

Adaptive multi-index collocation for quantifying uncertainty in an aerospace nozzle

J.D. Jakeman, T. Butler, M. Eldred, G. Geraci, A. Gorodetsky, T. Wildey

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

Nozzle Aero-Thermal-Structural Design

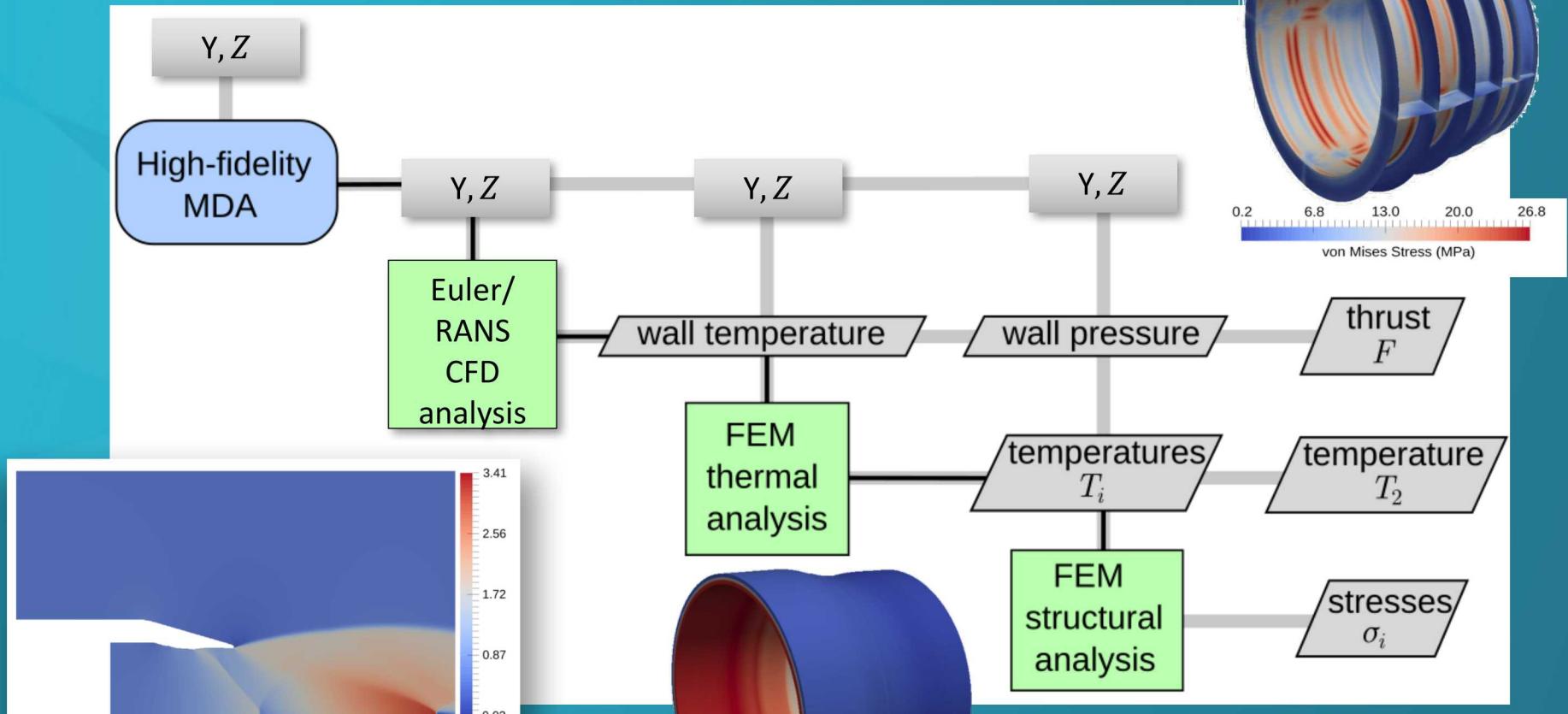
Inspired by the X-47B aircraft

Application

- Unmanned combat vehicle aircraft demonstrator, capable of carrier take-off and landing
- Complex nozzle shape integrated into aft end of vehicle
- Advanced materials and significant heat environment and thermal management issues
- Nozzle weight is a substantial portion of the overall propulsion system weight
- Uncertainties in all areas of multi-physics problem
- Complex multi-physics analysis and design problem

Multidisciplinary analysis (MDA)

MDA is essential for accurate modelling of the nozzle



Explore and predict with confidence

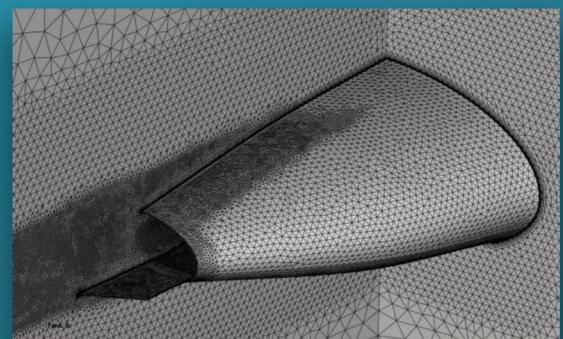
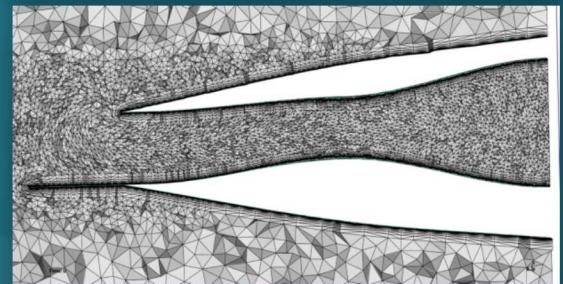
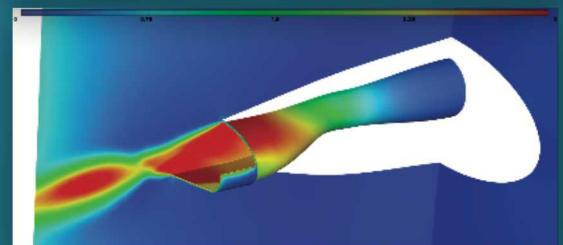
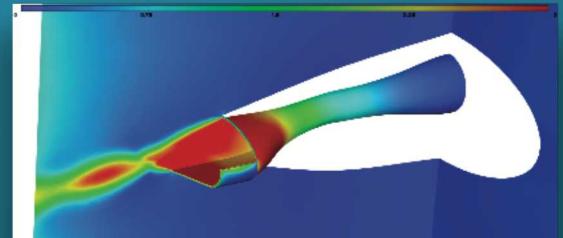
DAKOTA

Aero Analysis

3D RANS CFD computation

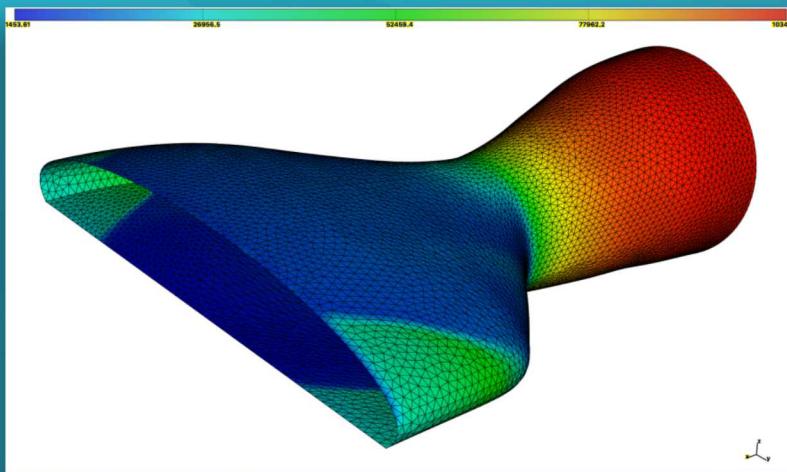
Steady analysis: engine transients do not impact problem formulation sufficiently to justify cost of unsteady analysis (AFRL visit)

Model is fully automated and robust with respect to nozzle shape perturbations

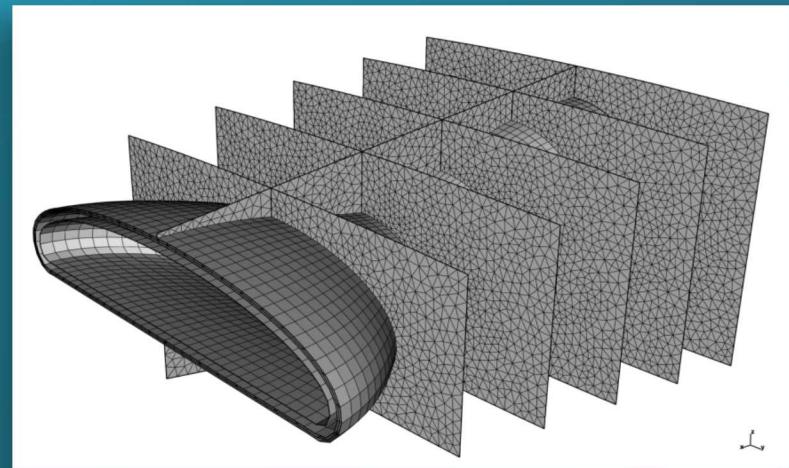


Fluid-Structure Interface

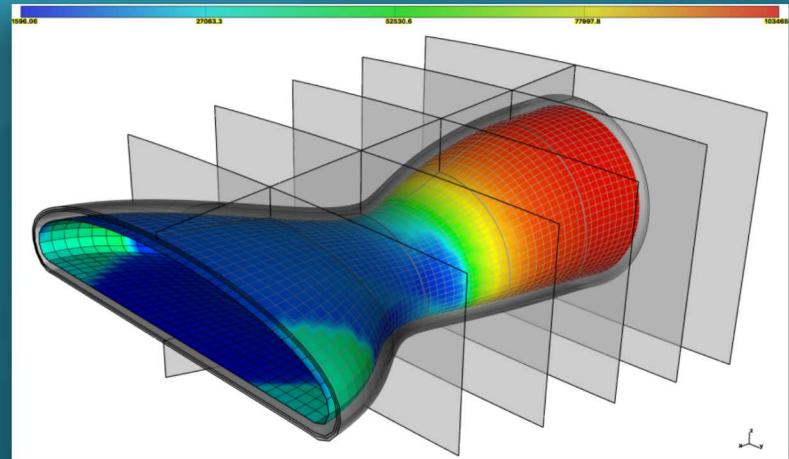
The wall pressure and temperature computed using the aero analysis are interpolated onto the structural mesh



