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Uncertainty Quantification and Computational Science
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Uncertainty Quantification and Computational Science
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Uncertainty Quantification and Computational Science
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The Case for Uncertainty Quantification

UQ needed for... Uncertainty Sources
@ Model predictions o Model parameters
@ Model validation and comparison & [nitialboundary conditions
@ Confidence assessment
@ Model geometry/structure

@ Reliability analysis

_ _ . ) @ Lack of knowledge
@ Dimensionality reduction
@ Optimal design % [Dais notse
e Decision support @ Intrinsic stochasticity
@ (Noisy) data assimilation @ Numerical errors, too
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Main target: model error glz) = f(z; X)

deviation from ‘truth’ or from a higher-fidelity model

e ... otherwise called (with slightly altered meanings):
model discrepancy, model structural error,
model inadequacy, model misspecification,
model form error, model uncertainty

e Inverse modeling context
» Given experimental or higher-fidelity model data,
estimate the model error
e Represent and estimate the error associated with
Simplifying assumptions, parameterizations
Mathematical formulation, theoretical framework

e _..will be useful for
Model validation
Model comparison
Scientific discovery and model improvement

Reliable computational predictions
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Ignoring model error leads to
overconfident and biased predictions

e o Data, N=5
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Model-data fit

@ Given noisy data, calibrate an exponential model:  g(x) ~ f(z; A)
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@ Given noisy data, calibrate an exponential model:  g(z) ~ f(x; A)
@ Employ Bayesian inference to obtain posterior PDFs on A
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Ignoring model error leads to
overconfident and biased predictions
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@ Given noisy data, calibrate an exponential model:  g(z) ~ f(x; A)
@ Employ Bayesian inference to obtain posterior PDFs on A
@ True model — dashed-red — is structurally different from fit model f(z, \)
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Ignoring model error leads to
overconfident and biased predictions
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@ Given noisy data, calibrate an exponential model:  g(z) = f(z; )
@ Employ Bayesian inference to obtain posterior PDFs on A
@ True model — dashed-red — is structurally different from fit model f(z, \)
@ Higher data amount reduces posterior and predictive uncertainty
e Increasingly sure about predictions based on the wrong model
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Ignoring model error leads to
overconfident and biased predictions

1. 1.

e e Data, N=50
1.00| — Predictive mean
[ Predictive stdev
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No model error treatment Model error accounted for

@ Given noisy data, calibrate an exponential model:  g(z) = f(x; \)

@ Employ Bayesian inference to obtain posterior PDFs on A

@ True model — dashed-red — is structurally different from fit model f(z, \)

@ Accounting for model error allows extra uncertainty component to propagate
through predictions
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Where to put model error?

@ OQutside:

Yi = f(@i; ) +0(wi) + &

Explicit GP representation [Kennedy-O’Hagan, 2001]

See also [Higdon et. al, 2004], [Bayarri et. al, 2007]

Usage: too many to cite

Issues: see next slide

Variants exist: multiplicative noise, non-linear maps etc.

@ Inside:

7 = flog X d(z)) + &

Engineering/statistical adjustment [Joseph and Melkote, 2009]

Additive corrections to submodels [Strong et. al, 2011]

Validation of extrapolative predictions [Oliver et. al, 2014]

Field inversion and machine learning [Duraisamy et. al, 2015-]

Hybrid correction [He and Xiu, 2016]

Random field correction [Brown and Atamturktur, 2016]

Hierarchical mixture model [Feng, 2017]

Parameter inflation [Pernot et. al, 2017]

Hierarchical stochastic model [Wu et. al, 2017]

Increased use, especially in physical models: [Emory et. al, 2011] [Oliver
and Moser, 2011], [Morrison et. al, 2016], [Sondak et. al, 2017], [Huan et. al, 2017]...
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External correction often not satisfactory
for physical models

yi = fzs; A) + 6(z;) +e;
—_—

truth g(z;)

@ Explicit additive statistical model for model error [KOH, 2001]
@ Potential violation of physical constraints

@ Disambiguation of model error §(z;) and data error ¢;

@ Yes, priors help: [Brynjarsdottir and O’Hagan, 2014], [Plumlee, 2017]

@ Calibration of model error on measured observable does not impact the
quality of model predictions on other Qols

@ Physical scientists are unlikely to augment their model with a statistical
model error term on select outputs

e Calibrated predictive model:  f(z;A\) +d(x) or f(x; A) ?
@ Problem is highlighted in model-to-model calibration (e; = 0)
e no a priori knowledge of the statistical structure of §(z)
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Case for Model Error Embedding

Ideally, modelers want predictive errorbars:
inserting randomness on the outputs has issues, so...

