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The Case for Uncertainty Quantification

UQ needed for... 
6 Model predictions

a Model validation and comparison

a Confidence assessment

co Reliability analysis

✓ Dimensionality reduction

o Optimal design

a Decision support

a (Noisy) data assimilation

Uncertainty Sources

O Model parameters

✓ Initial/boundary conditions

a Model geometry/structure

✓ Lack of knowledge

o Data noise

✓ Intrinsic stochasticity

o Numerical errors, too
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Main target: model error g (x) '-,-,:', f (x, À)
deviation from 'truth' or from a higher-fidelity model

9 ... otherwise called (with slightly altered meanings):
model discrepancy, model structural error,
model inadequacy, model misspecification,
model form error, model uncertainty

• Inverse modeling context
Given experimental or higher-fidelity model data,
estimate the model error

• Represent and estimate the error associated with
Simplifying assumptions, parameterizations
Mathematical formulation, theoretical framework

• ...will be useful for
Model validation
Model comparison
Scientific discovery and model improvement
Reliable computational predictions
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Ignoring model error leads to
overconfident and biased predictions
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• Increasingly sure about predictions based on the wrong model
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Ignoring model error leads to
overconfident and biased predictions
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• Accounting for model error allows extra uncertainty component to propagate
through predictions
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Where to put model error?

e Outside:
= f (xj; A) + 6(x2) + ei

O Explicit GP representation [Kennedy-O'Hagan, 2001]
o See also [Higdon et. al, 2004], [Bayarri et. al, 2007]
o Usage: too many to cite
o Issues: see next slide
O Variants exist: multiplicative noise, non-linear maps etc.

• Inside: 
yi = (xi; A, 6(xj)) + ei

• Engineering/statistical adjustment [Joseph and Melkote, 2009]
• Additive corrections to submodels [Strong et. al, 2011]
o Validation of extrapolative predictions [Oliver et. al, 2014]
o Field inversion and machine learning [Duraisamy et. al, 2015-]
o Hybrid correction [He and Xiu, 2016]
o Random field correction [Brown and Atamturktur, 2016]
• Hierarchical mixture model [Feng, 2017]
fa Parameter inflation [Pernot et. al, 2017]
o Hierarchical stochastic model [Wu et. al, 2017]
o Increased use, especially in physical models: [Emory et. al, 2011] [Oliver

and Moser, 2011], [Morrison et. al, 2016], [Sondak et. al, 2017], [Huan et. al, 2017]...
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External correction often not satisfactory
for physical models

yi = f (xi; A) + (xi) +ei

truth g(xi)

• Explicit additive statistical model for model error [KOH, 2001]

• Potential violation of physical constraints

o Disambiguation of model error (5(x,) and data error ei

• Yes, priors help: [Brynjarsdottir and O'Hagan, 2014], [Plumlee, 2017]

• Calibration of model error on measured observable does not impact the
quality of model predictions on other Qols

co Physical scientists are unlikely to augment their model with a statistical
model error term on select outputs

• Calibrated predictive model: f (x; A) + 8(x) or f (x; À) ?

o Problem is highlighted in model-to-model calibration (Et = 0)

• no a priori knowledge of the statistical structure of 6(x)
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Case for Model Error Embedding

Ideally, modelers want predictive errorbars:
inserting randomness on the outputs has issues, so...

yi = f (xi; À, 6a)+Ei

* Embed model error in specific submodel phenomenology
O a modified transport or constitutive law
e a modified formulation for a material property
o turbulent model constants

• Allows placement of model error term in locations where key
modeling assumptions and approximations are made

O as a correction or high-order term
o as a possible alternate phenomenology

• Naturally preserves model structure and physical constraints

co Disambiguates model/data errors

K. Sargsyan (ksargsy@sandia.gov) Model error July 30, 2018 9 / 22



Embedded Model Error Options

a Explore different model forms,

lntrusive = f (xi; À, C(xi)) + EZ

a Additive stochastic corrections to existing inputs

Non-intrusive = f (xi; + C(xi)) + ci

a ... even simpler, x-independent

= f(xj; + Sa) + Ei
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Bayesian Framework for Model Error Estimation

= Axi; (5„) + Ei

fa Given data yi, perform simultaneous estimation of d = (A, a),
i.e. model parameters and model-error parameters a.