CFD mesh / pressure



Mesh for the thermo-structural analysis



Interpolated pressure onto structural mesh

Thermo-structural Analysis

Thermal analysis : wall layers + air gap

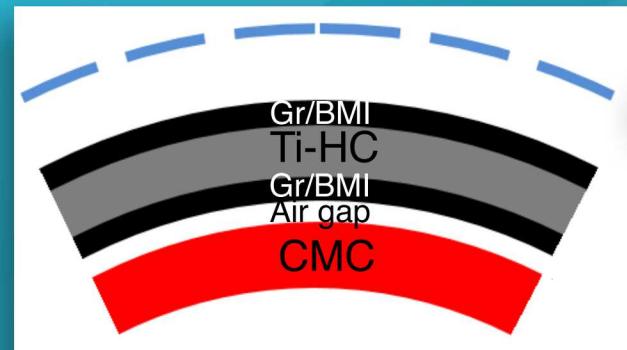
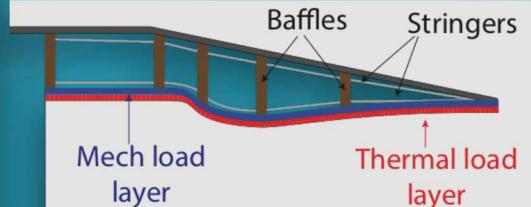
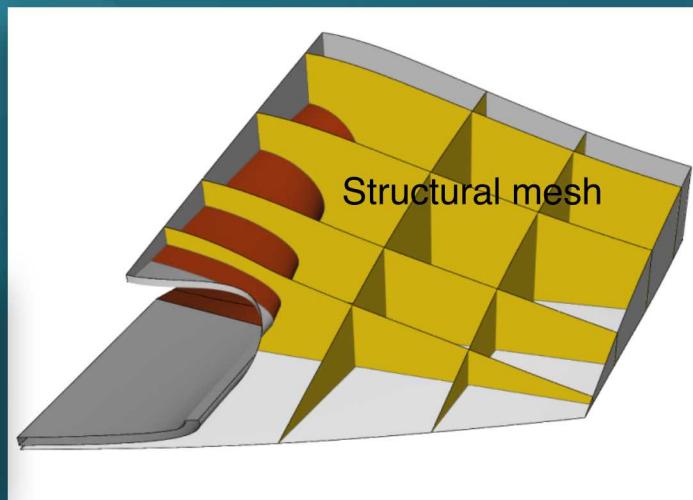
Conduction & convection modeled

BC: prescribed temperature on inner surface of innermost layer; convection on outer surface of outermost layer

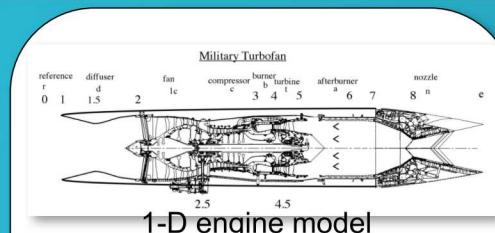
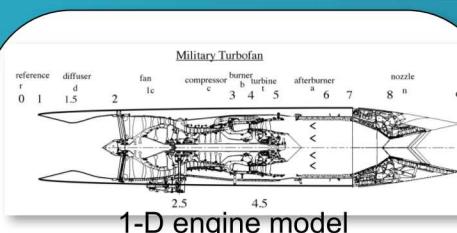
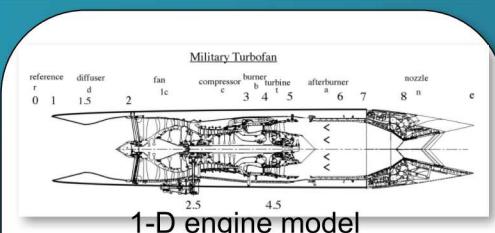
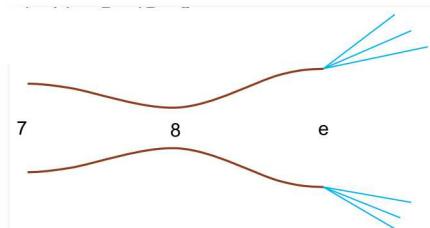
Structural analysis: wall layers, stringers, baffles

Material failure criterion (e.g. maximum strain) available for composite materials

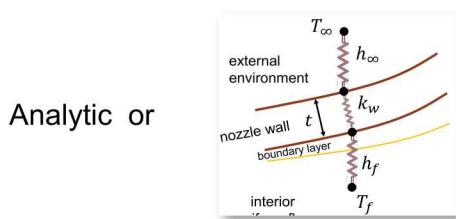
Pressure and temperature-induced forces in load layers, only temperature-induced forces in thermal layer



