

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Domain Decomposition of Stocha SAND2018-7957C *Developments*

Ajit Desai ¹, Mohammad Khalil ², Chris Pettit ³, Dominique Poirel ⁴
and Abhijit Sarkar ¹

¹Department of Civil and Environmental Engineering
Carleton University, Canada

²Quantitative Modeling & Analysis
Sandia National Laboratories, Livermore, California 94551, USA

³Aerospace Engineering Department
United States Naval Academy, Annapolis, Maryland, USA

⁴Department of Mechanical and Aerospace Engineering
Royal Military College of Canada

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

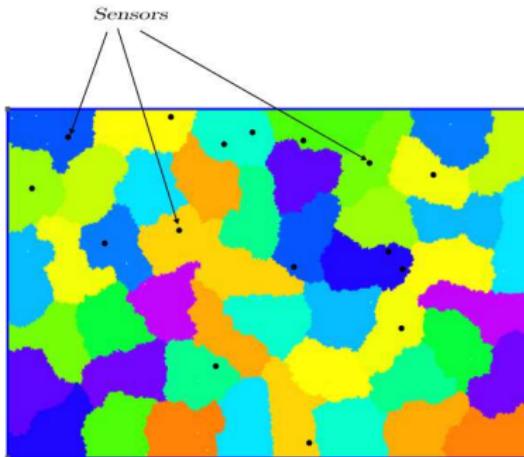
July 19, 2017

- Motivation
 - Data assimilation for high resolution numerical models.

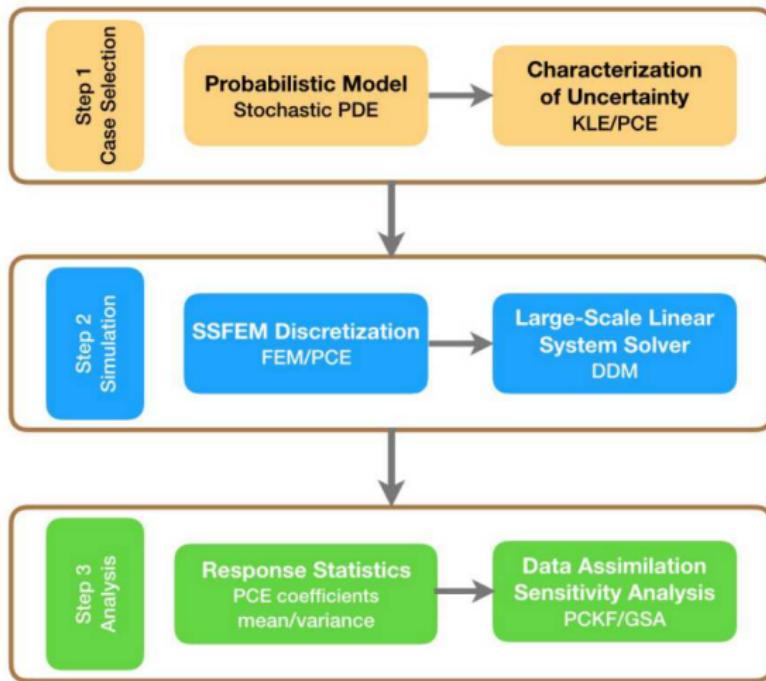
- Objective
 - Develop scalable parallel algorithms for sequential data assimilation.

Scalability: Solve n -times larger problem using n -times more processors/cores without substantially increasing the execution time.

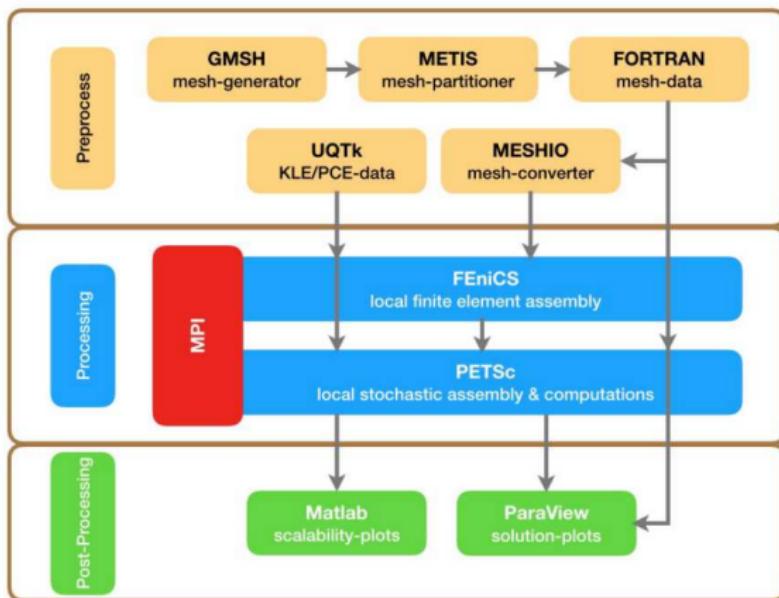
- Methodology
 - Exploit scalable intrusive polynomial chaos expansion-based non-overlapping domain decomposition for distributed implementation of data assimilation algorithms.

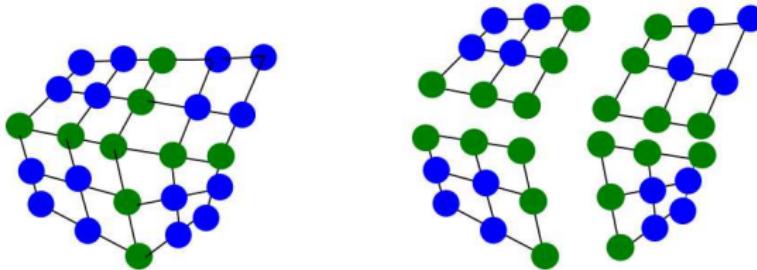

Bayesian Estimation using Nonlinear Filtering

- Model Equation


$$\mathbf{u}_{k+1} = \psi_k(\mathbf{u}_k, \mathbf{f}_k, \mathbf{q}_k) \quad \text{--- Forecast Step}$$

- Measurement Equation


$$\mathbf{d}_k = \mathbf{h}_k(\mathbf{u}_k, \mathbf{\epsilon}_k) \quad \text{--- Assimilation Step}$$


UQ Framework

UQ Framework

(Forecast Step)

- Spatial decomposition

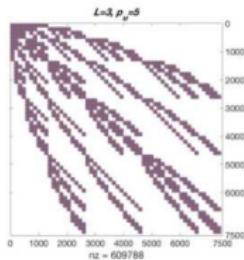
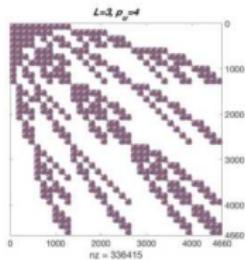
$$\begin{bmatrix} \mathbf{A}_{II}^s(\theta) & \mathbf{A}_{I\Gamma}^s(\theta) \\ \mathbf{A}_{\Gamma I}^s(\theta) & \mathbf{A}_{\Gamma\Gamma}^s(\theta) \end{bmatrix} \begin{Bmatrix} \mathbf{u}_I^s(\theta) \\ \mathbf{u}_{\Gamma}^s(\theta) \end{Bmatrix} = \begin{Bmatrix} \mathbf{f}_I^s \\ \mathbf{f}_{\Gamma}^s \end{Bmatrix} .$$

- Polynomial Chaos expansion

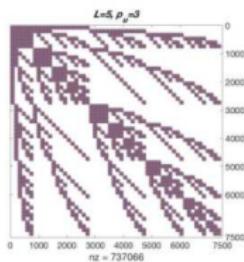
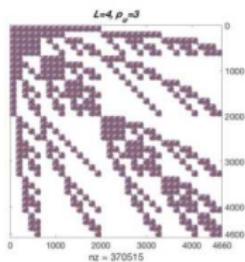
$$\sum_{i=0}^L \Psi_i \begin{bmatrix} \mathbf{A}_{II,i}^s & \mathbf{A}_{I\Gamma,i}^s \\ \mathbf{A}_{\Gamma I,i}^s & \mathbf{A}_{\Gamma\Gamma,i}^s \end{bmatrix} \begin{Bmatrix} \mathbf{u}_I^s(\theta) \\ \mathbf{u}_{\Gamma}^s(\theta) \end{Bmatrix} = \begin{Bmatrix} \mathbf{f}_I^s \\ \mathbf{f}_{\Gamma}^s \end{Bmatrix} .$$

