terms.
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Figure : Execution time versus number of subdomains for the fixed
problem size per core with increasing mesh resolution (fixed number of
PCE terms).
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Figure : lteration count versus number of subdomains for the fixed
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resolution).
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Figure : Execution time versus number of subdomains for fixed problem
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resolution).



*— 800 cores (5 RVs)

Number of fterations
4]
I
s

3 a
Order of expansion

Figure : lteration count versus order of expansion for the fixed mesh
resolution with fixed number of subdomains (fixed number of RVs).



Numerical Experiments: Wirebasket based BDDC/NNC' solver for Coupled
PDFE System

e Model Problem: Equations of Linear Elasticity in 3D,

-V-o(U(x,0)) =F(x) in D,
(U(X,@)) n= bT on Fl = 52)\['0,
U(x,0) = on To.

Where the stress tensor, o can be written as,
o(U(x,0)) = X(V - U(x,0))] + 2ue(U(x,6)),

where \ = (HV)E(+21/) and pu = 2(1—’;,) are Lamé elasticity
parameters.
e Young's modulus E is modeled as a lognormal stochastic

process (similar to the previous case).



Characteristics of the Solution Process:

Equations of Linear Elasticity in Three Dimensions
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Characteristics of the Solution Process:

Equations of Linear Elasticity in Three Dimensions
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X,y and z components of the mean and standard deviation of the
solution process.



Characteristics of the Solution Process:

Equations of Linear Elasticity in Three Dimensions
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Conclusion

e Development of parallel PCKF that exploits available two-level
domain decomposition algorithms for SPDEs.

e Distributed implementation and scalability studies of the
parallel PCKF using a stationary stochastic diffusion problem.
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