Multifidelity Modeling



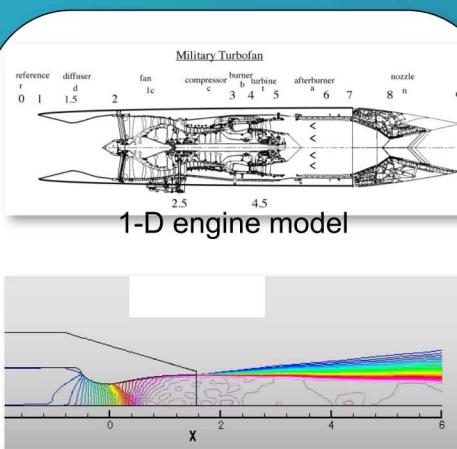
Ideal and non-ideal nozzle aero



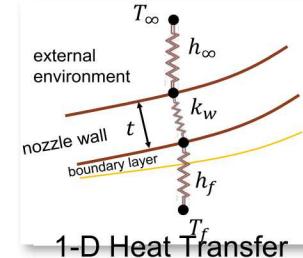
$$\sigma(x) = P(x) \frac{D(x)}{2t(x)}$$

Simplified hoop stresses

LOW FIDELITY

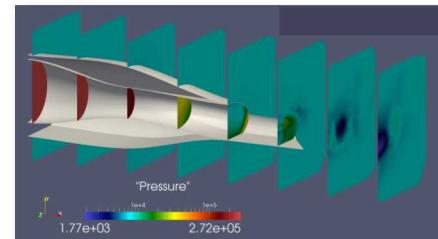


2D Axisymmetric Euler/RANS aero

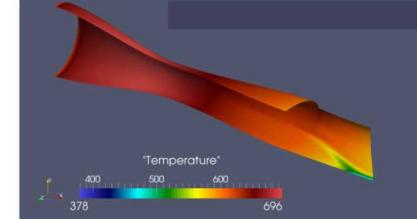


Coarse FEM structural model

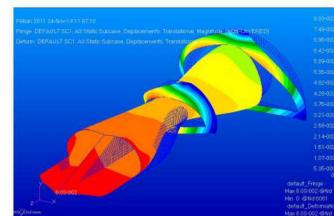
MEDIUM FIDELITY



3D Euler/RANS nozzle aerodynamics

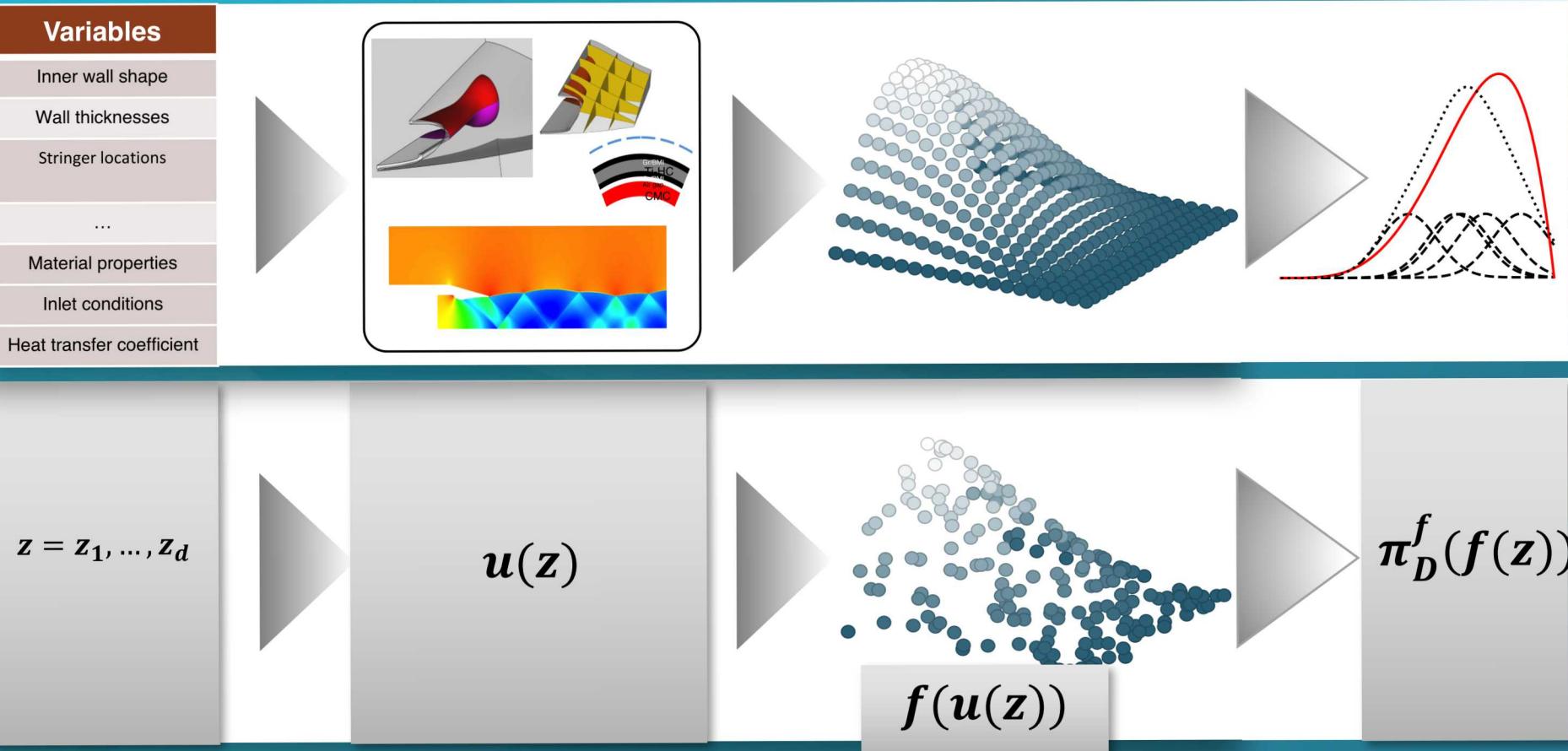


Conjugate heat transfer



FEM structural model

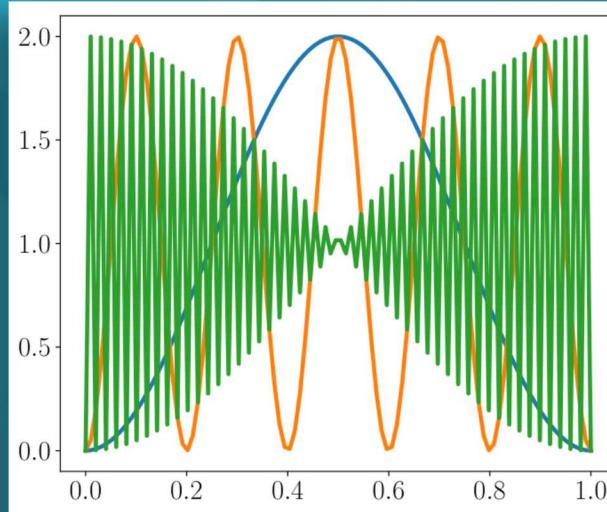
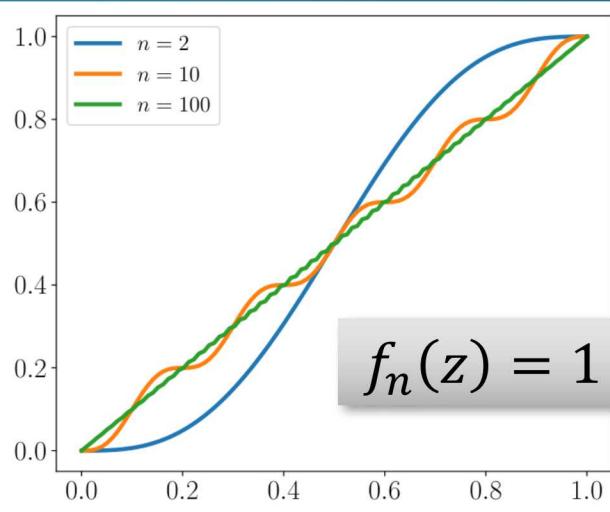
HIGH FIDELITY



Must compute statistics from limited number of samples (simulations)
 Computational cost is amplified as number of uncertainties increases

Convergence of densities

Most literature focuses on convergence of statistics of sequences of random variables



$$f_n(z) = 1 - \cos(n\pi z)$$

But convergence in distribution does not imply convergence almost surely.

Convergence of densities

Theorem 1 [BJW18]

Let $f_M(\mathbf{z})$ be sequence of approximations s.t. $f_M(\mathbf{z}) \rightarrow f$ as $M \rightarrow \infty$

$$\forall \delta > 0, \exists M^* \text{ s.t. } M > M^* \Rightarrow \|f_M(\mathbf{z}) - f(\mathbf{z})\|_{L^\infty(\Gamma)} < \delta$$

Then for any $\epsilon > 0, \exists M^* \text{ s.t. } M > M^*$ implies

Approximate π converges when evaluated at the true function

value $\mathbf{y} = f(\mathbf{z})$

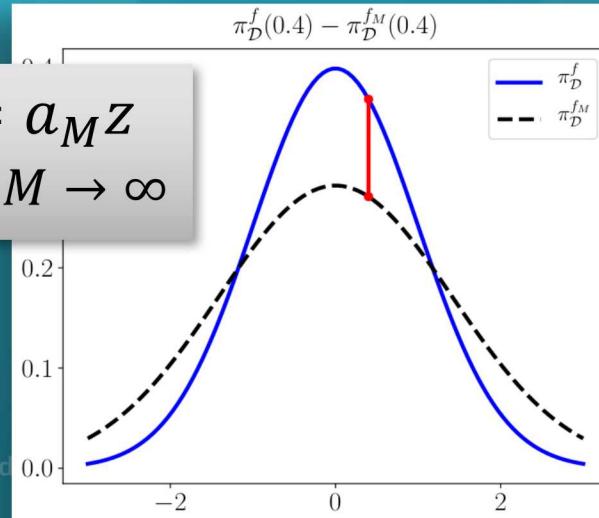
$$\|\pi_{\mathcal{D}}^f(\mathbf{y}) - \pi_{\mathcal{D}}^{f_M}(\mathbf{y})\|_{L^\infty(\mathcal{D})} < \epsilon$$

Approximate π converges when evaluated at the approximation of the function value $f_M(\mathbf{z})$

$$\|\pi_{\mathcal{D}}^f(f(\mathbf{z})) - \pi_{\mathcal{D}}^{f_M}(f_M(\mathbf{z}))\|_{L^\infty(\Gamma)} < \epsilon$$

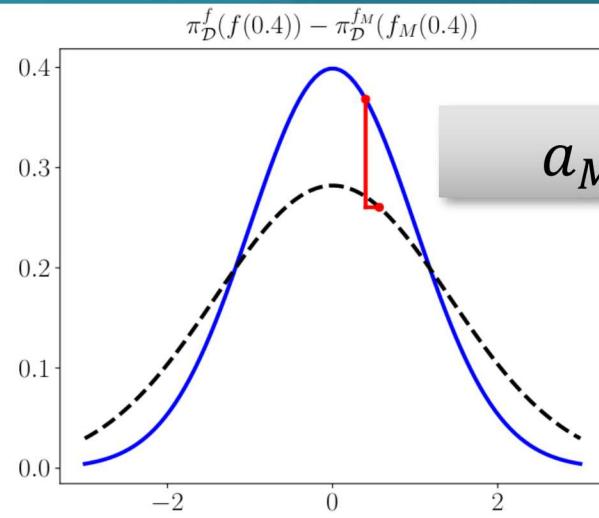
$$f_M(\mathbf{z}) = a_M z$$

$a_M \rightarrow 1$ as $M \rightarrow \infty$



Explore and

$$a_M = 1.2$$



DAKOTA

Assumption 1

Let $\pi(\mathbf{z})$ be chosen such that $\sup_{y \in \mathcal{D}} \pi_{\mathcal{D}}^f(y) \leq B_1, B_1 > 0$ and $\pi_{\mathcal{D}}^f$ is continuous on \mathcal{D} except on a set $A \subset \mathcal{D}$ of zero $\mu_{\mathcal{D}}$ measure

Definition 1

A sequence of functions is asymptotically uniformly equicontinuous (a.u.e.c.) if

$$\forall \epsilon > 0, \exists \delta(\epsilon) \text{ s.t. } |y - x| < \delta(\epsilon), M > M(\epsilon) \Rightarrow |f_M(x) - f_M(y)| < \epsilon$$

Assumption 2

Let f_M be an sequence of approximations to f , $\exists B_2 > 0$ s.t for any M $\sup_{y \in \mathcal{D}} \pi_{\mathcal{D}}^{f_M}(y) \leq B_2$. Moreover for any $\delta > 0$ $\exists \mathcal{D}_{\delta} \subset \mathcal{D}$ s.t $A \subset \mathcal{D}_{\delta}$ and $\mu_{\mathcal{D}}(\mathcal{D}_{\delta}) < \delta$ the sequence $\pi_{\mathcal{D}}^{f_M}$ is a.u.e.c. on $\mathcal{D} \setminus \mathcal{D}_{\delta}$.

Proof: Choose

$$\delta = \frac{\epsilon}{2(B_1 + B_2)}$$

$$\|\pi_{\mathcal{D}}^f(\mathbf{y}) - \pi_{\mathcal{D}}^{f_M}(\mathbf{y})\|_{L^\infty(\mathcal{D})} \leq \|\pi_{\mathcal{D}}^f(\mathbf{y}) - \pi_{\mathcal{D}}^{f_M}(\mathbf{y})\|_{L^\infty(\mathcal{D}_\delta)} + \|\pi_{\mathcal{D}}^f(\mathbf{y}) - \pi_{\mathcal{D}}^{f_M}(\mathbf{y})\|_{L^\infty(\mathcal{D} \setminus \mathcal{D}_\delta)}$$

- By choice of δ first term bounded by $\epsilon/2$
- By Theorem 1 in [Swe86] $\pi_{\mathcal{D}}^{f_M} \rightarrow \pi_{\mathcal{D}}^f$ uniformly on $\mathcal{D} \setminus \mathcal{D}_\delta$ thus second term can be bounded by $\epsilon/2$ by choosing M sufficiently large

$$\|\pi_{\mathcal{D}}^f(f(\mathbf{z})) - \pi_{\mathcal{D}}^{f_M}(f_M(\mathbf{z}))\|_{L^\infty(\Gamma)} \leq \|\pi_{\mathcal{D}}^f(f(\mathbf{z})) - \pi_{\mathcal{D}}^f(f_M(\mathbf{z}))\|_{L^\infty(\Gamma)} + \|\pi_{\mathcal{D}}^f(f_M(\mathbf{z})) - \pi_{\mathcal{D}}^{f_M}(f_M(\mathbf{z}))\|_{L^\infty(\Gamma)}$$