Domain Decomposition Method for Stochastic PDEs

- Galerkin projection



$$\begin{bmatrix} \mathcal{A}_{II}^1 & \dots & 0 & \mathcal{A}_{I\Gamma}^1 \mathcal{R}_1 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \dots & \mathcal{A}_{II}^{n_s} & \mathcal{A}_{I\Gamma}^{n_s} \mathcal{R}_{n_s} \\ \mathcal{R}_1^T \mathcal{A}_{\Gamma I}^1 & \dots & \mathcal{R}_{n_s}^T \mathcal{A}_{\Gamma I}^{n_s} & \sum_{s=1}^{n_s} \mathcal{R}_s^T \mathcal{A}_{\Gamma\Gamma}^s \mathcal{R}_s \end{bmatrix} \begin{Bmatrix} u_I^1 \\ \vdots \\ u_I^{n_s} \\ u_\Gamma \end{Bmatrix} = \begin{Bmatrix} \mathcal{F}_I^1 \\ \vdots \\ \mathcal{F}_I^{n_s} \\ \sum_{s=1}^{n_s} \mathcal{R}_s^T \mathcal{F}_\Gamma^s \end{Bmatrix},$$

where

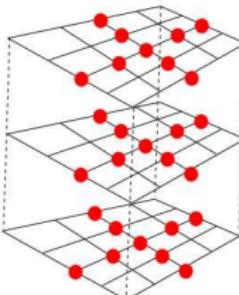


$$[\mathcal{A}_{\alpha\beta}^s]_{jk} = \sum_{i=0}^L \langle \Psi_i \Psi_j \Psi_k \rangle \mathbf{A}_{\alpha\beta,i}^s \quad , \quad \mathcal{F}_{\alpha,k}^s = \langle \Psi_k \mathbf{f}_\alpha^s \rangle.$$

Sarkar, A. Benabbou, N. and Ghanem, R., IJNME, 2009.

Block Sparsity Structure

Figure : Block-sparse structures of the stochastic system matrices for a fixed mesh resolution with $L = 3$ and $p_u = 4, 5$

Figure : Block-sparse structures of the stochastic system matrices for a fixed mesh resolution with $p_u = 3$ and $L = 4, 5$


The Extended Interface Problem

- The Extended Schur Complement System

$$\mathcal{S}\mathcal{U}_\Gamma = \mathcal{G}_\Gamma.$$

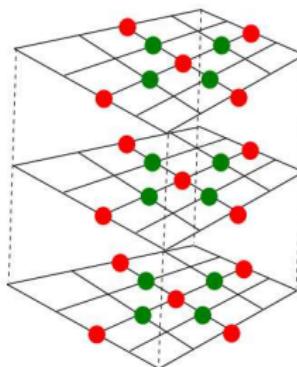
$$\mathcal{S} = \sum_{s=1}^{n_s} \mathcal{R}_s^T [\mathcal{A}_{\Gamma\Gamma}^s - \mathcal{A}_{\Gamma I}^s (\mathcal{A}_{II}^s)^{-1} \mathcal{A}_{I\Gamma}^s] \mathcal{R}_s.$$

- Develop parallel iterative algorithms.
- Formulate scalable preconditioners.
- Application to 2D and 3D Stochastic PDEs with non-Gaussian coefficients.

Two-Level Domain Decomposition Methods for SPDEs

$$\mathcal{M}^{-1} = \sum_{s=1}^{n_s} \mathcal{H}_f^s{}^T [\mathcal{S}_f^s]^{-1} \mathcal{H}_f^s + \mathcal{H}_0^T [\mathcal{S}_c]^{-1} \mathcal{H}_0,$$

- Condition Number Bound of Deterministic System
 - One-level preconditioner


$$\kappa(M^{-1}S) \leq C \frac{1}{H^2} \left(1 + \log \frac{H}{h}\right)^2$$

- Two-level preconditioner

$$\kappa(M^{-1}S) \leq C \left(1 + \log \frac{H}{h}\right)^2$$

Two-Level Domain Decomposition Methods for SPDEs

- Partitioning the interface nodes into remaining (■) and corner(●) nodes

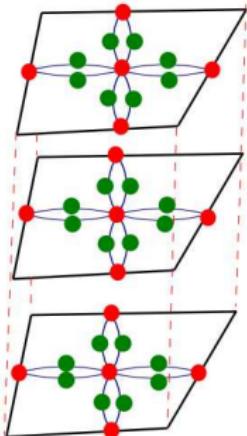
$$\mathcal{U}_\Gamma^s = \left\{ \begin{array}{l} \mathcal{U}_r^s \\ \mathcal{U}_c^s \end{array} \right\}$$

Probabilistic Balancing Domain Decomposition with Constraints

$$\left[\begin{array}{ccc} \mathcal{A}_{ii}^s & \mathcal{A}_{ir}^s & \mathcal{A}_{ic}^s \mathcal{B}_c^s \\ \mathcal{A}_{ri}^s & \mathcal{A}_{rr}^s & \mathcal{A}_{rc}^s \mathcal{B}_c^s \\ \sum_{s=1}^{n_s} \mathcal{B}_c^s{}^T \mathcal{A}_{ci}^s & \sum_{s=1}^{n_s} \mathcal{B}_c^s{}^T \mathcal{A}_{cr}^s & \sum_{s=1}^{n_s} \mathcal{B}_c^s{}^T \mathcal{A}_{cc}^s \mathcal{B}_c^s \end{array} \right] \left\{ \begin{array}{c} \mathcal{X}^s \\ \mathcal{U}_r^s \\ \mathcal{U}_c \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{0} \\ \mathcal{F}_r^s \\ \sum_{s=1}^{n_s} \mathcal{B}_c^s{}^T \mathcal{F}_c^s \end{array} \right\}$$

$$\mathcal{M}_{NNC}^{-1} = \sum_{s=1}^{n_s} \mathcal{R}_s^T \mathcal{D}_s \mathcal{R}_s^r{}^T [\mathcal{S}_{rr}^s]^{-1} \mathcal{R}_s^r \mathcal{D}_s \mathcal{R}_s + R_0^T [\mathcal{F}_{cc}]^{-1} R_0,$$

$$R_0 = \sum_{s=1}^{n_s} \mathcal{B}_c^s{}^T (\mathcal{R}_s^c - \mathcal{S}_{cr}^s [\mathcal{S}_{rr}^s]^{-1} \mathcal{R}_s^r) \mathcal{D}_s \mathcal{R}_s.$$


$$\mathcal{F}_{cc} = \sum_{s=1}^{n_s} \mathcal{B}_c^s{}^T (\mathcal{S}_{cc}^s - \mathcal{S}_{cr}^s [\mathcal{S}_{rr}^s]^{-1} \mathcal{S}_{rc}^s) \mathcal{B}_c^s,$$

$$\mathcal{S}_{\alpha\beta}^s = \mathcal{A}_{\alpha\beta}^s - \mathcal{A}_{\alpha i}^s [\mathcal{A}_{ii}^s]^{-1} \mathcal{A}_{i\beta}^s, \quad [\mathcal{A}_{\alpha\beta}^s]_{jk} = \sum_{i=0}^L \langle \Psi_i \Psi_j \Psi_k \rangle \mathbf{A}_{\alpha\beta,i}^s$$