Y= fl@ Ndg ) e

@ Embed model error in specific submodel phenomenology
e a modified transport or constitutive law
e a modified formulation for a material property
e turbulent model constants

@ Allows placement of model error term in locations where key
modeling assumptions and approximations are made
@ as a correction or high-order term
@ as a possible alternate phenomenology

@ Naturally preserves model structure and physical constraints
@ Disambiguates model/data errors
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Embedded Model Error Options

@ Explore different model forms,

Intrusive yi = flzs A, 0a(z:)) + €

@ Additive stochastic corrections to existing inputs

Non-intrusive e = e bogla el

@ ... even simpler, z-independent

Y; = f(.’El, A T 604) aF €;
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Bayesian Framework for Model Error Estimation

U —fea A o)t

@ Given data y;, perform simultaneous estimation of & = (\, a),
i.e. model parameters A and model-error parameters a.

@ Bayes’ theorem

Likelihood Prior
Posterior —N—

Ly
G = p(?;l;@/)l?(@)

Evidence

@ In order to estimate the likelihood L, (&) = p(y|&) = p(y|A, ),
one needs uncertainty propagation through f(z;; A + d,),

stochastic

@ ... hence, we employ Polynomial Chaos (PC) representation for 4.
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Polynomial Chaos Representation of Augmented Input

yi = f(xis A+ 0a) + €

@ Zero-mean PC form 6, = S | a0 (€)
@ Functional representation of a large class of random variables
@ The PC germ ¢ is a standard random variable
e e.g. Uniform(—1,1) or Normal(0, 1)
@ The PC bases (e.g. Legendre or Hermite polynomials) are
orthogonal w.r.t. PDF of ¢

/ U (©)WR(E)me(€)dE =0 form £ k.

@ PC representation allows efficient
Sampling

Moment estimation
Variance-based decomposition
Uncertainty propagation (via NISP)
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Model Error — Likelihood construction
¥i = flx; A+ 6a(C) + & = fi(6,C) + &

@ Likelihood £,(&) = p(y|&) challenging, but can compute moments

pi(@) = Ec[£i(a, Q)] and 07(@) = Ve[fi(a, Q)] + 7
@ Gauss-Marginal Approximate Likelihood compares data y; and model
predictions:

@)~ b TT ey om (— (282)°)

@ Non-intrusive spectral projection (NISP) with Polynomial Chaos
NISP

fila, Q) = > fn(@)¥r(Q)

@ ... provides easy access to mean and variance

pi(@) = fio(&) and =3 @)W + 57
k=0
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Model Error — Surrogate and Prediction

NISP

fild+6a(C)) = fila, Q) = > fir(@) ¥k (C)

@ NISP is employed both for likelihood computation and for
posterior/pushed-forward predictions in general

@ In practice, f;(-) is replaced by a pre-constructed polynomial surrogate

@ Note: NISP with finite truncation is exact,
if one truncates NISP at the same order as the surrogate of f;(-)

@ Posterior predictive moments
pi = Eq [pi(@)]

0} =Ea[0}(@)]+ Valm(@] + (0/99)? + &
N—— —~—
Model error Posterior uncertainty ~ Surrogate error  Data noise
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Model error embedding — workflow

P /Calibraﬁon
Forward modeling
| Inverse modeling Prior p(}, )
' Embedded
Model Surrogate model Data
~ GSA/BF
Iz X) f( F@is A+ 8a( Likelihood
{reprocess
_ \ _
P
[ Any Qol
[ Prediction p(h(z)|y) ]A—i h(z; A+ 6a(8)) ’—{ Posterior p(A, a|y)
‘ _4
‘\Prediction /’

@ Predictive uncertainty decomposition: Total Variance =

Posterior uncertainty + Data noise + Model error + Surrogate error
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.. back to toy example
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More data leads to ‘leftover’ model error

Callibrating a quadratic f(x) = \o 4+ A1z + A22”
w.rt. ‘truth’ g(z) = 6 + 2 — 0.5(z + 1)*® measured with noise o = 0.1.