- By $\forall \delta > 0, \exists M^* \text{ s.t. } M > M^* \Rightarrow \|f_M(\mathbf{z}) - f(\mathbf{z})\|_{L^\infty(\Gamma)} < \delta$ and Assumption 1 there exists δ such that first term bounded by $\epsilon/2$
- The norm $\|\cdot\|_{L^\infty(\Gamma)}$ is equivalent to $\|\cdot\|_{L^\infty(\mathcal{D})}$ since the arguments to the densities are identical so by the second argument in top box second term can also be bounded by $\epsilon/2$

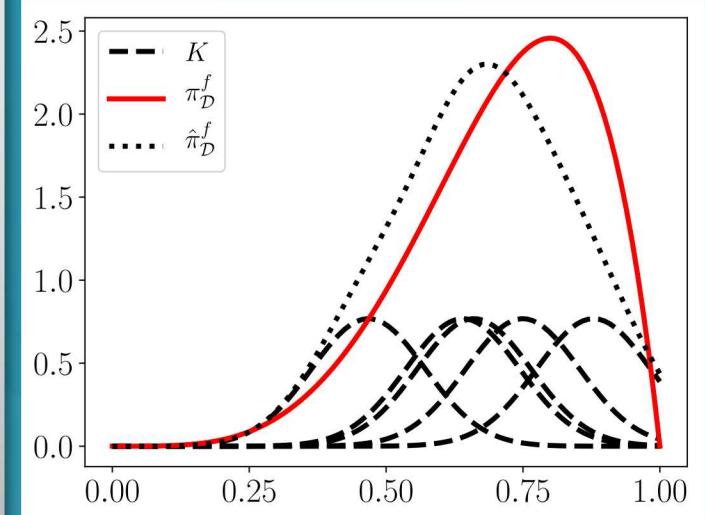
Convergence of densities using KDE and sparse grids

Kernel Density Estimation constructed
with M_π samples (satisfies Assumption 1)

$$\hat{\pi}_D^f(\mathbf{y}) = \frac{1}{M_\pi h_{M_\pi}^d} \sum_{i=1}^{M_\pi} K\left(\frac{\mathbf{y} - \mathbf{y}_i}{h_{M_\pi}}\right)$$

If π_D^f has continuous s derivatives and $K(\mathbf{y})$
is a s -th order kernel then

$$\|\pi_D^f(\mathbf{y}) - \hat{\pi}_D^f(\mathbf{y})\|_{L^\infty(\Gamma)} < C \left(\frac{\log M_\pi}{M_\pi} \right)^{s/(2s+d)}$$



Theorem 2 [BJW18]: Under assumptions of Theorem 1

$$\|\pi_D^f(f(\mathbf{z})) - \hat{\pi}_D^{f_M}(f_M(\mathbf{z}))\|_{L^\infty(\Gamma)} \leq C \left(\left(\frac{\log M_\pi}{M_\pi} \right)^{s/(2s+d)} + \|f_M(\mathbf{z}) - f(\mathbf{z})\|_{L^\infty(\Gamma)} \right)$$

Convergence of densities using KDE and sparse grids

Proof:

$$\|\pi_{\mathcal{D}}^f(f(\mathbf{z})) - \hat{\pi}_{\mathcal{D}}^{f_M}(f_M(\mathbf{z}))\|_{L^\infty(\Gamma)} \leq \|\pi_{\mathcal{D}}^f(f(\mathbf{z})) - \hat{\pi}_{\mathcal{D}}^f(f(\mathbf{z}))\|_{L^\infty(\Gamma)} + \|\hat{\pi}_{\mathcal{D}}^f(f(\mathbf{z})) - \hat{\pi}_{\mathcal{D}}^{f_M}(f(\mathbf{z}))\|_{L^\infty(\Gamma)} + \|\hat{\pi}_{\mathcal{D}}^{f_M}(f(\mathbf{z})) - \hat{\pi}_{\mathcal{D}}^{f_M}(f_M(\mathbf{z}))\|_{L^\infty(\Gamma)}$$

By Lipschitz continuity of K

$$\|\hat{\pi}_{\mathcal{D}}^f(f(\mathbf{z})) - \hat{\pi}_{\mathcal{D}}^{f_M}(f(\mathbf{z}))\|_{L^\infty(\Gamma)}, \|\hat{\pi}_{\mathcal{D}}^f(f(\mathbf{z})) - \hat{\pi}_{\mathcal{D}}^{f_M}(f_M(\mathbf{z}))\|_{L^\infty(\Gamma)} \leq C \|f_M(\mathbf{z}) - f(\mathbf{z})\|_{L^\infty(\Gamma)}$$

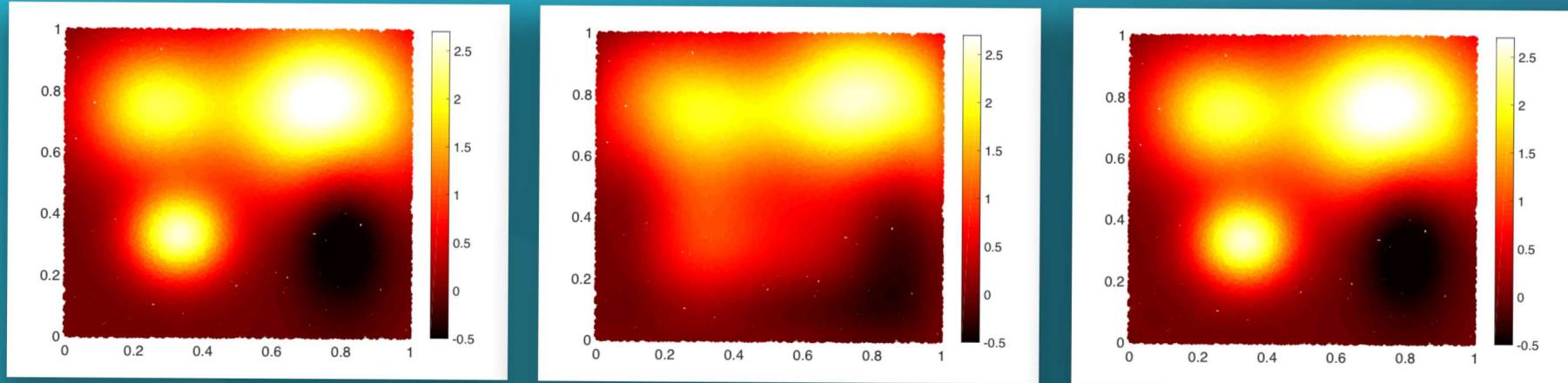
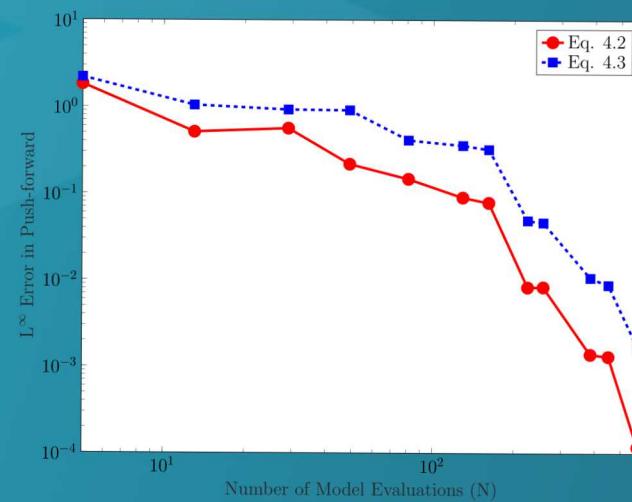
Corollary 1 [BJW18]: Given that the isotropic level l sparse grid with Clenshaw-Curtis abscissa satisfies

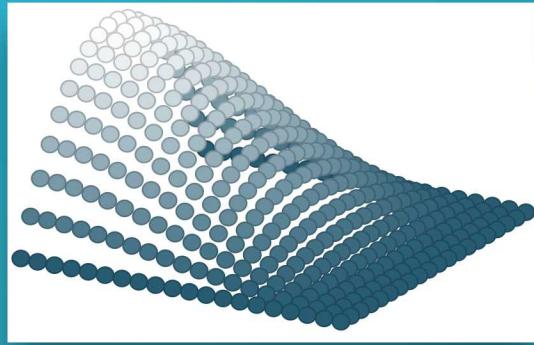
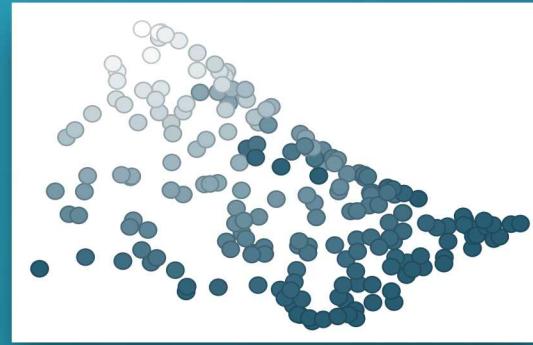
$$\|f_M(\mathbf{z}) - f(\mathbf{z})\|_{L^\infty(\Gamma)} \leq C_1(\sigma) M_l^{-\mu_1}, \mu_1 = \frac{\sigma}{1 + \log 2d}$$

Then

$$\|\pi_{\mathcal{D}}^f(f(\mathbf{z})) - \hat{\pi}_{\mathcal{D}}^{f_M}(f_M(\mathbf{z}))\|_{L^\infty(\Gamma)} \leq C \left(\left(\frac{\log M}{M} \right)^{s/(2s+d)} + C_1(\sigma) M_l^{-\mu_1} \right)$$