Probabilistic Dual Primal Domain Decomposition

$$\left[\begin{array}{cccc} \mathcal{A}_{ii}^s & \mathcal{A}_{ir}^s & \mathcal{A}_{ic}^s \mathcal{B}_c^s & 0 \\ \mathcal{A}_{ri}^s & \mathcal{A}_{rr}^s & \mathcal{A}_{rc}^s \mathcal{B}_c^s & \mathcal{B}_r^s T \\ \sum_{s=1}^{n_s} \mathcal{B}_c^s T \mathcal{A}_{ci}^s & \sum_{s=1}^{n_s} \mathcal{B}_c^s T \mathcal{A}_{cr}^s & \sum_{s=1}^{n_s} \mathcal{B}_c^s T \mathcal{A}_{cc}^s \mathcal{B}_c^s & 0 \\ 0 & \sum_{s=1}^{n_s} \mathcal{B}_r^s & 0 & 0 \end{array} \right] \left\{ \begin{array}{c} \mathcal{U}_i^s \\ \mathcal{U}_r^s \\ \mathcal{U}_c \\ \Lambda \end{array} \right\} = \left\{ \begin{array}{c} \mathcal{F}_i^s \\ \mathcal{F}_r^s \\ \sum_{s=1}^{n_s} \mathcal{B}_c^s T \mathcal{F}_c^s \\ 0 \end{array} \right\},$$

$$(\bar{F}_{rr} + \bar{F}_{rc}[\bar{F}_{cc}]^{-1}\bar{F}_{cr})\Lambda = \bar{d}_r - \bar{F}_{rc}[\bar{F}_{cc}]^{-1}\bar{d}_c,$$

Two-Level Domain Decomposition Methods for SPDEs

$$\mathcal{M}^{-1} = \sum_{s=1}^{n_s} \mathcal{H}_f^s T [\mathcal{S}_f^s]^{-1} \mathcal{H}_f^s + \mathcal{H}_0^T [\mathcal{S}_c]^{-1} \mathcal{H}_0,$$

	\mathcal{H}_f^s	$[\mathcal{S}_f^s]^{-1}$	\mathcal{H}_0	$[\mathcal{S}_c]^{-1}$
a	$\mathcal{R}_s^r \mathcal{D}_s \mathcal{R}_s$	$[\mathcal{S}_{rr}^s]^{-1}$	$\sum_{s=1}^{n_s} \mathcal{B}_c^s T (\mathcal{R}_s^c - \mathcal{S}_{cr}^s [\mathcal{S}_{rr}^s]^{-1} \mathcal{R}_s^r) \mathcal{D}_s \mathcal{R}_s$	$\sum_{s=1}^{n_s} \mathcal{B}_c^s T (\mathcal{S}_{cc}^s - \mathcal{S}_{cr}^s [\mathcal{S}_{rr}^s]^{-1} \mathcal{S}_{rc}^s) \mathcal{B}_c^s$
b	$\mathcal{D}_r^s \mathcal{B}_r^s$	$[\mathcal{S}_{rr}^s]^{-1}$	$\sum_{s=1}^{n_s} \mathcal{B}_c^s T \mathcal{S}_{cr} [\mathcal{S}_{rr}^s]^{-1} \mathcal{D}_r^s \mathcal{B}_r^s$	$\sum_{s=1}^{n_s} \mathcal{B}_c^s T (\mathcal{S}_{cc}^s - \mathcal{S}_{cr}^s [\mathcal{S}_{rr}^s]^{-1} \mathcal{S}_{rc}^s) \mathcal{B}_c^s$
c	$\mathcal{B}_r^s T$	$[\mathcal{S}_{rr}^s]^{-1}$	$\sum_{s=1}^{n_s} \mathcal{B}_c^s T \mathcal{S}_{cr}^s [\mathcal{S}_{rr}^s]^{-1} \mathcal{B}_r^s T$	$\sum_{s=1}^{n_s} \mathcal{B}_c^s T (\mathcal{S}_{cc}^s - \mathcal{S}_{cr}^s [\mathcal{S}_{rr}^s]^{-1} \mathcal{S}_{rc}^s) \mathcal{B}_c^s$

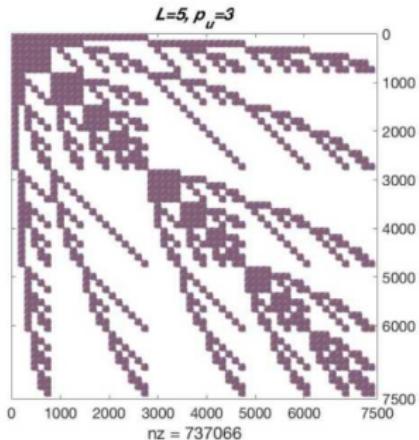
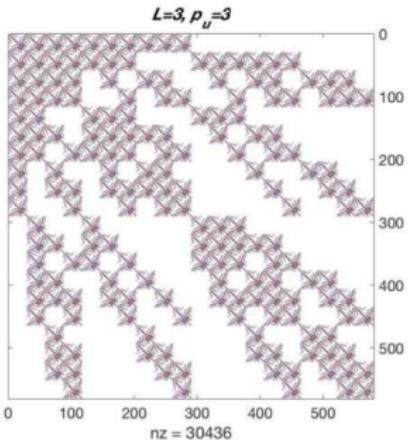
a) Neumann-Neumann with Coarse grid, b) Primal-Primal, c) Dual-Primal Operator.

Investigated numerical and parallel scalabilities:

Subber, W. and Sarkar, A., JCP, 2014

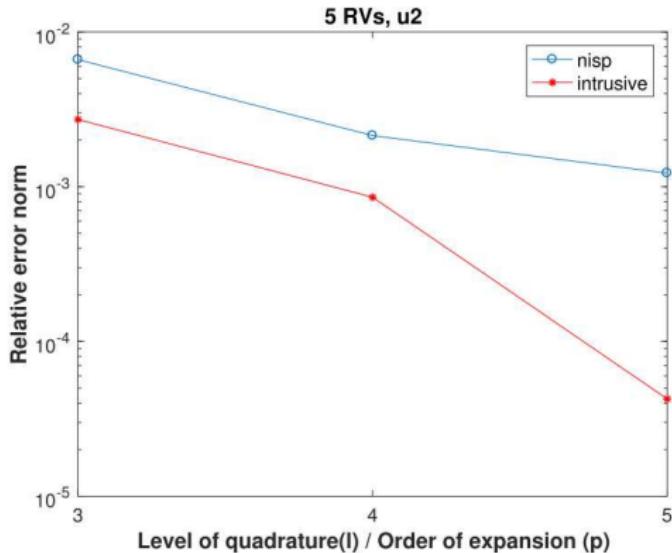
Subber, W. and Sarkar, A., CMAME, 2013

Problem Setup for Numerical Experiments

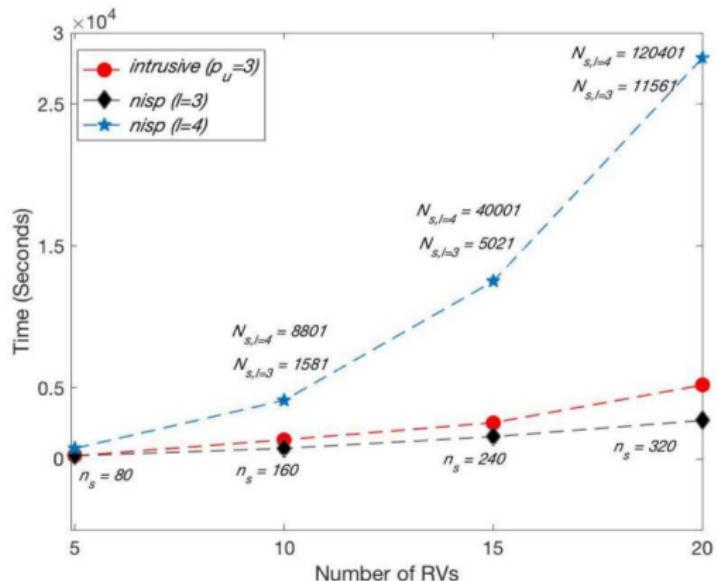


- Model Problem:

$$\begin{aligned}-\nabla \cdot (c_d(\mathbf{x}, \theta) \nabla u(\mathbf{x}, \theta)) &= F(\mathbf{x}), & \Omega \times \mathcal{W}, \\ u(\mathbf{x}, \theta) &= 0, & \delta\Omega \times \mathcal{W},\end{aligned}$$

