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Nozzle Aero-Thermal-Structural Design
Inspired by the X-47/B aircraft

* Unmanned combat vehicle aircraft
demonstrator, capable of carrier
take-off and landing

* Complex nozzle shape integrated into
aft end of vehicle

* Advanced materials and significant
heat environment and thermal
management ISsues

* Nozzle weight is a substantial portion
of the overall propulsion system
weight

* Uncertainties in all areas of multi-
physics problem

* Complex multi-physics analysis and

design problem

Top image: Northrop Grumman X-47B UCAS Data-sheet, 2015
Bottom image Ferguson et al, Virginia Tech X-47 A/B student
presentation, 2015
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Multidisciplinary analysis (MDA)] >

High-fidelity
MDA 0.2 6.8

von Mises Stress (MPa)

wall pressure

FEN temperatures temperature
thermal 7. i

analysis
FEM

structural

analysis
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Aero Analysis

3D RANS CFD computation

Steady analysis: engine transients do not impact problem
formulation sufficiently to justify cost of unsteady analysis

(AFRL visit)

Model is fully automated and robust with respect to
nozzle shape perturbations

Explore and predict with confidence




Fluid-Structure Interface >4

The wall pressure and temperature
computed using the aero analysis

are interpolated onto the structural
mesh
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Thermo-structural Analysis

Conduction & convection modeled

BC: prescribed temperature on inner surface of
innermost layer; convection on outer surface of
outermost layer

Material failure criterion (e.g. maximum strain)
available for composite materials

Pressure and temperature-induced forces in load
layers, only temperature-induced forces in thermal
layer

Baffles  Stringers

Gr/BMI

f
Mech load Thermal load
layer layer
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Multifidelity Modeling

Military Turbofan Military Turbofan

external external
environment environment

1-D Heat Transfer dmEirionisiianeion

D(x) (” ’
o) = PO 50

Simplified hoop stresses Coarse FEM structural model

LOW FIDELITY

Explore and predict with confidence

MEDIUM FIDELITY

"Pressure’
S ¥ -
1.77e+03 2.72e+05

3D Euler/RANS nozzle aerodynamics

“Temperature

FEM structural model

HIGH FIDELITY



Forward UQ

Inner wall shape

Wall thicknesses

Stringer locations

Material properties

Inlet conditions

Heat transfer coefficient

Must compute statistics from limited number of samples (simulations)
Computational cost is amplified as number of uncertainties increases

Explore and predict with confidence




Convergence of densities >

fn(z) =1 — cos(nmz)

But convergence in distribution does not imply convergence almost
surely.

Explore and predict with confidence



Convergence of densities >

Let f3,(2) be sequence of approximations s.t. fj;(z) - f asM — o
V6> 0,AM s.t. M >M" = |[fy(2) — f(@)lloqy< b

Then forany € > 0,3 M* s.t. M > M” implies

|75 ) = 70 |l ooy < € 75 (f (2)) = 7" (fur @D ]| oy < €

75(0.4) — 7 (0.4) 7h(£(0.4)) — 727 (f20(0.4))




Convergence of densities

Letm(z) be chosen such that sup n£ (y) < B{,B; > 0 and nzj; is
yeD

continuous on Dexcept on a set A C Dof zero Uy measure

A sequence of functions is asymptotically uniformly equicontinuous

(a.u.e.c.) if
Ve > 0,36(e) s.t.|ly —x| < 8(e),M > M(e) = |fy(x) — fu(¥)| <€

Let f,,be an sequence of approximations to f,AB, > 0 s.t for any M

sup ngM (y) < B,. Moreover forany§ > 03Dgs € D s.t A € Dg and
yeD
up(Ds) < & the sequence ng"” is a.u.e.c. on D\Dy.

Explore and predict with confidence




Convergence of densities

Choose
€

f f ) - 2(B. + By) ) )
|5 () — nDM(Y)”Lw(D) < ||ms(y) — ”DM(Y)”Loo@s) + |75 (y) — TL'DM(Y)”LOO(D\DS)

)

e By choice of é first term bounded by €/2

* By Theorem 1 in [Swe86] nlj;M = n£ uniformly on D\Dgs thus second term can be bounded by €/2

by choosing M sufficiently large

175 (f (2)) = 75" (@D oy < 70 (@) = 7 fin @D ooy #1705 Fir (2 = 75 fi D oo

ByvVéd >0,3M*s.t. M > M* = ||fy(2) — f(2)|l,~r) < § and Assumption 1 there exists § such

that first term bounded by €/2

The norm || || ;e0(r) is equivalent to ||

||Loo@) since the arguments to the densities are identical so
by the second argument in top box second term can also be bounded by €/2

Explore and predict with confidence




Convergence of densities using KDE and
sparse grids

, constructed
with M, samples (satisfies Assumption 1)