Convergence of densities





Let $f = Q(u(x, t, z))$ be a functional of the solution of a PDE $u(x, t, z)$
The error in the approximation of f is bounded by

$$\|f - f_{\alpha, \beta}\|_{L_w^p} \leq \underbrace{\|f - f_\alpha\|_{L_w^p}}_{(I)} + \underbrace{\|f_\alpha - f_{\alpha, \beta}\|_{L_w^p}}_{(II)}$$

α : multi-index specifying PDE discretization

β : multi-index specifying sampling discretization

w : PDF of variables Z

To minimize simulation cost we should balance physical error (I) with stochastic error (II). I.e. only sample highest fidelity model when stochastic error is smaller than deterministic error

Multilevel Monte Carlo Quadrature

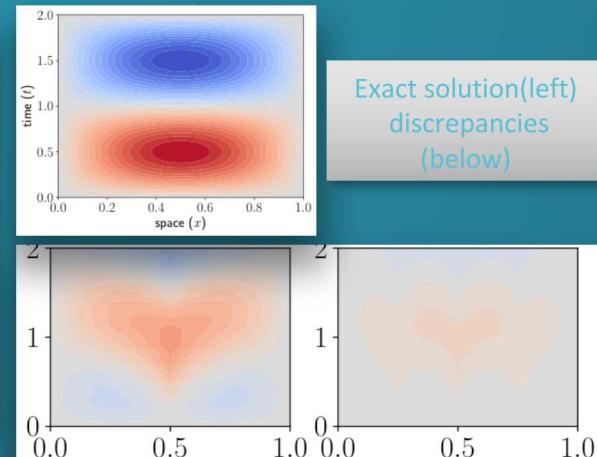
Monte Carlo Quadrature using an approximate model f_α

We can approximate the expectation of a function f by

$$E_{M(\beta)}[f_\alpha] \approx \hat{Q}_{\alpha,\beta} = \frac{1}{M(\beta)} \sum_{i=1}^{M(\beta)} f_\alpha(\mathbf{z}_i), \quad V[\hat{Q}_{\alpha,\beta}] = \frac{V[f_\alpha]}{M(\beta)}$$

The mean squared error in the approximation

$$E \left[(\hat{Q}_{\alpha,\beta} - E[Q])^2 \right] = V[\hat{Q}_{\alpha,\beta}] + (E[\hat{Q}_{\alpha,\beta}] - E[Q])^2$$



Multilevel Monte Carlo: reduce computational cost by balancing physical and deterministic errors

Use converging sequence of functions f_α to reduce variance of estimator

$$E[f] \approx \hat{Q}_{\alpha,\beta}^{ML} = \sum_{\alpha=0}^L \frac{1}{M_\alpha} \sum_{i=1}^{M_\alpha} ((f_\alpha(\mathbf{z}_i) - f_{\alpha-1}(\mathbf{z}_i)) = \sum_{\alpha=1}^L \hat{Y}_\alpha,$$

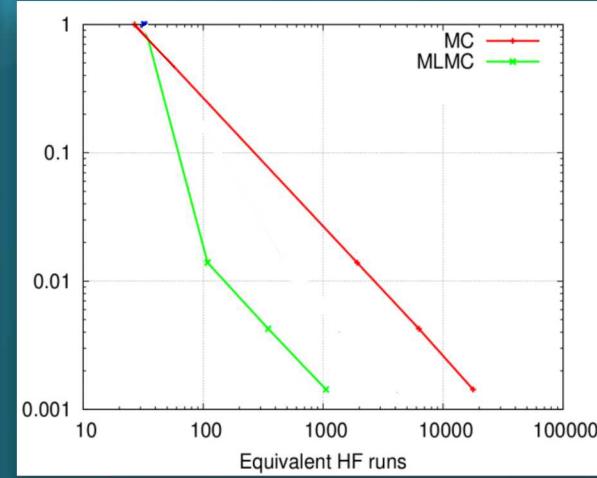
$$f_0 = 0$$

Allocate samples across function levels to achieve accuracy ϵ

$$C(\hat{Q}^{ML}) = \sum_{\alpha=1}^L C_\alpha M_\alpha \quad \rightarrow \quad M_\alpha = \frac{2}{\epsilon^2} \left[\sum_{\alpha=0}^L (V[Y_\alpha] C_\alpha)^{1/2} \right] \sqrt{\frac{(V[Y_\alpha])}{C_\alpha}}$$

$\sum_{\alpha=0}^L M_\alpha^{-1} V[Y_\alpha] = \epsilon^2/2$ constraints

Discrepancy between model predictions decays as mesh resolution increases



MC and MLMC applied to an early version of the nozzle model

Multilevel collocation

Approximate PDE solution(functional)
using a sequence of FEM models with
increasing mesh refinement [TJWG15]

Let $F_{M(\beta)}$ be a sequence of interpolation
operators

$$f_{\alpha,\beta}(z) = F_{M(\beta)}[f_\alpha](z)$$

Let $f_\alpha = f(u_\alpha(x, z))$ be a sequence of
functions which are functionals of PDE FEM
solutions with decreasing mesh size h_α

The multilevel approximation is

$$f_{\alpha,\beta}^L(z) = \sum_{l=0}^L F_{M(\beta_l)}[f_{\alpha_l} - f_{\alpha_{l-1}}](z)$$

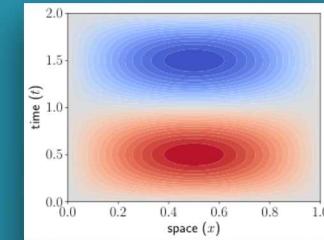
Use most accurate interpolation on coarsest
mesh level and least accurate interpolation on
finest level

$$M(\beta_0) \leq M(\beta_1) \leq \dots \leq M(\beta_L)$$

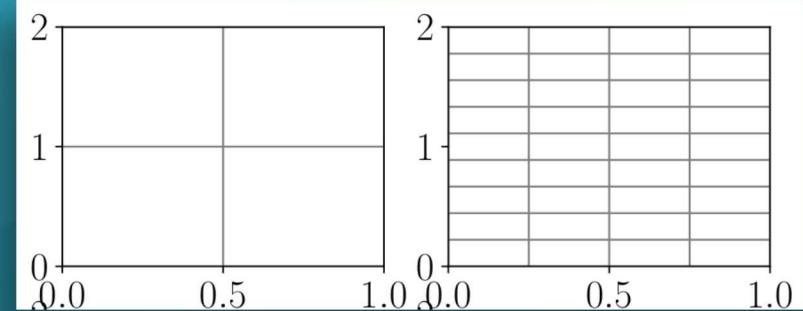
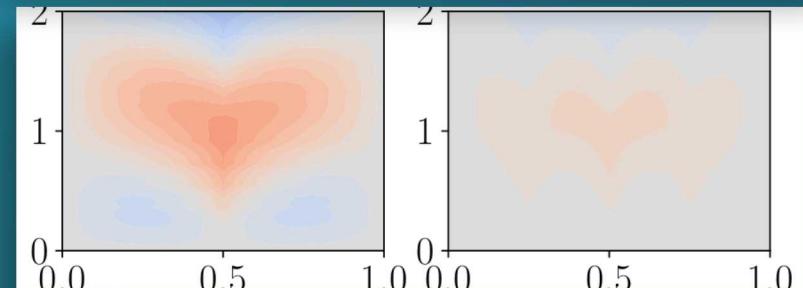
and

$$h_{\alpha_0} \geq h_{\alpha_1} \geq \dots \geq h_L$$

Bi-level scheme first proposed by [NE12]



Effectiveness of method depends of rate of
discrepancy decay vs approximation error decay



Multilevel collocation

Approximate a functional of the exact PDE solution using a sequence of models with increasing mesh refinement

The error in the approximation is given by

$$\|f - f_{\alpha,\beta}\|_{L_w^p} \leq \|f - f_\alpha\|_{L_w^p} + \|f_\alpha - f_{\alpha,\beta}\|_{L_w^p}$$

Assume

$$\|g - g_\beta\|_{L_w^p} \leq C_I \sigma_\alpha \zeta(g),$$

$$\zeta(f_\alpha) \leq C_\zeta h_0^\beta, \zeta(f_\alpha - f_{\alpha-1}) \leq C_\zeta h_\alpha^\beta$$

and

$$\|f - f_\alpha\|_{L_w^p} \leq C_s h_L^\kappa$$

Then if we choose interpolation operators such that

$$\sigma_{L-\alpha} \leq C_s \left((L+1) C_I C_\zeta \right)^{-1} h_L^\kappa h_\alpha^{-\beta}$$

$$\|f_\alpha - f_{\alpha,\beta}\|_{L_w^p} \leq \sum_{\alpha=0}^L C_I C_\zeta \sigma_{L-\alpha} h_L^\kappa = C_s h_L^\kappa$$

Then

$$\|f - f_{\alpha,\beta}\|_{L_w^p} \leq 2C_s h_L^\kappa$$

Single fidelity cost is $C_\epsilon \leq \epsilon^{-\frac{1}{\mu} - \frac{\gamma}{\kappa}}$

Theorem 3 [TJWG15]: The following holds for sparse grids using a Lagrange basis

$$\sigma_\alpha = M(\alpha)^{-\mu(d)}$$

Assume $\exists \gamma$ such that the cost $C_\alpha \leq C_c h_\alpha^{-\gamma}$.