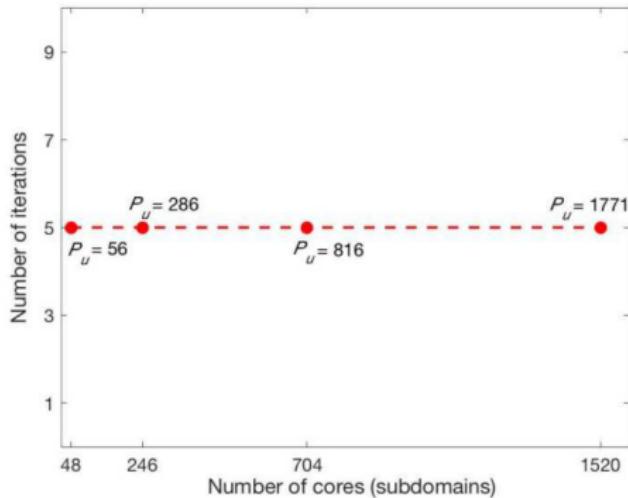
- Diffusion coefficient c_d modelled as a lognormal process with the underlying a Gaussian process having mean μ , variance σ^2 and exponential covariance function C (on a 2D domain).


$$C(x_1, y_1; x_2, y_2) = \sigma^2 e^{-|x_2 - x_1|/b_1 - |y_2 - y_1|/b_2},$$

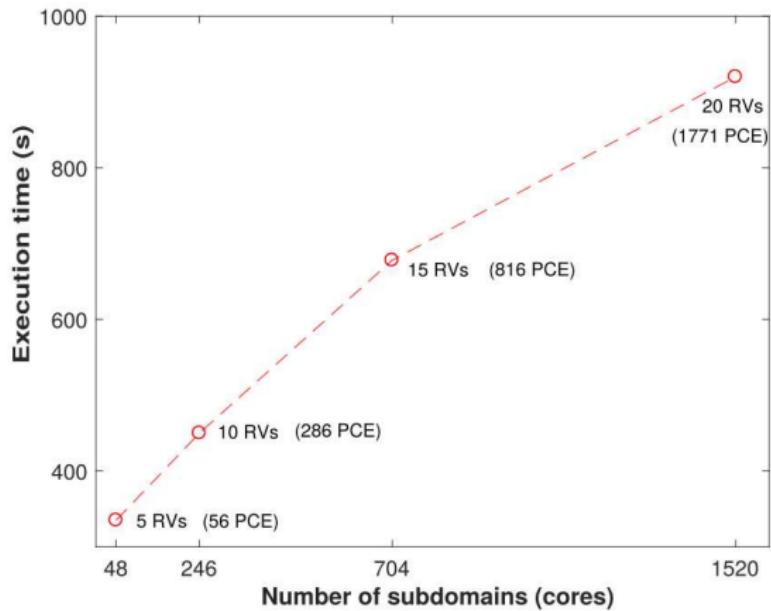
Intrusive SSFEM System Matrix: Block-Sparsity Structures


Intrusive system matrices for fixed mesh resolution $N \approx 150$, fixed order of expansion $P_u = 3$ with $L = 4$ and $L = 5$.

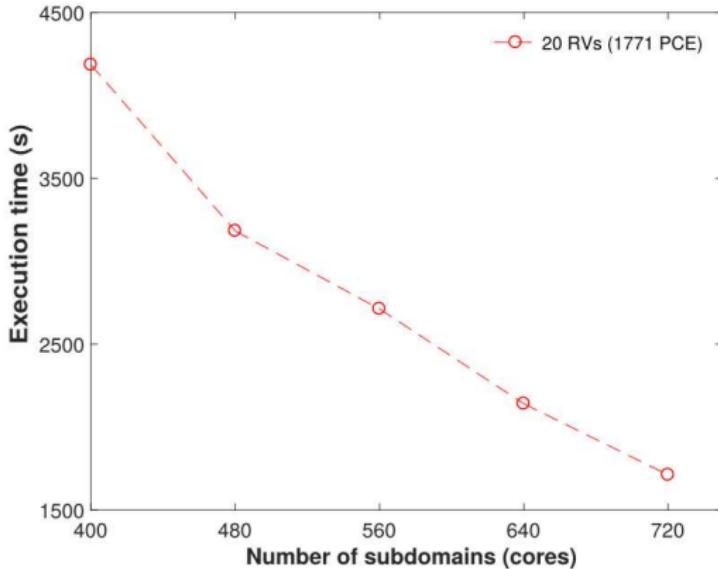
Errors Analysis of PCE Coefficients of Solution Process: Intrusive Vs Non-Intrusive


Relative error norm = $\frac{\|u_{iH} - u_{ih}\|}{\|u_{iH}\|}$, 5 random variables, error in $(\hat{\mathbf{u}}_2)$, coarse mesh ($N \approx 150$)

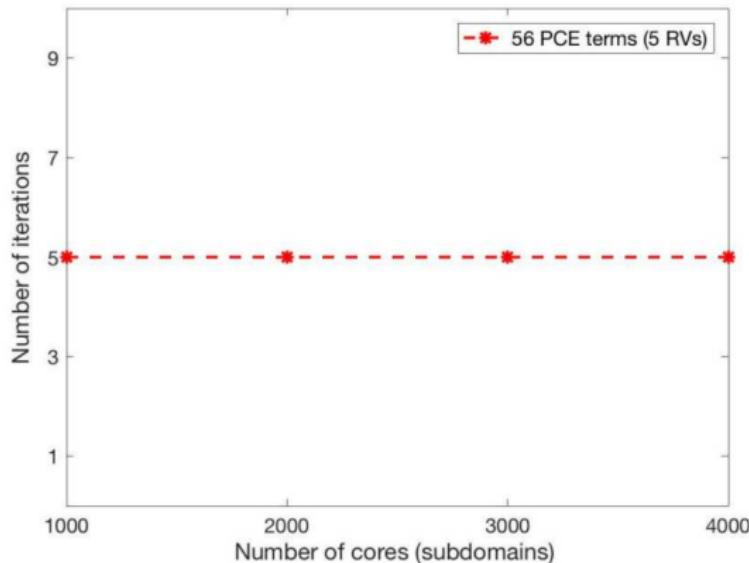
Scalability with Number of Stochastic Dimensions: Intrusive Vs Non-Intrusive (Sparse Grid)


Fixed mesh resolution (52704 nodes and 105410 elements) and third order PCE for intrusive. Smolyak sparse grid with $l = 3$ and $l = 4$ for non-intrusive.

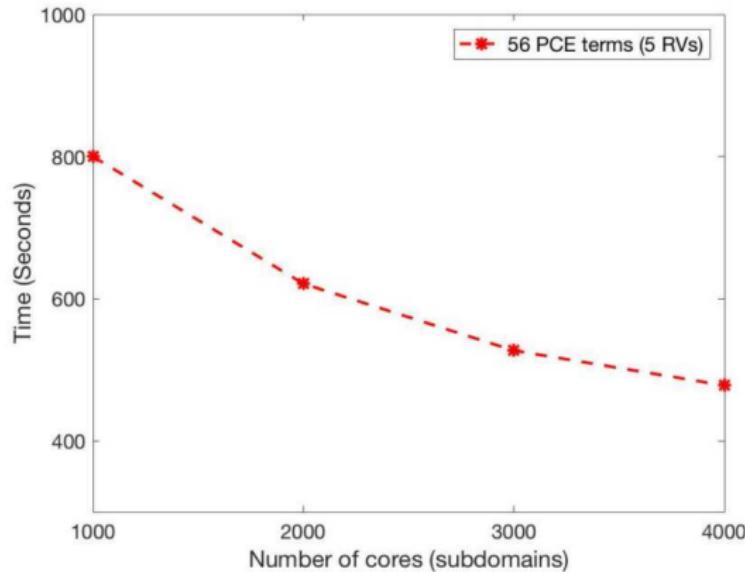
Scalability With Respect to Number of Random Variables: NNC/BDDC


Fixed mesh resolution (52704 nodes and 105410 elements), fixed problem size per subdomain ($\approx 60,000$) and third order PCE (linear system of order max. ≈ 93 million)