If ng has continuous s derivatives and K(y)

is a s-th order kernel then
s/(2s+Ad)

log M - . . | .
f ~ f s
”TL‘D ()’) — Tl (y)||L°°(F) < C( 7 ) 0.00 0.25 0.50 0.75 1.00

: Under assumptions of Theorem 1
s/(2s+d)

+11fm(2) = f (@)l r)

log Mn)
My

|75 @) = 25 (Frr (@)l oy < € (
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Convergence of densities using KDE and ~
. >
sparse grids

Ie5 (@) = 7 Fut @)l oy < 175 (@) = RESF @D oy + 1S @) = 25" (F @D oy +
125" (f (2)) = 25" (it @D o,
By Lipschitz continuity of K
125 (f 2)) = 25" (F @)l oo oy 1D (@) = 2" frt (2D oy < Cllfn (@) = f @ Nl1ory

: Given that the isotropic level | sparse grid with
Clenshaw-Curtis abscissa satisfies

o

Ifu(@ = fF @l < C@OM™, = 3oy

- | M s/(2s+d) _
Imh(F @) = RE" (@Dl o gy < C ((%) +C (oM, ”1>

Explore and predict with confidence



Convergence of densities >

Explore and predict with confidence




Multivariate Approximation

Let f = Q(u(x, t,z)) be a functional of the solution of a PDE u(x, t, z)
The error in the approximation of f is bounded by

”f_f“"B“Lﬁ, = ||f_fa”L€V+ ”fa _f“’ﬁ”Lﬁ,

a: multi-index specifying PDE discretization
f: multi-index specifying sampling discretization
w: PDF of variables Z




Multilevel Monte Carlo Quadrature

We can approximate the expectation of a function f by
M(B)

) — _ fa]
Enplfel = Qup = 0] ; fa@z),  V[Qap] = M(B)

The mean squared error in the approximation

E|(Qap — E1Q])°| = V[Qup] + (E[Qus] - ElQ])’

Use converging sequence of functions f, to reduce variance of
estimator

L Mg L
= 1 -
Elf]~ Qits = ) EZ((fa(zl> fan1(20) = ZY

a=0 i=1
fo=0
Allocate samples across function levels to achieve accuracy €

|| C(QML) = Zé:l Ca My
‘ L

L

Z )1/2

a?lV[Ya] = 62/2

)

(VYD)

10000

1000
Equivalent HF runs

10 100 100000

Ca



Multilevel collocation

Let Fy(p) be a sequence of interpolation
operators

fap(2) = Fuppylfal(2)

Effectiveness of method depends of rate of
Let fo, = f(uq(x,2)) be a sequence of discrepancy decay vs approximation error decay
functions which are functionals of PDE FEM
solutions with decreasing mesh size h,,

The multilevel approximation is

L
fap(@ = Z Fucpplfoy = fans | 2)
[=0

M(Bo) = M(B1) =< -+ = M(BL)

and
hey = he, =2 hy




Multilevel collocation

: The following holds
for sparse grids using a Lagrange basis
Oq = M(a)_ﬂ(d)

The error in the approximation is given by Assume 3y such that the cost C, < Cch;y.
I7 _f“ﬁ”ﬁv’v = \f = fallg + I _fa'ﬁ”Lev For multigrid solvery = D
Assume Assume k = min(f, uy) then 3 alevel L
lg - gﬁ”L@ < 1044(9), such that
{(fo) < Coh,C(fo = fams) < Cehl If = fapllp <
and forany e < e !and

“f _ fa”Lal = Cshf
Then if we choose interpolation operators such

that Ce=YL oM(L—a)C, S <

0p-a < Cs (L +1)CC;)  hihg

L
Vfo = fuplly < D CiCror-ahk = Cobf
a=0

Then
| If = fepll,p <2C5hE

J

| _ o _ 1Y Effectiveness of method depends of rate of
| Single fidelity costis Cc < € # * discrepancy decay vs approximation error decay



Convergence of densities

: Under assumptions of Theorem 1 there
exists a M such that the error in the multi-level sparse grid

approximation satisfies
s/(2s+d)

log M,
75 P @) = T (2 oy < 2€ (( -

Which can be computed with cost
[ 1
€ K, B > uy

1

1
Ce=Xa=oM(UL —a)Cq S | e k|loge|™ ™, B =uy

e, <y

log Mn) s/(2s+d)

T

Where we have chosen € = (

: Direct application of Corrolary 1 and modification of Theorem
3 to use L* norm



Tensor product interpolation

Define set of 1D samples
k ) .. (m(Bk)
Zim(Br) = (Zk " )

,9) = cos (%),m(l) =1m)=2"1+1

And univariate basis functions

k
m(k) (Zk_Z}(cn))
bpyi(21) = 1_[ O
n=1n#k (Z Zk )

