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Introduction
Solar thermochemical hydrogen (STCH) production is a two-
step redox process that utilizes solar thermal energy to
produce chemical fuels. Concentrated sunlight can be used to
thermally reduce a metal oxide leaving it in an oxygen deficient
form. Subsequent exposure of the reduced metal oxide to
steam at lower temperatures reoxidizes the material and
produces hydrogen.
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Numerous computational modeling studies have been
conducted on the metal oxide ceria (Ce02_6). However, the
thermodynamics are insufficient for achieving hydrogen cost
and efficiency targets set by DOE. Therefore, the development
and selection of new non-stoichiometric oxide materials is
required to improve the solar-to-hydrogen efficiency and lower
hydrogen production cost.

Material Efficiency Model
Material research has led to the need for a standardized
evaluation tool for computing system efficiencies with new
material formulations.The goal of the tool is to compare solar-
to-hydrogen efficiencies based on thermodynamic data of new
materials.

Objective: Create an open source system model for evaluating
solar-to-hydrogen efficiencies of novel water splitting materials.

Model Development
Desired Model Characteristics:
• Non-proprietary platform
• Graphical interface
• System component models can be reconfigured
• Easily modify/implement new material thermodynamics

The model is currently being developed in OpenModelica, which
is an object-oriented modeling language that allows for
component development with generality and a graphical
interface.

Current Status
System component models for a simple two-step
thermochemical cycle have been developed.

Components:
• Solid and gas thermodynamic and transport properties
• Reactors (Solar Reduction Receiver,Water Splitting Reactor)
• Heat Exchangers (Solid and Gas Phases)
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//Mass Balance
m_dot_s_in = m_dot_s_out;

m dot_g_in = m dot_g_out;
//Species Balance

for i in 1:GasInlet.Medium.n loop
m dot_g_in * y_g_in[i] = m dot_g_out * y_g_out[i];

end for;
y_O_s_in = y_O_s_out;

//Momentum

,.

Balance

//Energy Balance

Q_dot_in + m dot_s_in * h_s_in + m dot_g_in * h_g_in = m dot_s_out * h_s_out + m dot_g_out * h_g_out;

T_g_out = T_s_out;

/Property Calls
h_s_in = Media.SolidEnthalpy(T_s_in, y 0_s_in);

h_s_out = Media.SolidEnthalpy(T_s_out, y_O_s_out);
h_g_in = Media.GasEnthalpy(T_g_in, y_g_in, GasInlet.Medium.data);

h_g_out = Media.GasEnthalpy(T_g_out, y_g_out, GasOutlet.Medium.data);

Figure I: Libraries and partial two-step solar thermochemical
system model in OpenModelica.

Future Work
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Figure 2: Complete two-step STCH system with balance-of-plant
components.

• Finish modeling the balance-of-plant components (boiler,
condenser, particle lift, radiation heat transfer)

• Develop a standard system model with ceria material
thermodynamics

• Standardize the material thermodynamic property functions
to accept new materials

• Document the code and make publicly available
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