Summary of features:

@ Well-defined model-to-model calibration
@ Model-driven discrepancy correlations
@ Respects physical constraints

@ Disambiguates model and data errors
@ Calibrated predictions of multiple Qols

e Linear (ord = 1)
e Quadratic (ord = 2)
e Cubic (ord = 3)
e True order (ord = 3.5)

Average Variance across x
/
7>
¥/
/{

To 200300 To0 Tooon Tooooo
Number of Samples, N

N =100

Data / Model

«© Data, glx)+5

==+ True function. g(x)

— Mean prediction

. Posterior uncertainty
Model error

Data / Model

- Data, glx)+g

==+ True function, g(x)

—— Mean prediction

m Posterior uncertainty
Model error

N = 10000

Data / Model

Data, glx) +£

==+ True function, g(x)

— Mean prediction

m Posterior uncertainty
Model error

% o7 om0 0 0w 0B 0% 0 1o
Input, x
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Ignition time in chemical kinetics

@ Two-step global reaction model calibrated against shock tube
experimental data

@ Operating conditions: pressure P, initial temperature T &
equivalence ratio ¢

CioHas + 20, 8 1200 + 13H,0
1 ko
CO + 502 = COa.

kap

ky = Ae(_%)[C12H26]0'25[02]1-25
@ Data: log(ignition time)
@ Embedding
(InA,E) =) o Vi (§)
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Ignition time in chemical kinetics

Without model error

With model error

o Data
¢ Posterior Uncertainty
-5 + Data Noise

- | i

o Data

Model Err
¢ Posterior Uncertainty
t Data Noise

ror

{ § 1 4o
-7 HHH * HHH}”HHH* = n.“ 0002933003,;“'”.
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@ Model error disambiguated
from data error

@ Data error correctly captured

@ Meaningful extrapolative
predictions

)
@ 0
0
]
e
8
©
o
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E3SM Land Model (ELM) &%

@ US Department of Energy (DOE) sponsored Earth system model
@ Land, atmosphere, ocean, ice, human system components
@ High-resolution, employ DOE leadership-class computing facilities

U of Michigan Biological Station
150 * Data —— Mean prediction ImE Surrogate error  EEEE Posterior uncertainty

A o
4 96 108 120 132 144

jo0® *, 74
12 24 36 48 60 72 8
Month

@ Conventional calibration without model error
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E3SM Land Model (ELM)

@ US Department of Energy (DOE) sponsored Earth system model
@ Land, atmosphere, ocean, ice, human system components
@ High-resolution, employ DOE leadership-class computing facilities

U of Michigan Biological Station
1501« Data —— Mean prediction Model error ~ mmE Surrogate error  EEE Posterior uncertainty

. '.
o, ' * o,
- 75 s . .
w . . . R N
L so
25 - A
ot oY
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3

@ Predictive variance decomposition with model-error component
@ ... with predictive uncertainty that captures model error
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E3SM Land Model (ELM) &%

@ US Department of Energy (DOE) sponsored Earth system model
@ Land, atmosphere, ocean, ice, human system components
@ High-resolution, employ DOE leadership-class computing facilities

U of Michigan Biological Station

—— Mean prediction Imm Surrogate error  EEE Posterior uncertainty

NPP
s s

12 24 36 48 60 72 84
Month

@ Predictive variance decomposition with model-error component

@ Allows meaningful prediction of other Qols
(e.g. no data/observable)
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E3SM Land Model (ELM)
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@ Land, atmosphere, ocean, ice, human system components
@ High-resolution, employ DOE leadership-class computing facilities
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@ Predictive variance decomposition with model-error component

@ Allows meaningful prediction of other Qols
(e.g. no data/observable)

@ ... with predictive uncertainty that captures model error
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E3SM Land Model (ELM)

@ US Department of Energy (DOE) sponsored Earth system model
@ Land, atmosphere, ocean, ice, human system components
@ High-resolution, employ DOE leadership-class computing facilities

Tonzi Ranch Site
120

s * Data —— Mean prediction I Surrogate error

EEE Posterior uncertainty

LHF, W/m?