" Interpolant is tensor product of 1D interpolants

fup= Y [az®) $ps(D),  bpu(2) = ]_[ P )
i€J
J={ili, <m(By),k=1,. d}
Requires evaluating function on a tensor product grid

d d
ZB — @Zﬁl(ﬁk) ’ M(ﬂ) = l_lm(ﬁk)

ZB = {Z(i)}ie:], Z(l) — (Z(ll), Zc(lid) )T




Sparse grid interpolation

Interpolant is tensor product of 1D interpolants

i Z cgfp

BEIL
The isotropic index set is given by

IL={BIL-d+1< |Blls <L}

Building the interpolant requires evaluating the
functions f, on the union of samples of all
tensor product grids

Z, = U Zp, M(I,) = card(Z;,)

BEIly,
s is number of model discretization parameters




Construct a separate sparse grid for
each discrepancy

Fue [f2 — f1l(2)

Fyw Ui — fol(2)

TRz = cos(2n(zl + e(a))

1 1 1
6(0) = g,é‘(l) = Ee(l) = m

Fuoy [fol(2)

Explore and predict with confidence




Stochastic discretization

Even for a specified deterministic
error it is not clear a priori how
which refinement is most efficient
(refine z; or z,)

BRI
~1.0 —0.5

m(B1) = (3,5,9,17,33)

z, refinement

Explore and predict with confidence




Deterministic discretization

—e— h=1/10
—e— h=1/20

—e— h=1/40

Even for a specified stochastic
error it is not clear a priori how
which refinement is most efficient
(time or space)

0.2

0.4 0.6
space ()

Temporal refinement




Multi-index collocation

Building the interpolant requires evaluating the
functions f, on the union of samples of all tensor
product grids

Zpi— U Zg, M(B) = card(Zg)
BEB
s is number of model discretization parameters

Interpolant is tensor product of 1D interpolants

10O

fi- z Capfap

[a,BlElL
The isotropic index set is given by

I ={[a,B]IL-(d+s)+1=< [la+Bll;<L}

[a, B1=((1), (0)]

Ss

W T S,

[a, B1=[(0), (0)]

o [, B1=(0), (1]
: ——— ith confidence Multi-index scheme
Multi-level scheme




Adaptive refinement >

Use adaptive algorithm proposed in [Heg03,GG03], using
increment to mean as error.indicator

-1.0 —0.5 .0 P —0.5

xnlore nd npredict with confidence
Multi-level scheme



Steady-state advection-diffusion

10Vu(x) — V- (k(x,z)Vu(x)) =1, inB =1[0,1]
u(x) =0, on 0B

Use KLE of exponential covariance kernel

logk(x,z) =1+ cos (1+2nx) + 3¢ 2i0;(0)z;

Ai, ¢; (x) are derived from C(xq, x5) =
eXp (_ |X1_x2|) ; l — 1’d=5

l

—— Imh() — ()l e IF(2) = farpllzs

— If(2) — fa()llzz — |ImhE) — T ()|

Mesh size: Ax,, = Axy2™% Imhw) — 5 Dl e 1)~ Sansills

Qol: f,(z) = u(x = 0.5, z)

We compute error in approximation using
(S =10,000)

If = full,o ~ max |f(Z )y — fn(Z)]




Transient advection-diffusion > D/

du(x,t) :
—— = —107u+ V- (k(x,2)Vu) + 10,  inB =[0,1]x[0,T]
u(x’ t) — O, on 0B

Use KLE of exponential covariance kernel
l0g k(x,2) = k(x) + Ziky Aig (V)
Ai, @; (x) are derived from C(xq,x,) = exp (_ |%1— 5|

_ 1
k(x) = log %(2 + sin (%)) , T=1

),l — 0.1,d=5

Mesh size: Ax,, = Axy2™%

2Tk*
Axg,

| Qol: f,(z) =u(x =0.5,t=T,2)

-1
Time-step size: Ataz = {( L 1) 2“2‘ (smallest time step must satisfy CFL condition)

We compute error in approximation using (S = 10,000)
If = full= ~ max |F(Z) = fu (2]




Transient advection-diffusion

0.304

0.25

0.20

0.151

0.10

0.05

0.00

10000

+8000

6000

4000
== ([3][2])

=0= ([0, 1,2,3][0, 1, 2])
—— (1) 2000
| =e= ([0, 1,23 4][01,2])
=o= ([5].[2])

== ([0, 1,23, 4 5]0,1,2)

10-3 10! 10! 10°




Transient advection-diffusion >

=o= ([3],[2])

=o= ([0, 1,2 3],[0, 1, 2])
== ([4],[2))

=e= ([0, 1,2, 3,4],0,1,2)
=o= ([5].2])

== ([0, 1,23 4 5[0 1,2])
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