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Turbulent combustion involves complex nonlinear interactions between fluid dynamics, molecular transport, and flame chemistry that span a broad range of length and
time scales, posing a formidable challenge to imaging diagnostics. Advances in diode-pumped pulsed lasers and high-speed CMOS cameras are providing new opportunities for
measuring these interactions. In present work, we use simultaneous Tomo-PIV and 2D-LIF imaging of the hydroxyl radical (OH) at 10 kHz to study the effects of flame heat
release on preferential alignment of fluid dynamic strain with the normal direction to the local flame front in turbulent premixed counterflow flames as well as a turbulent
premixed Bunsen flame. The existence of large bulk strain rate in the counterflow flames sets a distinct difference from that of the Bunsen flames, and its influence is studied by
comparing the alignment statistics in both flames.
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Alignment of Strain with Flame Normal
Fluid dynamic strain plays central role in turbulence-chemistry coupling.

Over what length scale is the strain rate orientation affected by flame
heat release?

To what extent does dilatation from heat release dominate over
turbulence in determining the orientation of extensive and compressive
strain rates?

To what extent does the existence of bulk strain rate affect the alignment
statistics.

Approach: Measure
direction and strain
flame front.

statistics of angle between flame front normal
rate eigenvectors as a function of distance from

Transport Equation for Scalar Dissipation (Arc = D IVCI2)

Diffusive Flux
Dissipation of

Scalar Gradient

Dilatation +
Turbulence-Scalar

I nteraction

p c  aNc= pD)
Dt ax-\ dx- 

-2PD 2 
[

(:Xj

2 

I -I- 2pAic (öjj ninj)sijl

DN

/ 
axi 

Measurement of angle

between each principal strain

rate and flame front normal

Production by
Chemical Reaction

Oc 06)
+ 2D

Flame Tangential Strain

St = [ (6ij - ninj)sij1=A - Sn

Flame Normal Strain

Sn = s1cos2(91) + s2cos2 (92) + s3cos2(93)

Different Flow Patterns with two Burner Geometries
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Strain Rate Alignment Statistics
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P(9 < 45 °) = Probability that
angles between principal
strain rates and flame normal
are less than 45 degrees
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• Tomographic particle image velocimetry and 2D LIF imaging of OH provide insights into local impact of flame front on strain rate alignment.

• At 3-mm from the flame front on both reactant and product sides, alignment is nearly random in the Bunsen flame while preferential alignment
with compressive strain rate was shown in the counterflow flame due to large compressive bulk strain rate.

• Near the flame front, preferential alignment of flame normal with most extensive strain and with most compressive strain was observed in the
Bunsen flame and the counterflow flame, respectively.

• Existence of large compressive bulk strain rate suppress physic space in which heat release affects the alignment statistics.
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