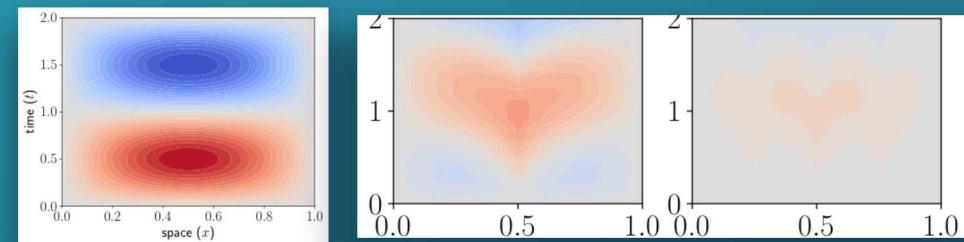
For multigrid solver $\gamma = D$

Assume $\kappa \geq \min(\beta, \mu\gamma)$ then \exists a level L such that

$$\|f - f_{\alpha,\beta}\|_{L_w^p} \leq \epsilon,$$

for any $\epsilon \leq e^{-1}$ and

$$C_\epsilon = \sum_{\alpha=0}^L M(L-\alpha) C_\alpha \lesssim \begin{cases} \epsilon^{-\frac{1}{\mu}}, & \beta > \mu\gamma \\ \epsilon^{-\frac{1}{\mu}} |\log \epsilon|^{1+\frac{1}{\mu}}, & \beta = \mu\gamma \\ \epsilon^{-\frac{1}{\mu} - \frac{\gamma}{\kappa} + \frac{\beta}{\kappa\mu}}, & \beta < \mu\gamma \end{cases}$$



Effectiveness of method depends of rate of discrepancy decay vs approximation error decay

Convergence of densities

Theorem 4 [BJWPreprint]: Under assumptions of Theorem 1 there exists a M such that the error in the multi-level sparse grid approximation satisfies

$$\|\pi_{\mathcal{D}}^f(f(\mathbf{z})) - \pi_{\mathcal{D}}^{f_M}(f_M(\mathbf{z}))\|_{L^\infty(\Gamma)} \leq 2C \left(\left(\frac{\log M_\pi}{M_\pi} \right)^{s/(2s+d)} \right)$$

Which can be computed with cost

$$C_\epsilon = \sum_{\alpha=0}^L M(L-\alpha)C_\alpha \lesssim \begin{cases} \epsilon^{-\frac{1}{\mu}}, & \beta > \mu\gamma \\ \epsilon^{-\frac{1}{\mu}} |\log \epsilon|^{1+\frac{1}{\mu}}, & \beta = \mu\gamma \\ \epsilon^{-\frac{1}{\mu} - \frac{\gamma}{\kappa} + \frac{\beta}{\kappa\mu}}, & \beta < \mu\gamma \end{cases}$$

Where we have chosen $\epsilon = \left(\frac{\log M_\pi}{M_\pi} \right)^{s/(2s+d)}$

Proof: Direct application of Corrolary 1 and modification of Theorem 3 to use L^∞ norm

Tensor product interpolation

Univariate interpolation

Define set of 1D samples

$$z_{m(\beta_k)}^k = (z_k^{(1)}, \dots, z_k^{(m(\beta_k))})$$
$$z_k^{(j)} = \cos\left(\frac{(j-1)\pi}{m(\beta_k)}\right), m(1) = 1, m(l) = 2^{l-1} + 1$$

And univariate basis functions

$$\phi_{\beta_k, i}(z_k) = \prod_{n=1, n \neq k}^{m(k)} \frac{(z_k - z_k^{(n)})}{(z_k^{(i)} - z_k^{(n)})}$$

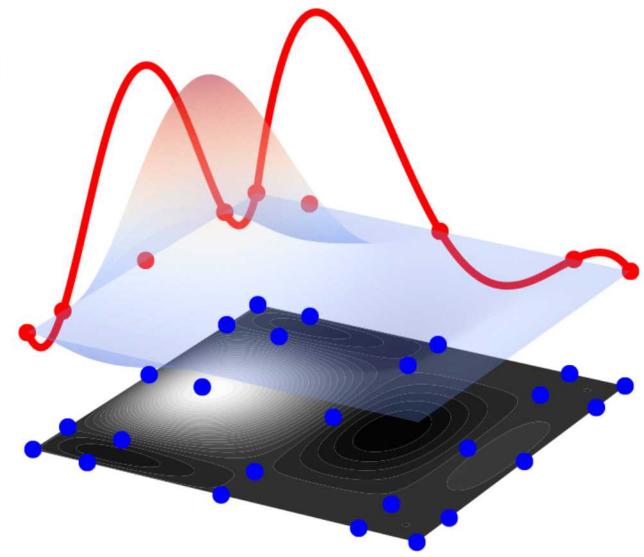
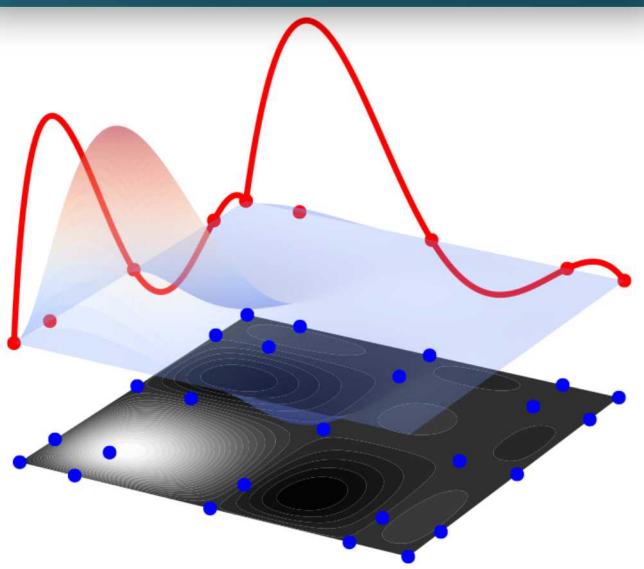
Multivariate interpolation

Interpolant is tensor product of 1D interpolants

$$f_{\alpha, \beta} = \sum_{i \in \mathcal{I}} f_{\alpha}(\mathbf{z}^{(i)}) \phi_{\beta, i}(\mathbf{z}), \quad \phi_{\beta, i}(\mathbf{z}) = \prod_{k=1}^d \phi_{\beta_k, i_k}(z_k)$$
$$\mathcal{I} = \{ \mathbf{i} \mid i_k \leq m(\beta_k), k = 1, \dots, d \}$$

Requires evaluating function on a tensor product grid

$$\mathcal{Z}_{\beta} = \bigotimes_{k=1}^d \mathcal{Z}_{m(\beta_k)}^k, \quad M(\beta) = \prod_{k=1}^d m(\beta_k)$$
$$\mathcal{Z}_{\beta} = \{\mathbf{z}^{(i)}\}_{i \in \mathcal{I}}, \quad \mathbf{z}^{(i)} = (z_1^{(i_1)}, \dots, z_d^{(i_d)})^T$$



Sparse grid interpolation

Combination Technique [Smo63,BNR00]

Interpolant is tensor product of 1D interpolants

$$f_L = \sum_{\beta \in I_L} c_\beta f_\beta$$

The isotropic index set is given by

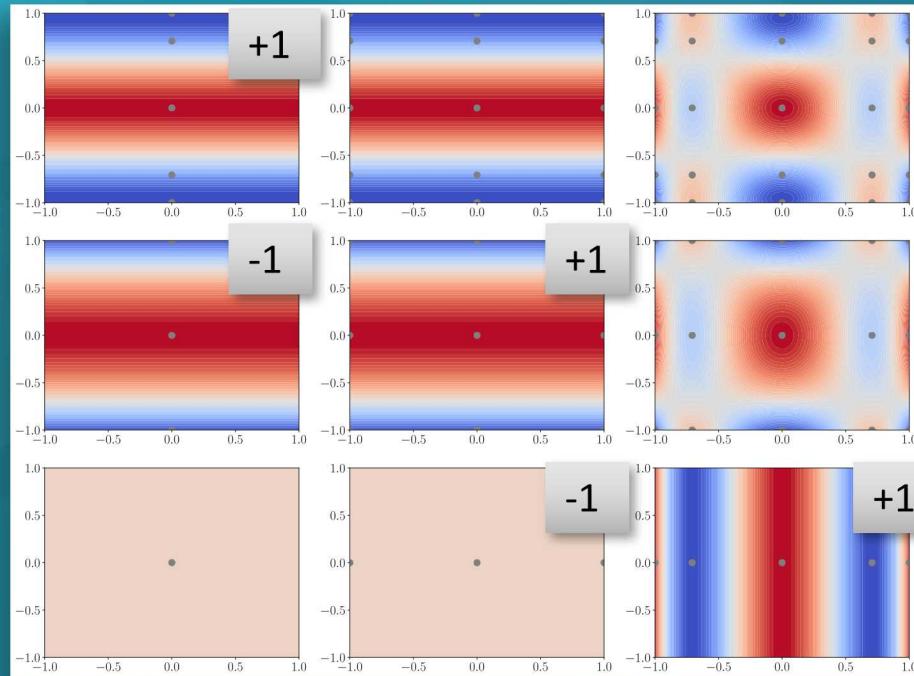
$$I_L = \{ \beta \mid L - d + 1 \leq \|\beta\|_1 \leq L \}$$

Building the interpolant requires evaluating the functions f_α on the union of samples of all tensor product grids