Bayes' theorem
Likelihood Prior

Posterior ,•••••/....,

P(yld) p(d) p(dly) = p(y)
Evidence

a In order to estimate the likelihood Ly(d) = p(yld) = p(y1A, a),
one needs uncertainty propagation through f (xj; + ,

stochastic

a ... hence, we employ Polynomial Chaos (PC) representation for C.
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Polynomial Chaos Representation of Augmented Input

= f (xi; A + + Ei

• Zero-mean PC form 6, = EKk-1 k

o Functional representation of a large class of random variables
fa The PC germ is a standard random variable

o e.g. Uniform(-1, 1) or Normal(0, 1)

GI The PC bases (e.g. Legendre or Hermite polynomials) are
orthogonal w.r.t. PDF of

IWm(OWk(07r(Ock = 0 for m k.

• PC representation allows efficient
o Sampling
o Moment estimation
o Variance-based decomposition
o Uncertainty propagation (via NISP)
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Model Error — Likelihood construction

= f (xi ; + Sa ) = ,S)+Ei

fa Likelihood Lg(d) = p(yld) challenging, but can compute moments

tti(d) = Edfi(d, and a2(d) = Vd.fi(d, + 4

• Gauss-Marginal Approximate Likelihood compares data yi and model
predictions:

(2,70N/2 1=1 ai(a) ( 2 'cri (a)
(y -/-LI(d))(a)  exp

2

o Non-intrusive spectral projection (NISP) with Polynomial Chaos

fi(d,
NISP

Ek fik (d)Iljk (()

• ... provides easy access to mean and variance

itti(d) = Lo(d) and 01(d) = fik(d)11Wk112 + Si
k#0
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Model Error — Surrogate and Prediction

L(A + (50,(0) = fird,() NP Ek fik(d)k k(()

o NISP is employed both for likelihood computation and for
posterior/pushed-forward predictions in general

co In practice, L(.) is replaced by a pre-constructed polynomial surrogate

co Note: NISP with finite truncation is exact,
if one truncates NISP at the same order as the surrogate of L(.)

c• Posterior predictive moments

= Ed [I-ti(d)]
az2 [0_72(62)] [iii(d)] (aL002 + Q2

Model error Posterior uncertainty Surrogate error Data noise
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Model error embedding — workflow

Forward modeling

Inverse modeling

(Calibration

Model

f (xi; A)

1,,,ieprocess

Surrogate

f(xj;
GSA/BF

Embedded
model

f (xj; + 8.(0)

Prior p(A, a)

Prediction p(h(x)iy)

Any Qol

h(x; a + /5„(0) Posterior p(A, ly)

• Predictive uncertainty decomposition: Total Variance =

Posterior uncertainty + Data noise + Model error + Surrogate error
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.. back to toy example
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More data leads to 'leftover' model error

Calibrating a quadratic f (x) = Ao + Aix + A2x2
w.r.t. 'truth' g(x) = 6 + x2 — 0.5(x 1)3•5 measured with noise o- = 0.1.

Summary of features:

O Well-defined model-to-model calibration

O Model-driven discrepancy correlations

O Respects physical constraints

O Disambiguates model and data errors

O Calibrated predictions of multiple Qols
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Ignition time in chemical kinetics

• Two-step global reaction model calibrated against shock tube
experimental data

• Operating conditions: pressure P, initial temperature To &
equivalence ratio 0

C12H26 2502

co+ Z sco2
k2 f

k2b

12C0 13H20

CO2.

