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Uncertain chemical model parameters

• chemical kinetic rate parameters (e.g. Arrhenius A, n, E) are
uncertain due to the noise and bias in supporting experimental

data, motivating uncertainty quantification (UQ)

• UQ hindered by incomplete reporting of uncertainties, e.g.
reported uncertainty on A only, or A and E, or error bars on k
values for different experiment temperatures

• ideally, using the raw noisy experimental data along with

models for the both the kinetics and noise, to learn a joint
density on the model parameters. However data are typically

missing or unavailable, we only have statistics of the data

• Is it possible to reconstruct the missing data given the available
information from the experiment?
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Uncertainty quantification and predictiy4e modeling
What are the consequences of uncertainty for predictive

modeling?

What is the ignition time corresponding to the most likely

rate parameter values?

What is the most likely ignition time given the available

information about the rate parameters?
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Chemical kinetic modeling: mechanism

Reaction A
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Reaction A n Ea lcal/rnol Reference

H + 02= OH + 0 1.04E+14 15,286 [11]
9 0 + H2 = H + OH 3.82E+12 7948 145]
10 H2 4" OH = H20 + H .16E+08 1.50 3.43E+03
8 OH + OH = H20 + 0 3.57E+04 2.4 -2111 [74]
18 H2 +M=H+H+M 5.84E+18 -1.1 104,380 [4]
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100 data points

Bayesian inference
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1000 data points

Bayesian inference
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10000 data points

Bayesian inference
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Bayesian inference
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Bayesian inference
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Bayesian inference: hierarchical model
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Bayesian inference: hierarchical model
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Bayesian inference: mechanism construction
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What if we don't have data...?
Data is often unreported, missing, or lost

forever experiment results

Experiments 

• Pirraglia et al., J. Phys. Chem. (1989)
shock tube study, H+02->OH+O

signal: H atom decay

• Michael et al. J. Phys. Chem. (1988)
shock tube study, H+H20->OH+H2

signal: H atom decay

• Results expresses as k(T) values with

error bars
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In the absence of data: data inference
the reported k(T) values are summary statistics of the missing data,

interpret these statistics as constraints on a space of hypothetical data

propose a hypothetical noisy data
set for a specific experiment
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Building an ensemble of hypothetical

consistent data 7
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Bayesian framework

Bayesian inference (data space)

p (Data Constraints)

p (Constraints Data)

p( Constraints Data)p(Data) 
p( Constraints)

2StatisticscomputedStatisticsreported—= exp(-6( Statisticsreported

Bayesian inference (fitting model parameter space)

To compute the statistics of the proposed hypothetical data, perform an
inner (inference) of model parameters:

p(Data Parameters)p(Parameters)p (Parameters Data) p(Data)
  Statisticscomputed = f (p (Parameters Data))



Consensus pooled parameter posterior (averaging)
Experiment 1:

H+02=0H+0: k1= A1exp(-E1/T)
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experiment results

experiment 1:
H+02->OH+O
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Joint Arrhenius parameter densities across reactions
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Joint Arrhenius parameter densities across reactions
E1 vs. E2

Joint information on all the
Arrhenius parameters
across the 2 reactions
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Predictive simulations with uncertainty:
correlation information (joint vs. marginal densities)
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Summary
• Uncertainty quantification (UQ) enables us to pose and answer relevant questions

about predictions

• With access to experimental data, we can build consistent chemical mechanism
models with uncertainty measures

• When data is lost, we can infer data consistent with the available information

• With data we can cross-validate experiments, use UQ
techniques to argue about appropriate model forms,
model complexity, and determine what future
experiments to perform to improve predictions

• There is no substitute for carefully collected
experimental data
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