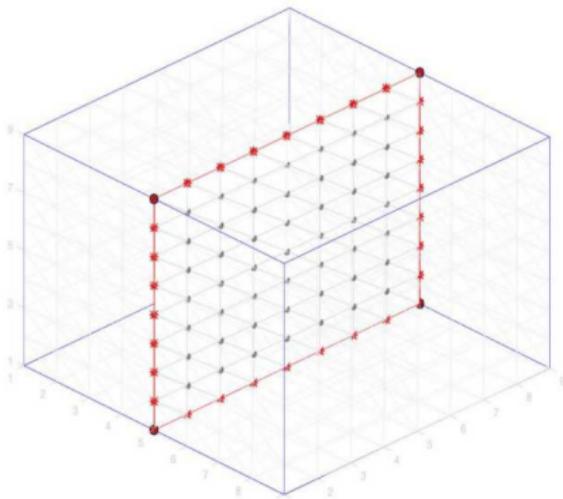
Scalability With Respect To Number of Random Variables: NNC/BDDC


Fixed mesh (52704 nodes and 105410 elements), fixed problem size per subdomain ($\approx 60,000$) and third order PCE

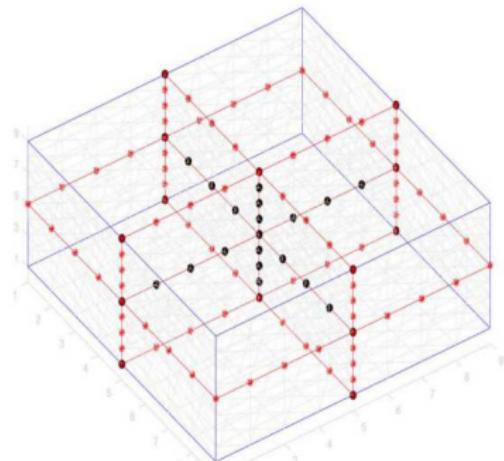
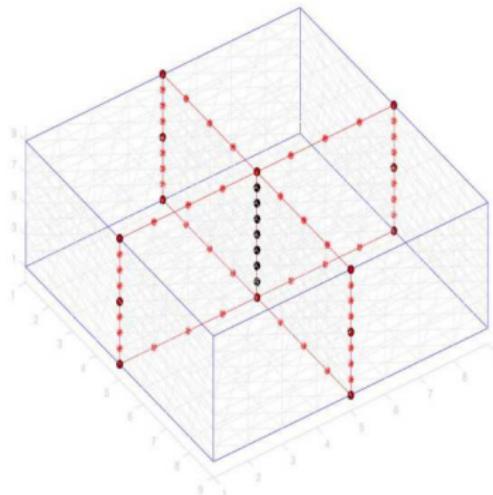
Parallel Scalability (Strong): NNC/BDDC


Fixed global problem, mesh with (52704 nodes and 105410 elements) and number of PCE terms $P_u = 1771$.

Scalability using Large-Scale HPC Cluster


For the fixed mesh resolution (0.332 million nodes and 0.664 million elements.) and fixed number of PCE terms ($P_u = 56$).

Scalability using Large-Scale HPC Cluster



For the fixed mesh resolution (0.332 million nodes and 0.664 million elements.) and fixed number of PCE terms ($P_u = 56$).

Probabilistic Coarse Grid in Three Dimensions: Extended Wirebasket Grid

Schematic representation of a simple wirebasket coarse grid for a cube partitioned into two subdomains. (-) for the global interface edge, (●) for vertices (★) for interface-edges and (●) for interface-faces.

Probabilistic Coarse Grid in Three Dimensions: Extended Wirebasket Grid

Schematic representation of the wirebasket coarse grid (consist of \bullet and \star) for a cube partitioned into four and eight subdomains (exclude interface-edges \star to get vertex-grid).

Deterministic Setting: Condition Number Bound

Vertex vs Wirebasket-based Methods

For the vertex-based method in two dimensions

$$\kappa \leq C(1 + \log(H/h))^2,$$

For the vertex-based method in three dimensions

$$\kappa \leq C(H/h)(1 + \log(H/h)).$$

For the wirebasket-based methods in three dimensions

$$\kappa \leq C(1 + \log(H/h))^2.$$

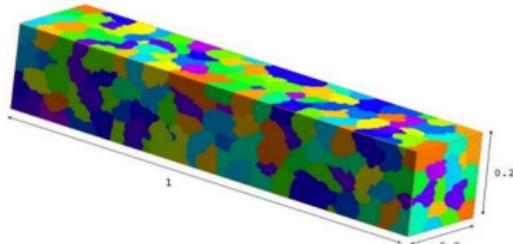
$$\mathcal{F}_{WW} \mathcal{U}_W = d_W,$$

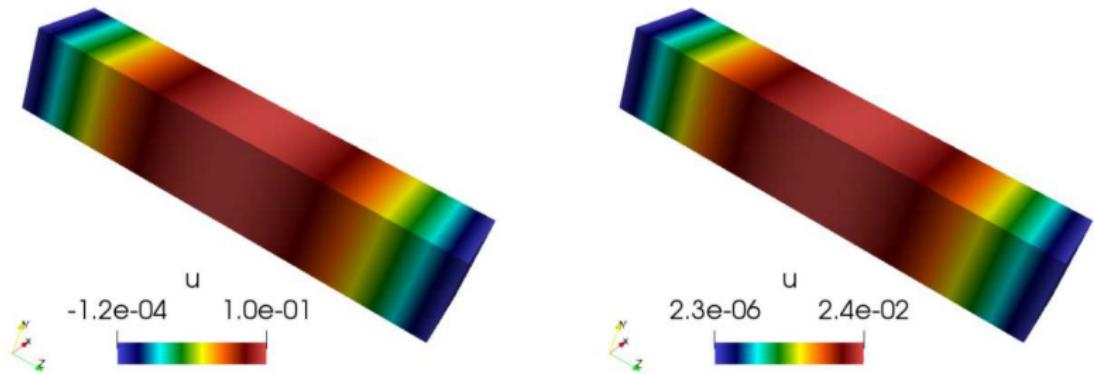
$$\mathcal{F}_{WW} = \sum_{s=1}^{n_s} \mathcal{B}_W^s {}^T \left(\mathcal{S}_{WW}^s - \mathcal{S}_{WF}^s [\mathcal{S}_{FF}^s]^{-1} \mathcal{S}_{FW}^s \right) \mathcal{B}_W^s,$$
$$d_W = \sum_{s=1}^{n_s} \mathcal{B}_W^s {}^T \left(f_W^s - \mathcal{S}_{WF}^s [\mathcal{S}_{FF}^s]^{-1} f_F^s \right).$$

BDDC/NNC Preconditioner using Extended Wirebasket:

$$\mathcal{M}_{NNW}^{-1} = \sum_{s=1}^{n_s} \mathcal{R}_s {}^T \mathcal{D}_s (\mathcal{R}_s^F {}^T [\mathcal{S}_{FF}^s]^{-1} \mathcal{R}_s^F) \mathcal{D}_s \mathcal{R}_s + \mathcal{R}_0 {}^T [\mathcal{F}_{WW}]^{-1} \mathcal{R}_0.$$

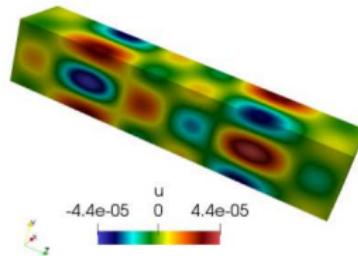
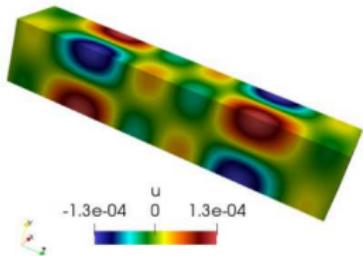
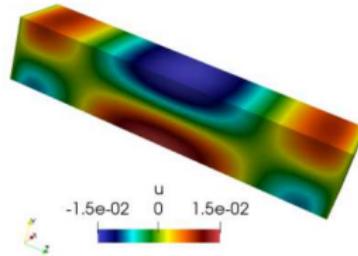
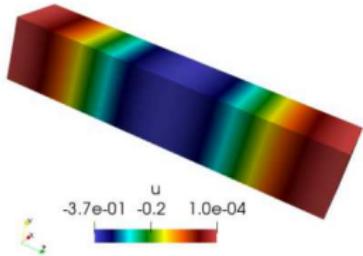
$$\mathcal{R}_0 = \sum_{s=1}^{n_s} \mathcal{B}_W^s {}^T (\mathcal{R}_s^W - \mathcal{S}_{WF}^s [\mathcal{S}_{FF}^s]^{-1} \mathcal{R}_s^F) \mathcal{D}_s \mathcal{R}_s,$$