= Ae( [C12H26]
0.2

5 [02] 1.25

fa Data: log(ignition time)

fa Embedding
(ln A, E) =Ek ak‘Pk()

2100
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170C
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Igmbon Tune
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Ignition time in chemical kinetics
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predictions
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E3SM Land Model (ELM)
O US Department of Energy (DOE) sponsored Earth system model

O Land, atmosphere, ocean, ice, human system components

• High-resolution, employ DOE leadership-class computing facilities

31
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• Conventional calibration without model error
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E3SM Land Model (ELM)
• US Department of Energy (DOE) sponsored Earth system model

• Land, atmosphere, ocean, ice, human system components

a High-resolution, employ DOE leadership-class computing facilities
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• Predictive variance decomposition with model-error component

• ... with predictive uncertainty that captures model error
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• Predictive variance decomposition with model-error component

• Allows meaningful prediction of other Qols
(e.g. no data/observable)
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E3SM Land Model (ELM)
• US Department of Energy (DOE) sponsored Earth system model

• Land, atmosphere, ocean, ice, human system components

a High-resolution, employ DOE leadership-class computing facilities
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• Predictive variance decomposition with model-error component

• Allows (a more dangerous) extrapolation to other sites
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E3SM Land Model (ELM)
0 US Department of Energy (DOE) sponsored Earth system model

a Land, atmosphere, ocean, ice, human system components

a High-resolution, employ DOE leadership-class computing facilities
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a Predictive variance decomposition with model-error component

a Allows (a more dangerous) extrapolation to other sites

a ... with predictive uncertainty that captures model error

K. Sargsyan (ksargsy@sandia.gov) Model error July 30, 2018 20 / 22



E3SM Land Model (ELM)
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Summary

O Embedded, non-intrusive model error quantification

O PC-based representation and propagation

O Bayesian framework for simultaneous estimation of model inputs
and model error parameters

o All developments done within UQTk, lightweight C++/Python library
out of SNL-CA (www.sandia.gov/uqtoolkit)

o Challenges:

- ldentifiability
- Respecting the physics
- Extrapolation/generalization

o Opportunities:
O Handling discrete inputs, relation to BMA
o Hierarchical Bayesian viewpoint: latent variable models

- Where/how to embed
- Likelihood degeneracy
- Priors
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Additional Material



LES: Turbulent Combustion in Scramjet Engine

a HIFiRE (Hypersonic
International Flight Research
and Experimentation) scramjet

• Pressure data from NASA
Langley Research Center

a Highly complex LES model
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200
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• Augmenting model error leads to more 'physical' likelihood



Chemistry problem — ABC

• Homogeneous ignition, methane-air mixture

• Single-step global reaction model calibrated against a detailed
chemical kinetic model

o Data: ignition time; range of
initial T & equivalence ratio

• Single-step model:

CH4 + 202 —> CO2 + 2H20

91 = [CH4][02] k f

k f = A exp(—E/R°T)

o (ln A, E) = Ek cckWk()

14 ,

110 0

• 

103. 2,,e
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1200 1250 .00 0 60<<S),Temp., 7-0
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Quality of Uncertain Calibrated Model Predictions

Calibrated uncertain fit model
is consistent with the
detailed-model data.

Over the range of (T°,

o MAP predictive mean
ignition-time is centered
on the data

o MAP predictive stdv
is consistent with the
scatter of the data
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TransCom3 Experiment of CO2 Flux Inversion
[Gurney et al., Tellus B, 2003]

• Observations d at N = 77 sites around the world
• Inverse problem: find fluxes s at M = 22 locations
• Linearized 'response' model R, such that d Rs

d = Rs + Ed

Model R is never perfect thus contaminating the inversion
The inferred values of s compensate for model deficiencies
Ed is meant to capture data errors, but is 'entangled' with model
errors



Consider 14 different response models R
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