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Overview
As High Performance Computing (HPC) continues to scale, new problems begin to arise. One of
the most challenging is power, since as computing power increases more electrical power is
needed to run these systems. While the rise in power requirements is inevitable, we must lower
power wherever possible while maintaining high performance. We have decided to examine
dynamically modifying processor P-states to lower power requirements during run-time.

Historically this has been done through either explicit modification of code regions or simple,
heuristic based approaches. These options require substantial effort, training, and slow
development cycles. We have decided to approach this problem through reinforcement learning,
a process which allows the system to explore its environment and find an optimal power policy
by itself. This process allows for the learning algorithm to implicitly examine the HPC nodes and
learn how to predict optimal P-states, potentially learning to consider patterns and correlations
that humans could not.

Approach
Deep reinforcement learning is a method of teaching systems to learn
based off of rewards. The system learns a 'policy, which in this case is a
deep neural network, to make decisions and interact in its environment

It learns this policy by slowly learning which actions are 'good' and which
are not. Initially, the policy will randomly choose actions. As it progresses
through training, the policy will move the system through the action space,
and hopefully determine a policy which brings it to equilibrium.

For this problem our action space is a discrete number of set p-states,
defined by each individual system. The reward for the policy is a function
of runtime performance measured by time to completion and power
used.

Process
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Data Collection
Attempting to change P-states live requires a substantial amount
of system data to make informed decisions. We have decided to
use Model-specific register (MSR) data which can safely be read
from each processor core. We can determine running frequencies
for each core, power, DRAM Energy, and much more. We may use
this in-band data collected in-system with out of band data
collected by external monitoring solutions.

It is not only important to collect data, but also to do so at a rate
which makes sense. In some cases, subprocesses could only be
live for fractions of a second, while others subsequently could be
running for a few seconds. In addition, the more we sample in-
band data, the more we interrupt the processor. Deciding on a
frequency which allows for an effective network while negligibly
impacting performance is a substantial problem which will be
solved through experimentation.

Impact
Saving power has obvious benefits, in reducing costs and increasing cluster accessibility. In
addition to these benefits, if we can reduce power usage by 5%, a cluster could potentially
increase it's computing capability as a whole.

Saving power is also a preventative measure. High Performance Computing will continue to
scale and will soon reach substantial power levels (-40MW). At these levels, failures in any
part of the system can be catastrophic without requisite infrastructure updating.
By strengthening our power requirements and policies, we can prevent against these
failures and improve computing capability.
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2) Next we enter the MSR data into
a neural network. We are planning
on using a Long Short-Term
memory (LSTM) architecture and a
Multilayer Perceptron (MLP)
network. This is also known as the
learned 'policy' rr that the
reinforcement learning agent
learned. The policy will then decide
on an action.

MSR 408 - Performance Status

MSR 408

9000 -

8000 -

7000 -

6000 -

5000 -

U.S. DEPARTMENT OF

ENERGY

NNZ,SA

Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology & Engineering
Solutions of Sandia, LLC,
a wholly owned subsidiary of Honeywell International Inc., for
the U.S. Department of Energy's National Nuclear Security
Administration under contract DE-NA0003525.
SAND No.

L. Sandia
National
Laboratories

SAND2018-7791C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.