Numerical Experiments: Wirebasket based BDDC/NNC solver


- Model Problem: Diffusion equation in three dimensions

$$\begin{aligned}-\nabla \cdot (c_d(\mathbf{x}, \theta) \nabla u(\mathbf{x}, \theta)) &= F(\mathbf{x}), & \Omega \times \mathcal{W}, \\ u(\mathbf{x}, \theta) &= 0, & \delta\Omega \times \mathcal{W},\end{aligned}$$

- Diffusion coefficient c_d modeled as a lognormal process with the underlying a Gaussian process having mean μ , variance σ^2 and exponential covariance function C (on a 3D domain),





$$C(x_1, y_1, z_1; x_2, y_2, z_2) = \sigma^2 e^{-|x_2-x_1|/b_x - |y_2-y_1|/b_y - |z_2-z_1|/b_z}.$$

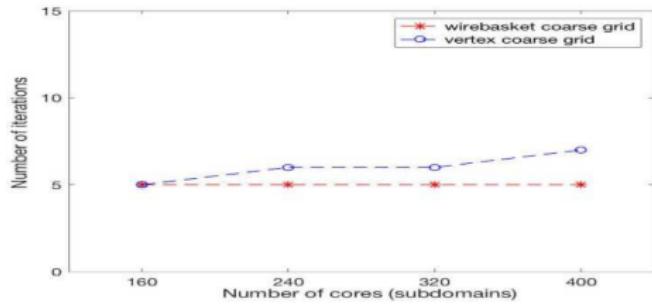
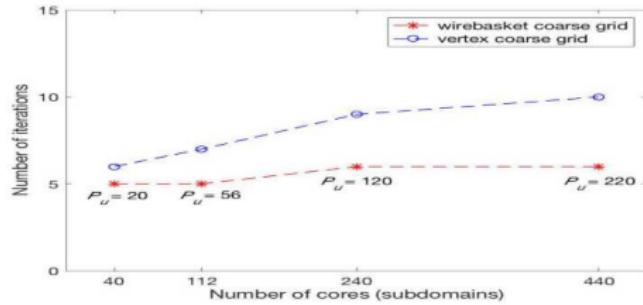
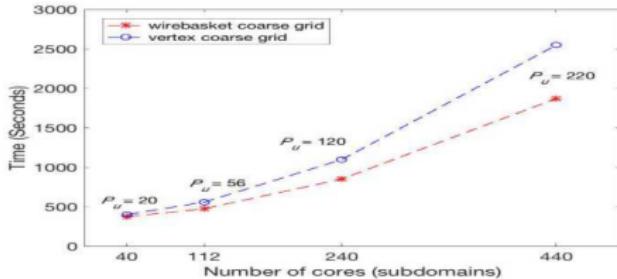
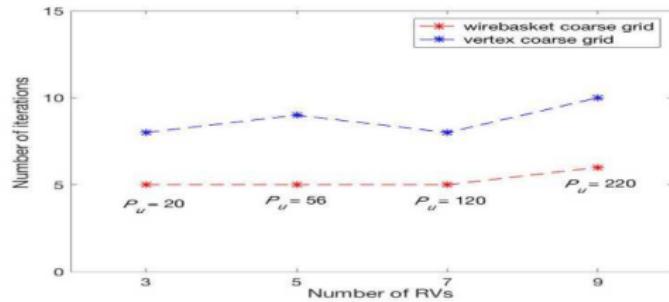
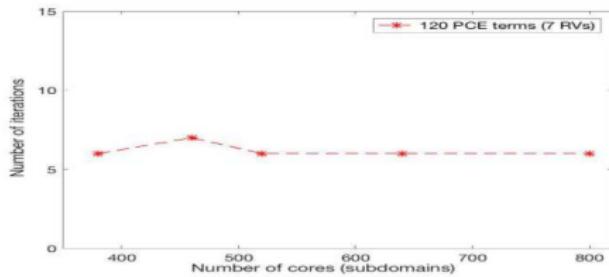


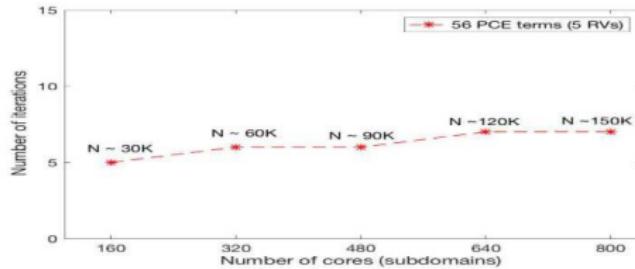
Figure : Mean and standard deviation of the solution process.

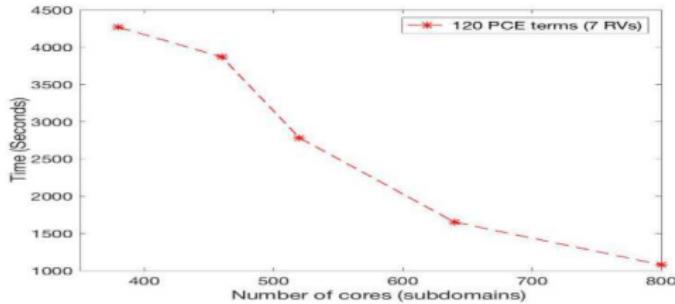

*Characteristics of the Solution Process:
Diffusion Equation in Three Dimensions*

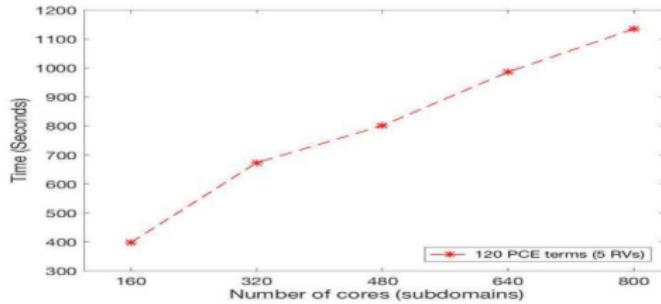

Selected PCE coefficients of the solution process.

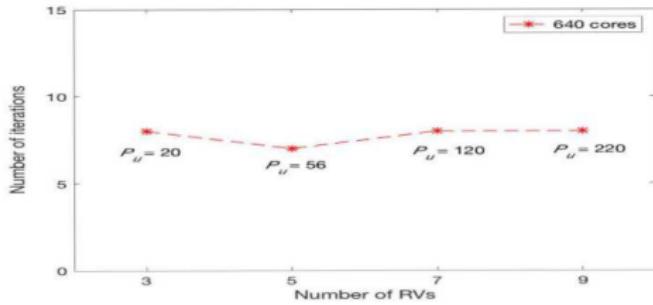

Figure : Iteration count versus number of subdomains for the fixed mesh resolution with fixed number of PCE terms.

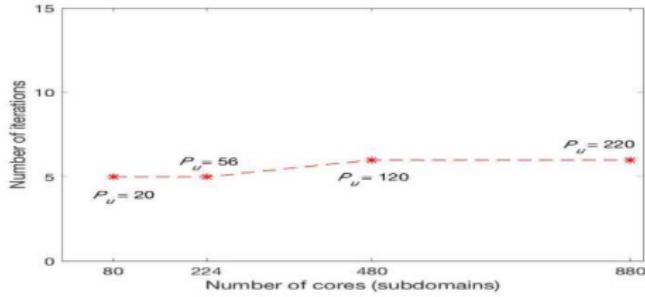

Figure : Iteration count versus number of subdomains for fixed problem size per subdomain with increasing number of PCEs (fixed mesh resolution).

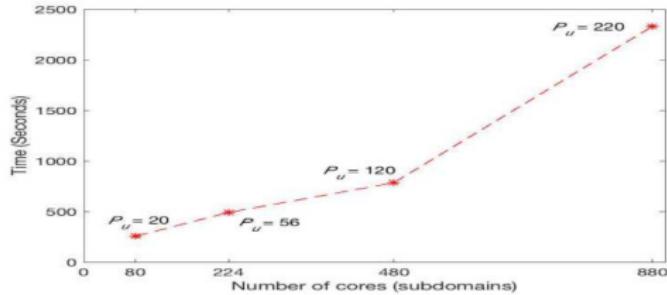

Figure : Execution time versus number of subdomains for fixed problem size per subdomain with increasing number of PCEs (fixed mesh resolution).