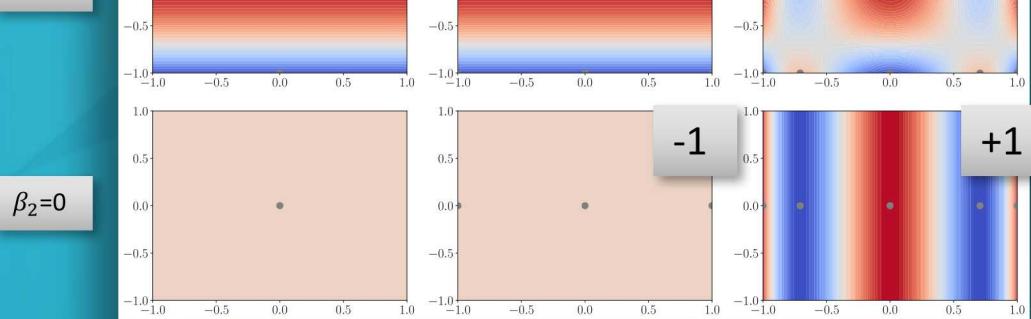
$$\mathcal{Z}_{I_L} = \bigcup_{\beta \in I_L} \mathcal{Z}_\beta, \quad M(I_L) = \text{card}(\mathcal{Z}_{I_L})$$

s is number of model discretization parameters

$\beta_2=2$



$\beta_2=1$



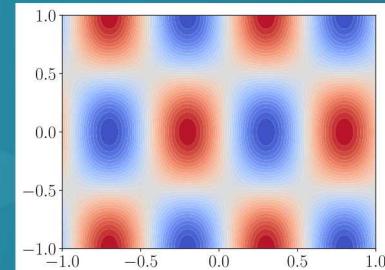
$\beta_2=0$

Explore and interact with confidence

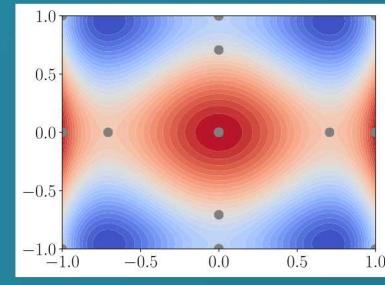
$\beta_1=0$

$\beta_1=1$

$\beta_1=2$



$$f(\mathbf{z}) = \cos(2\pi z_1)\cos(\pi z_2)$$

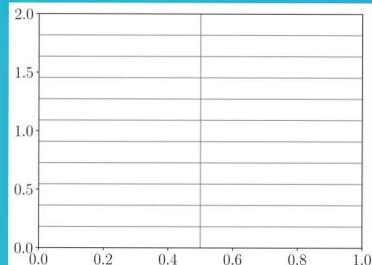
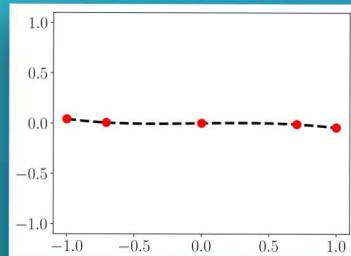


$$f_2(\mathbf{z})$$

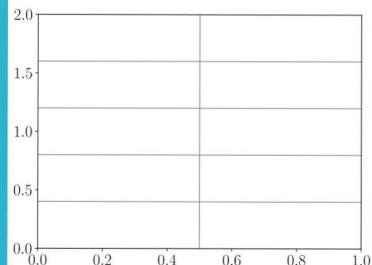
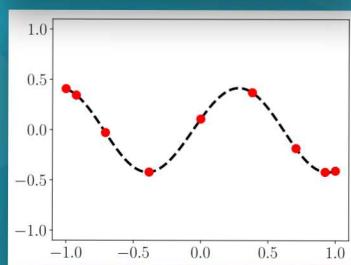
DAKOTA

Multilevel collocation

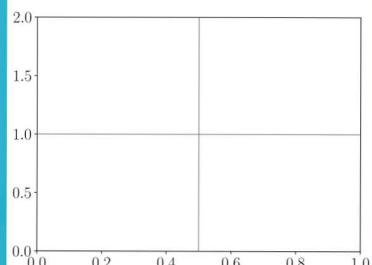
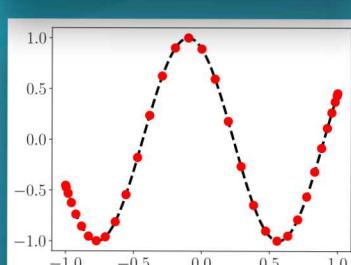
Construct a separate sparse grid for
each discrepancy



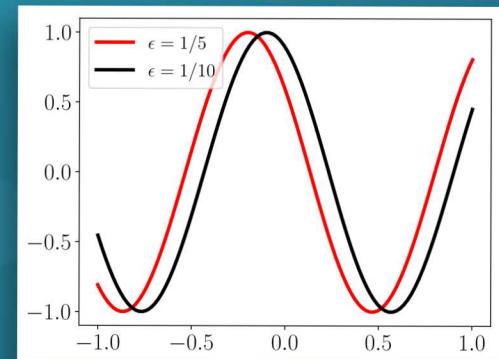
$$F_{M(2)} [f_2 - f_1](\mathbf{z})$$



$$F_{M(1)} [f_1 - f_0](\mathbf{z})$$



$$F_{M(0)} [f_0](\mathbf{z})$$

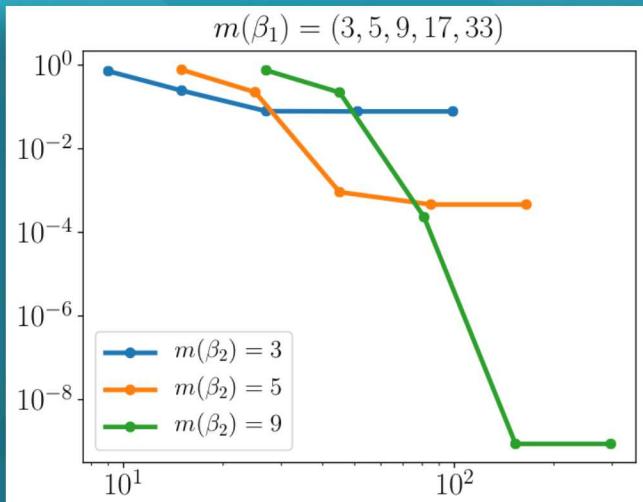


$$f_\alpha(\mathbf{z}) = \cos(2\pi(z_1 + \epsilon(\alpha)))$$
$$\epsilon(0) = \frac{1}{5}, \epsilon(1) = \frac{1}{10}, \epsilon(1) = \frac{1}{100}$$

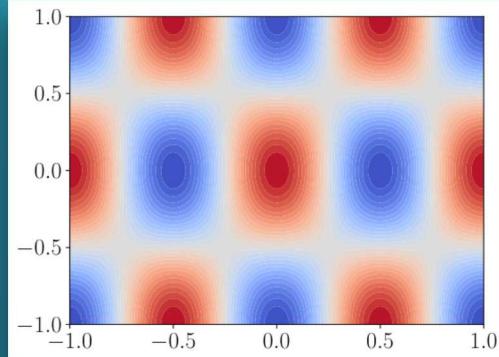
Stochastic discretization

Even for a specified deterministic error it is not clear a priori how which refinement is most efficient (refine z_1 or z_2)

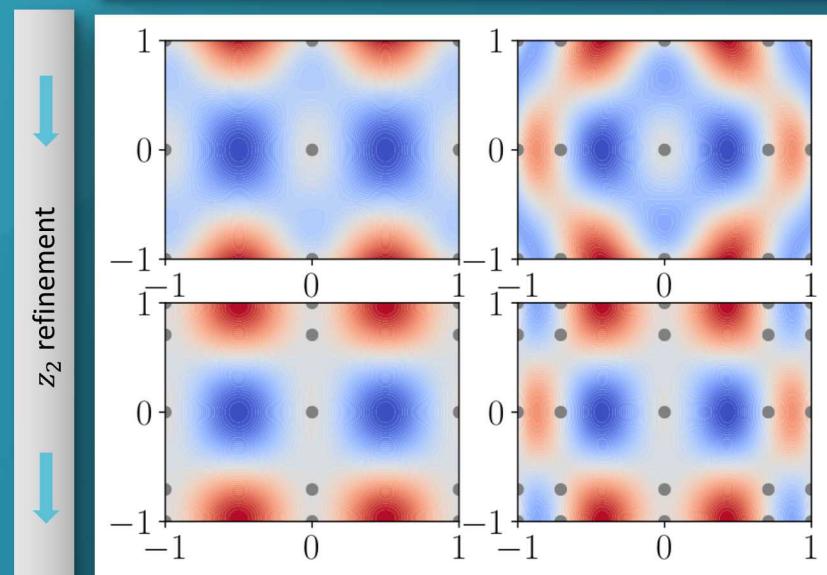
Adaptive sparse grids are great for solving this problem



Convergence of interpolant with increasing number of samples

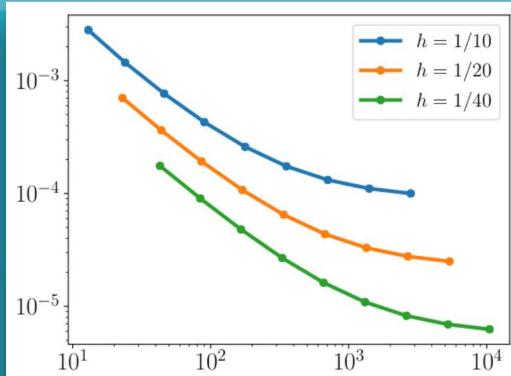


Exact function $f(\mathbf{z}) = \sin(2\pi z_1)\sin(\pi z_2)$



Discrepancy between exact and interpolated

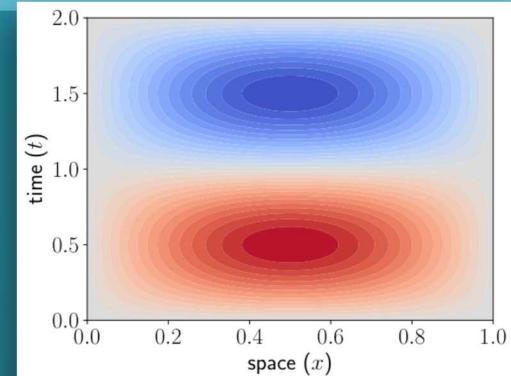
Deterministic discretization



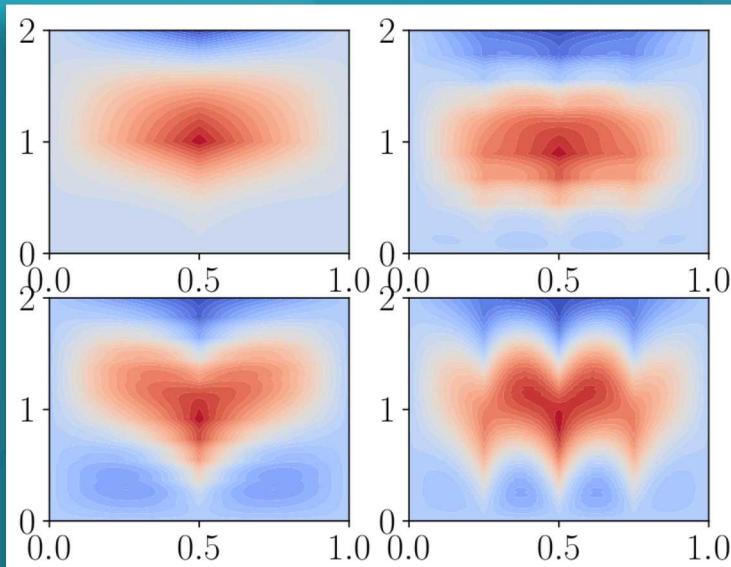
Convergence of solution with increasing number of time steps