72
Month

@ Predictive variance decomposition with model-error component
@ Allows (a more dangerous) extrapolation to other sites
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E3SM Land Model (ELM)

@ US Department of Energy (DOE) sponsored Earth system model
@ Land, atmosphere, ocean, ice, human system components
@ High-resolution, employ DOE leadership-class computing facilities

Tonzi Ranch Site
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@ Predictive variance decomposition with model-error component
@ Allows (a more dangerous) extrapolation to other sites
@ ... with predictive uncertainty that captures model error
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E3SM Land Model (ELM)

@ US Department of Energy (DOE) sponsored Earth system model
@ Land, atmosphere, ocean, ice, human system components

@ High-resolution, employ DOE leadership-class computing facilities

(EFSM

LHF, W/m?

Tonzi Ranch Site

- Data —— Mean prediction

Model error

N Surrogate error

EEm Posterior uncertainty
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Summary

@ Embedded, non-intrusive model error quantification
@ PC-based representation and propagation

@ Bayesian framework for simultaneous estimation of model inputs
and model error parameters

@ All developments done within UQTK, lightweight C++/Python library
out of SNL-CA (www.sandia.gov/uqgtoolki)

@ Challenges:

- Identifiability - Where/how to embed

- Respecting the physics - Likelihood degeneracy
- Extrapolation/generalization - Priors

@ Opportunities:
e Handling discrete inputs, relation to BMA
e Hierarchical Bayesian viewpoint: latent variable models
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Additional Material



LES: Turbulent Combustion in Scramjet Engine @

@ HIFIRE (Hypersonic
International Flight Research
and Experimentation) scramjet

@ Pressure data from NASA
Langley Research Center

@ Highly complex LES model

@ Augmenting model error leads to more ‘physical’ likelihood



Chemistry problem — ABC

@ Homogeneous ignition, methane-air mixture
@ Single-step global reaction model calibrated against a detailed
chemical kinetic model

@ Data: ignition time; range of
initial 7" & equivalence ratio

@ Single-step model:
CH,4 + 209 — CO9 + 2H50

R = [CHOslks
kf = Aexp(—E/R°T) "

1100 0.8

1250 3300 0.6 ((,0‘

1150 1569

Temp,, 70

o (InA,E) =Y, arTUs(€)

Log (Ignition time), Inr



Quiality of Uncertain Calibrated Model Predictions

Calibrated uncertain fit model
is consistent with the

detailed-model data. I 1t
°g

Over the range of (77, ®): f -1 £
@ MAP predictive mean ‘i . §
T4 o

ignition-time is centered

v

S

on the data 1°°°10;o\ R e =
e MAP pl’ediCtiVG stdv //We/Fe,;loousouoo\\:\‘/’/l/o 12 M
is consistent with the oty P00 06
K

scatter of the data

K. Sargsyan, H.N. Najm, and R. Ghanem
"On the Statistical Calibration of Physical Models”
Int. J. Chem. Kin., 47(4): 246-276, 2015



TransCom3 Experiment of C'O, Flux Inversion

[Gurney et al., Tellus B, 2003]

e Observations d at N = 77 sites around the world
e Inverse problem: find fluxes s at M = 22 locations
e Linearized ‘response’ model R, such that d ~ Rs

d=Rs+e€gq

Model R is never perfect thus contaminating the inversion

The inferred values of s compensate for model deficiencies

€q is meant to capture data errors, but is ‘entangled’ with model
errors



Consider 14 different response models R

CSU.gurne GCTM.baker GIS.fun GISS.prather GISS.prather2 GISS.prather3 JMA-CDTM.maki
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Infer fluxes s, given measurements d to satisfy d ~ Rs

e Conventional additive Gaussian error (least-squares): d=Rs+¢
e Embed probabilistic model for fluxes s: d =R(us + Csf)



Consider 14 different response models R

MATCH.bruhwiler MATCH.chen MATCH.law NIES.maksyutov NIRE.taguchi
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Infer fluxes s, given measurements d to satisfy d ~ Rs

e Conventional additive Gaussian error (least-squares): d=Rs+¢
e Embed probabilistic model for fluxes s: d =R(us + Csf)
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