Figure : Iteration count versus number PCE terms for the fixed mesh resolution with fixed number of subdomains.


Figure : Iteration count versus number of subdomains for the fixed mesh resolution with fixed number of PCE terms.


Figure : Iteration count versus number of subdomains for the fixed problem size per core with increasing mesh resolution (fixed number of PCE terms).


Figure : Execution time versus number of subdomains with the fixed mesh resolution and the number of PCE terms.


Figure : Execution time versus number of subdomains for the fixed problem size per core with increasing mesh resolution (fixed number of PCE terms).

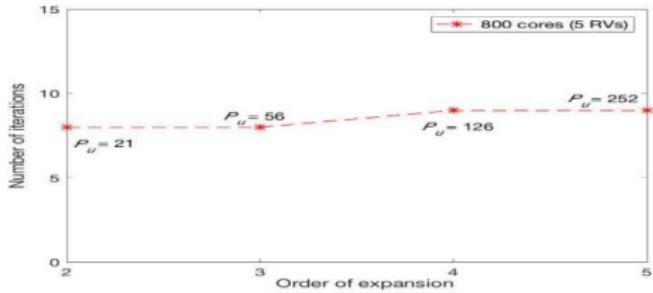

Figure : Iteration count versus number PCE terms for the fixed mesh resolution with fixed number of subdomains.

Figure : Iteration count versus number of subdomains for the fixed problem size per core with increasing number of PCE terms (fixed mesh resolution).

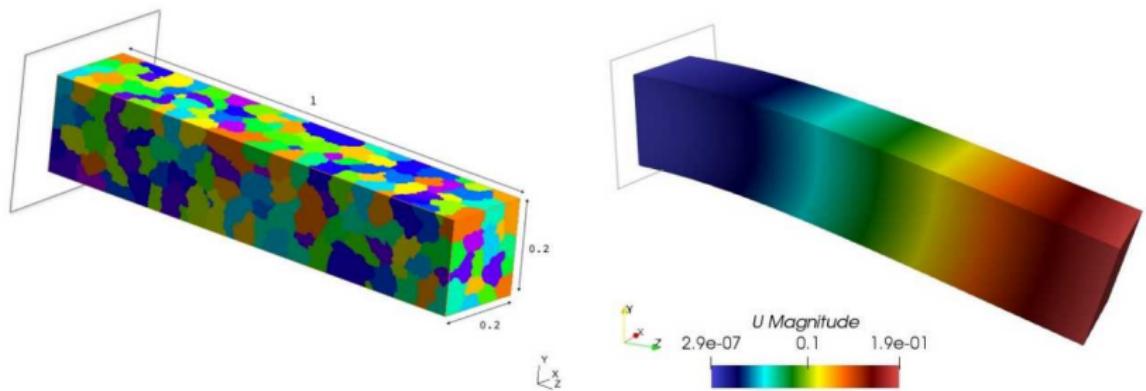
Figure : Execution time versus number of subdomains for fixed problem size per subdomain with increasing number of PCEs (fixed mesh resolution).

Figure : Iteration count versus order of expansion for the fixed mesh resolution with fixed number of subdomains (fixed number of RVs).

Numerical Experiments: Wirebasket based BDDC/NNC solver for Coupled PDE System

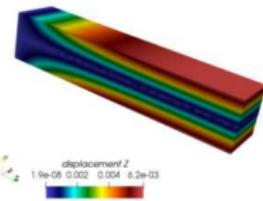
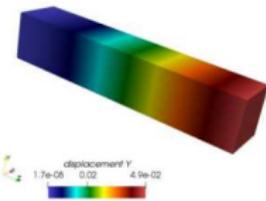
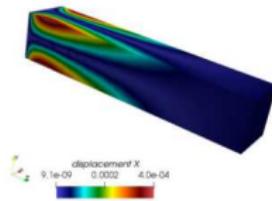
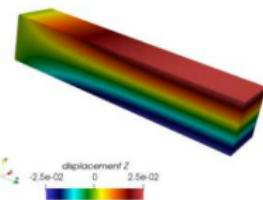
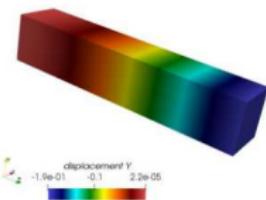
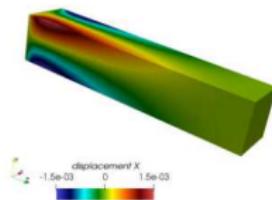
- Model Problem: Equations of Linear Elasticity in 3D,

$$\begin{aligned} -\nabla \cdot \sigma(\mathcal{U}(\mathbf{x}, \theta)) &= F(\mathbf{x}) \quad \text{in} \quad \mathcal{D}, \\ \sigma(\mathcal{U}(\mathbf{x}, \theta)) \cdot \hat{\mathbf{n}} &= b_T \quad \text{on} \quad \Gamma_1 = \delta\mathcal{D} \setminus \Gamma_0, \\ \mathcal{U}(\mathbf{x}, \theta) &= 0 \quad \text{on} \quad \Gamma_0. \end{aligned}$$

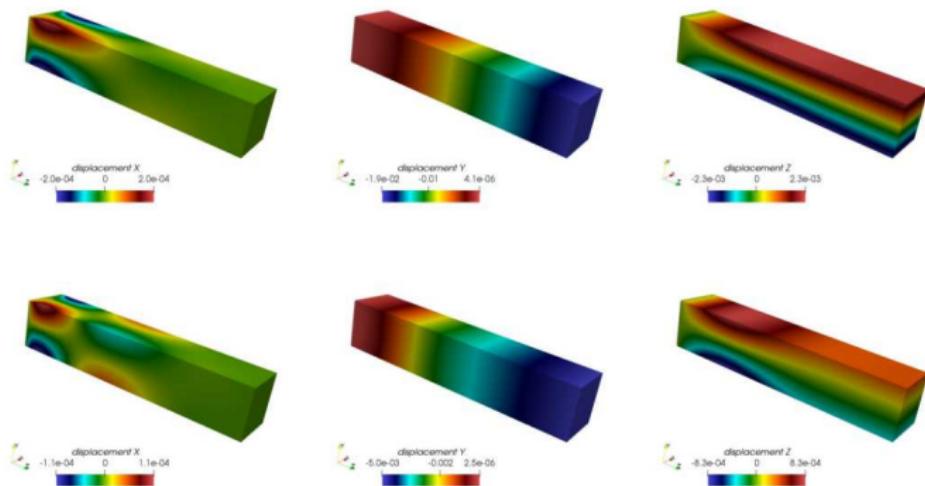

Where the stress tensor, σ can be written as,

$$\sigma(\mathcal{U}(\mathbf{x}, \theta)) = \lambda(\nabla \cdot \mathcal{U}(\mathbf{x}, \theta))I + 2\mu\epsilon(\mathcal{U}(\mathbf{x}, \theta)),$$

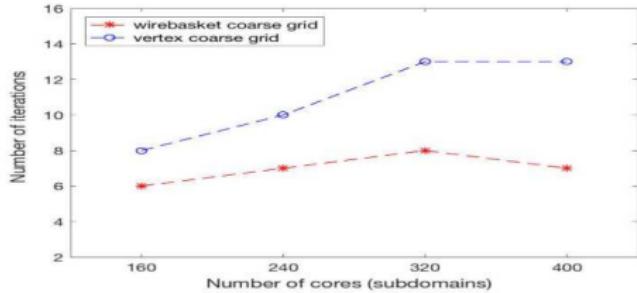
where $\lambda = \frac{E\nu}{(1+\nu)(1-2\nu)}$ and $\mu = \frac{E}{2(1+\nu)}$ are Lamé elasticity parameters.







- Young's modulus E is modeled as a lognormal stochastic process (similar to the previous case).

