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Uncertain chemical model parameters

chemical kinetic rate parameters (e.g. Arrhenius A, n, E) are
uncertain due to the noise and bias in supporting experimental
data, motivating uncertainty quantification (UQ)

UQ hindered by incomplete reporting of uncertainties, e.g.
reported uncertainty on A only, or A and E, or error bars on k
values for different experiment temperatures

ideally, using the raw noisy experimental data along with
models for the both the kinetics and noise, to learn a joint
density on the model parameters. However data are typically
missing or unavailable, we only have statistics of the data

Is it possible to reconstruct the missing data given the available

information from the experiment?
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Uncertainty quantification and predictive modeling

What are the consequences of uncertainty for predictive 35| H,-air, 950K, 1atm
modeling? 3.4/
What is the ignition time corresponding to the most likely 50
rate parameter values? 3.2
3.1

What is the most likely ignition time given the available
information about the rate parameters?
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Chemical kinetic modeling: mechanism
3 —~| Pirraglia et al. [1990] ;\“
- 3
47 ?_| shock tube, T I
4= 2 _[ Masten et al. [1990]
r asten et al. .
# Reaction A n E, Reference - = i"\*l
5| shock tube, T> i
H»/O» reactions - —
[T H+0,—0+OH 3.55E+15 040 .6GE+04 __ [87 ?| Du & Hessler [1992] ;:k‘
2 O+ H,=H+ OH 5.08E+04 2.70 6.29E+03 [88] o ?’ shock tube, T>> § e
3 Hy + OH=H;0+H 2.16E+08 1.50 343E+03 _ [89] oS o
4 O+ H;0=0H+OH 2.97E+06 2.00 1.34E+04 [90] 4~ - X
5 H,+M=H+H+M 4.58E+19 —1.40 1.04E+05 1] *
v %
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A N A%
AN A - AN AN
No. Reaction A \ n E, [cal/mol] Reference
1 H+0,=0H+0 1.04E+14\ 15,286 [11]
9 O+ |‘_|2 =H+OH 3.82E+12 7948 [45]
10 H,+OH=H,0+H [.16E+08 1.50 3.43E+03 |
) ) 8 OH+OH=H,0+0 3.57E+04 24 -2111 [74]
g2 04 06 08 1 18 H+M=H+H+M 584E+18 —-1.1 104,380 [4]

t/ms

Crr




100 data points

) 0.2 0.4 0.6 0.8 1 0

t]

C(t)= Ctrue(t) & Cerror(t)

Cervelt)= £(K, )

Sy

Cerror(t)= €
e~N(0,02)
0 O.I2 O.I4 016 0:8 1

t



Bayesian inference
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Bayesian inference
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Bayesian inference

n=10000 p(k, o|c,) < p(c,|k, o)
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Bayesian inference
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Bayesian inference

n=1000 p(k, o|c,) < p(c,|k, o)
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Bayesian inference
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Bayesian inference: hierarchical model
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Bayesian inference: hierarchical model

n=100
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Bayesian inference: hierarchical model

n=1000 p(AE, o|c,) < p(c,|AE, o)
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Bayesian inference: hierarchical model
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Bayesian inference: mechanism construction
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What if we don’t have data...? A\

Data is often unreported, missing, or lost
forever experiment results

N " experiment 1:
2 H+0O2->0H+0O
Pirraglia et al., J. Phys. Chem. (1989) 10'2 .
shock tube study, H+O,->0OH+0 _
signal: H atom decay o
Michael et al. J. Phys. Chem. (1988) TE’
shock tube study, H+H,0->OH+H, = £
2,
signal: H atom decay x
10
Results expresses as k(T) values with ;
error bars eXperiment 2:
~ H+H20->H2+O0OH 5
@ @F 5 6 7 8

i 1T K] %107



experiment 1:
H+02->0H+O
|
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In the absence of data: data inference

the reported k(T) values are summary statistics of the missing data,
interpret these statistics as constraints on a space of hypothetical data
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Building an ensemble of hypothetical

consistent data 7
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Bayesian framework

p(Constraints|Data)p(Data)

p (Data| Constraints) = (Constraits)

StatistiCSreported — StatistiCScomputed )2)
StatisticSreported

p (Constraints|Data) := exp(—d(

To compute the statistics of the proposed hypothetical data, perform an

inner (inference) of model parameters:

p (Parameters|Data) = p(Data| Parameters) p(Parameters)
p(Data)

= StatisticScomputed = f (p (Parameters|Data))




Consensus pooled parameter posterior (averaging)

Experiment 1: Experiment 2:
H+0,=0H+0: k,= Asexp(-E,/T) H+H,0=H,+0H: k,= A,exp(-E,/T)
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experiment results
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experiment results
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experiment results

experiment 1:
H+02->0H+0O
6 7
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experiment 1 & experiment 2
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REACTIONS
H+02<=>0+0H
H2+0H<=>H20+H

H2+M<=>2H+M
H2/2.5/ H20/12.0/
H2+AR<=>2H+AR
20+M<=>02+M
H2/2.5/ H20/12.0/
20+AR<=>02+AR
0+H+M<=>0H+M
H2/2.5/ H20/12.9/
H+OH+M<=>H20+M

HO2+H<=>H2+02
HO2+H<=>20H
H02+0<=>0H+02
HO02+0H<=>H20+02
2H02<=>02+H202
DUPLICATE
2H02<=>02+H202
DUPLICATE
H202+H<=>H20+0H
H202+H<=>H2+H02
H202+0<=>0H+H02
H202+0H<=>H20+H02
DUPLICATE
H202+0H<=>H20+H02
DUPLICATE

H202 (+M) <=>20H(+M)
LOW / 1.200E+17
>H:

H2/2.5/ H20/12.0/ AR/0.38/
H+02(+M) <=>H02(+M)

/ 9.040E+19

TROE/ ©.50 1.0E+10 1.0E-10

H20 HO2

3.550E+15
2.160E+08
2.950E+14

45500.0/

5.080E+04
2.970E+06
4,580E+19

5.840E+18
6.160E+15

1.890E+13
4.710E+18

3.800E+22

1.480E+12
.00/
/

1.660E+13
7.080E+13
3.250E+13
2.890E+13
4,200E+14

1.300E+11

2.410E+13
4.820E+13
5S0E+06
+000E+12

5.800E+14

H202

! Insert GRI-Mech thermodynamics here or use in default file
1END

-0.410
1.510
0.000
2.670
2.020

-1.400

-1.100
-0.500

0.000
-1.000

-2.000

0.600

0.000
0.000

16600.00
3430.00
48400.00

6290.00
13400.00
104380.00

104380.00
-1790.00
0.00
0.00
0.00
820.00
300.00
0.00
-500.00
11980.00
-1603.00
3970.00
7950.00
3970.00
0.00

9560.00




Joint Arrhenius parameter densities across reactions

logA,, E;: H+0,->0H+0 logA,, E,: H+H,0->0OH+H,
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Joint Arrhenius parameter densities across reactions
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Predictive simulations with uncertainty:
correlation information (joint vs. marginal densities)
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Summary
Uncertainty quantification (UQ) enables us to pose and answer relevant questions

about predictions

With access to experimental data, we can build consistent chemical mechanism
models with uncertainty measures

When data is lost, we can infer data consistent with the available information

With data we can cross-validate experiments, use UQ
techniques to argue about appropriate model forms,
model complexity, and determine what future
experiments to perform to improve predictions

MISSING

There is no substitute for carefully collected
experimental data DATA
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