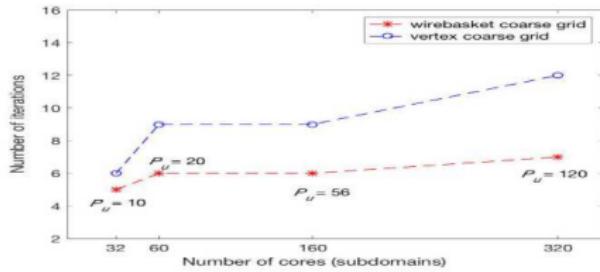
Characteristics of the Solution Process:
Equations of Linear Elasticity in Three Dimensions


Mean magnitude of the beam deflection subjected to self-weight

Characteristics of the Solution Process:
Equations of Linear Elasticity in Three Dimensions



x, y and z components of the mean and standard deviation of the solution process.


Characteristics of the Solution Process:
Equations of Linear Elasticity in Three Dimensions

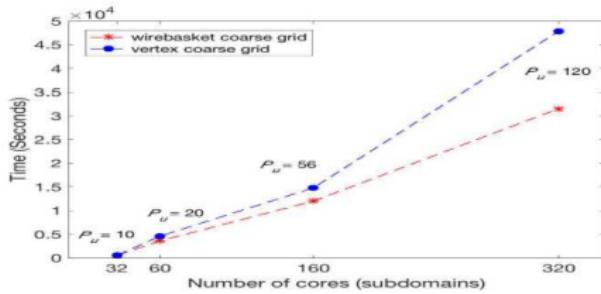
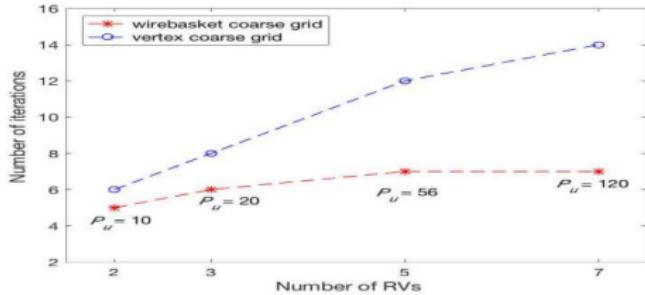
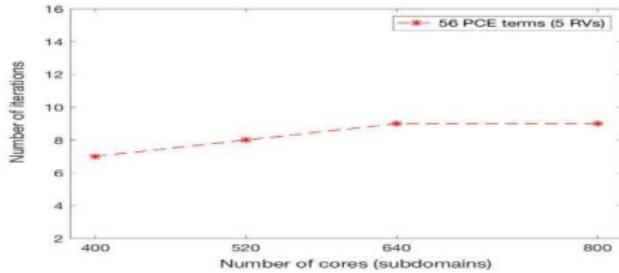
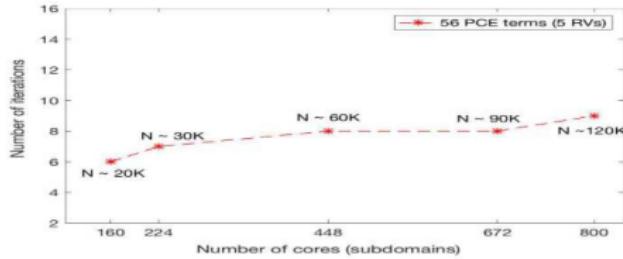
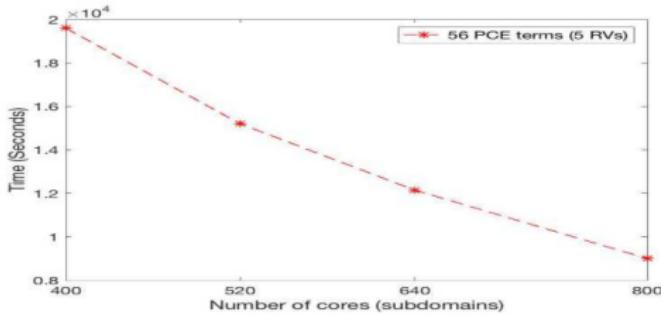

x, y and z components of the selected PCE coefficients of the solution process.

Figure : Iteration count versus number of subdomains for the fixed mesh resolution with fixed number of PCE terms.

Figure : Iteration count versus number of subdomains for fixed problem size per subdomain with increasing number of PCEs (fixed mesh resolution).

Figure : Execution time versus number of subdomains for fixed problem size per subdomain with increasing number of PCEs (fixed mesh resolution).


Figure : Iteration count versus number of PCE terms for the fixed mesh resolution with fixed number of subdomains.

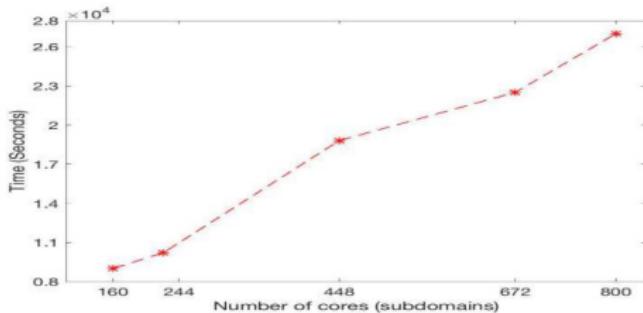

Figure : Iteration count versus number of subdomains for the fixed mesh resolution with fixed number of PCE terms.

Figure : Iteration count versus number of subdomains for the fixed problem size per core with increasing mesh resolution (fixed number of PCE terms).

Figure : Execution time versus number of subdomains with the fixed mesh resolution and the number of PCE terms.

Figure : Execution time versus number of subdomains for the fixed problem size per core with increasing mesh resolution (fixed number of PCE terms).

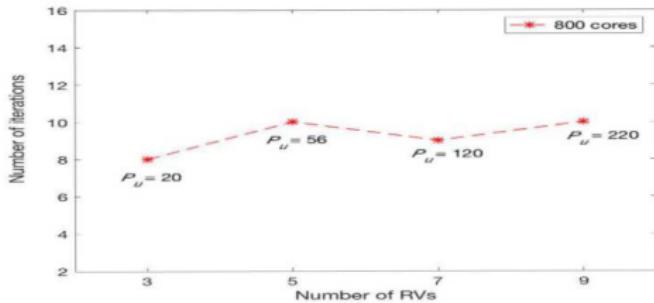
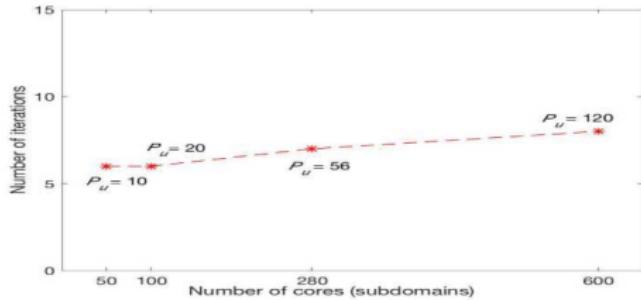
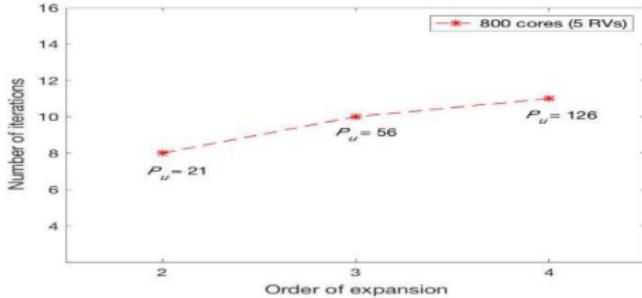




Figure : Iteration count versus number of PCE terms for the fixed mesh resolution with fixed number of subdomains.

Figure : Iteration count versus number of subdomains for the fixed problem size per core with increasing number of PCE terms (fixed mesh resolution).

Figure : Iteration count versus order of expansion for the fixed mesh resolution with fixed number of subdomains (fixed number of RVs).

Conclusion

- Development of parallel PCKF that exploits available two-level domain decomposition algorithms for SPDEs.
- Distributed implementation and scalability studies of the parallel PCKF using a stationary stochastic diffusion problem.

Acknowledgment

- **Financial contributions**
 - **Natural Sciences and Engineering Research Council of Canada**
 - **Canada Research Chair Program**
 - **Canada Foundation of Innovation**
 - **Ontario Innovation Trust**