Even for a specified stochastic error it is not clear a priori how which refinement is most efficient (time or space)

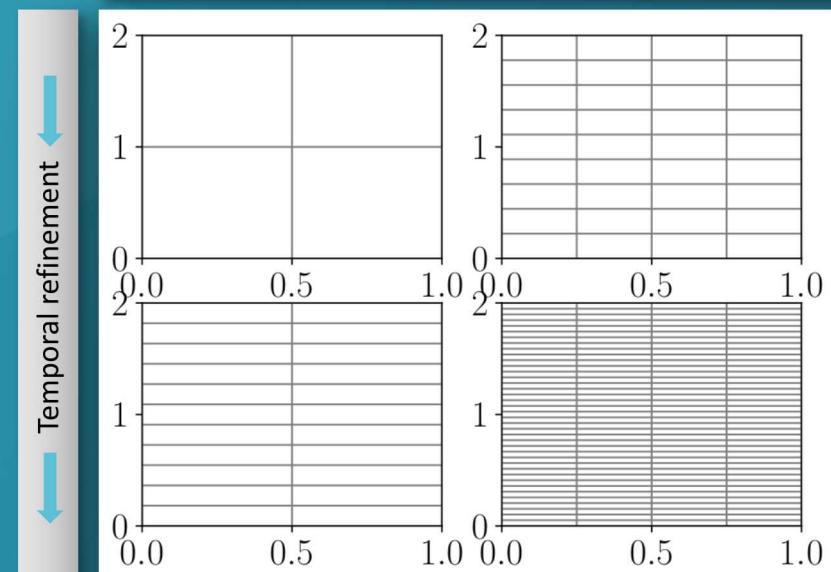
Adaptive sparse grids are also great for solving this problem



Exact solution $u = \sin(\pi x) \sin(\pi t)$



Discrepancy between exact and FEM solution $u_\alpha - u$



Spatial and temporal discretization

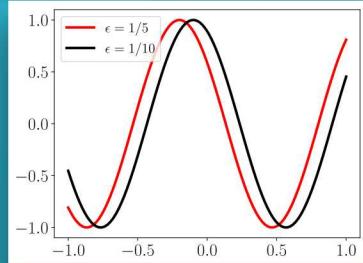
Multi-index collocation

Interpolant is tensor product of 1D interpolants
[\[HANT16\]](#)

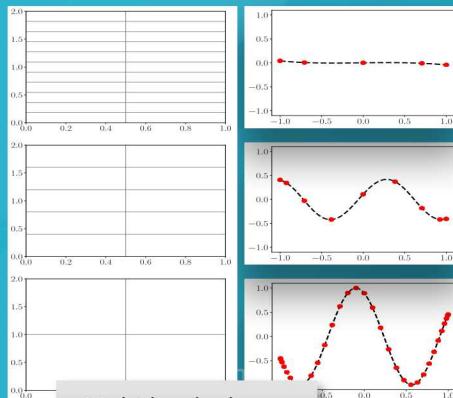
$$f_L = \sum_{[\alpha, \beta] \in I_L} c_{\alpha, \beta} f_{\alpha, \beta}$$

The isotropic index set is given by

$$I_L = \{ [\alpha, \beta] \mid L - (d + s) + 1 \leq \|\alpha + \beta\|_1 \leq L \}$$



$$f_\alpha(\mathbf{z}) = \cos(2\pi(z_1 + \epsilon(\alpha)))$$

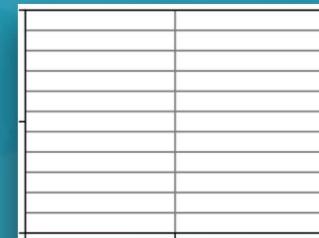
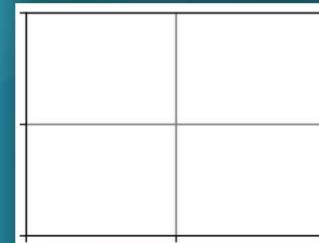


Multi-level scheme

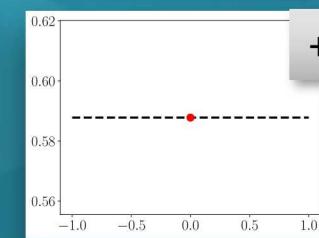
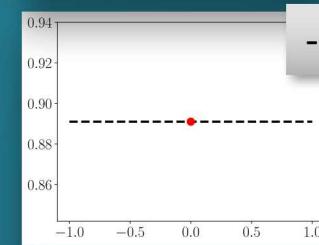
Building the interpolant requires evaluating the functions f_α on the union of samples of all tensor product grids

$$\mathcal{Z}_B = \bigcup_{\beta \in B} \mathcal{Z}_\beta, \quad M(\mathbf{B}) = \text{card}(\mathcal{Z}_B)$$

s is number of model discretization parameters



$$[\alpha, \beta] = [(1), (0)]$$



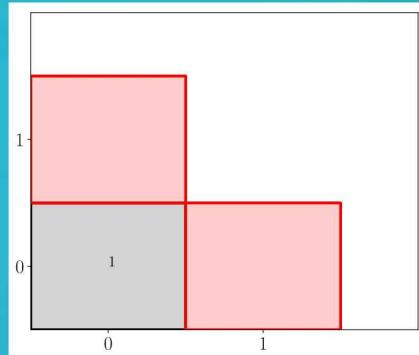
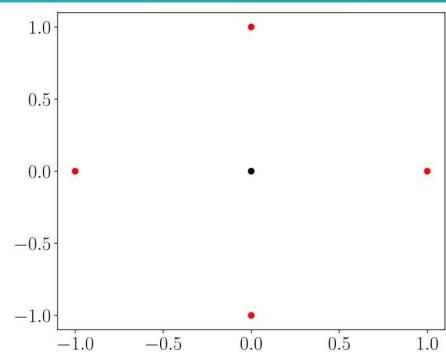
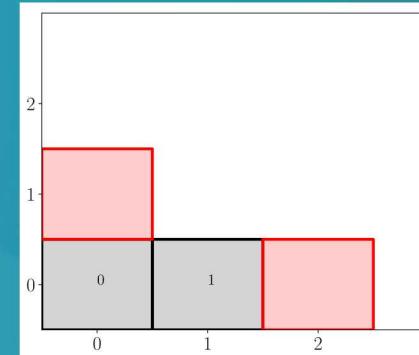
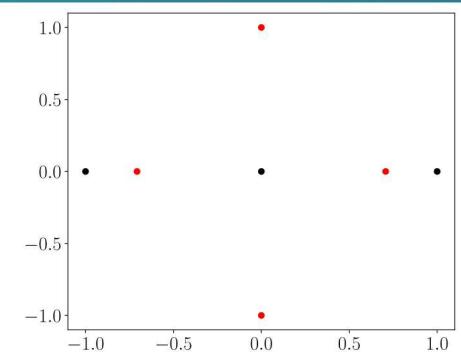
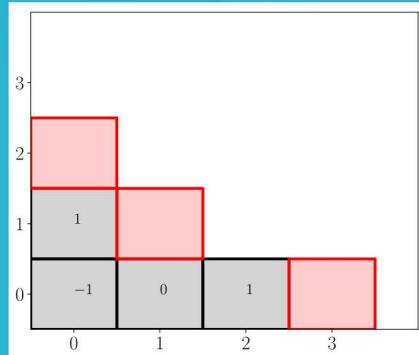
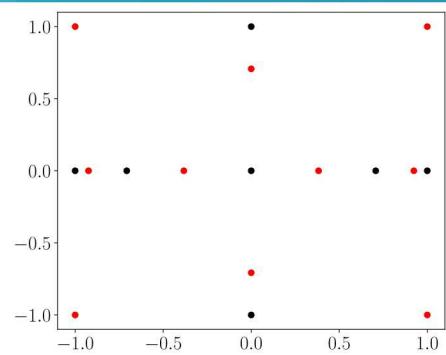
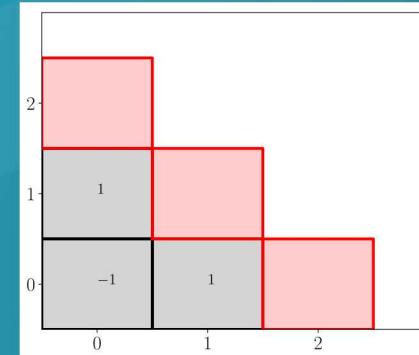
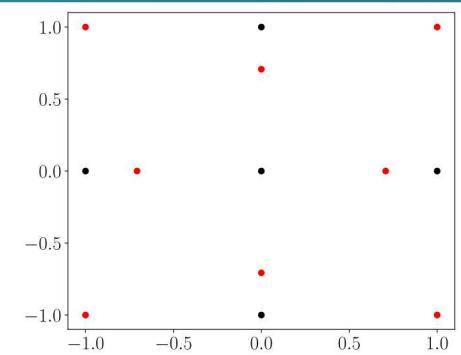
$$[\alpha, \beta] = [(0), (0)]$$

Multi-index scheme

DAKOTA

Adaptive refinement

Use adaptive algorithm proposed in [Heg03,GG03], using increment to mean as error indicator



Steady-state advection-diffusion

$$\begin{aligned} 10\nabla u(x) - \nabla \cdot (k(x, z)\nabla u(x)) &= 1, & \text{in } \mathcal{B} = [0, 1] \\ u(x) &= 0, & \text{on } \partial\mathcal{B} \end{aligned}$$

Use KLE of exponential covariance kernel

$$\log k(x, z) = 1 + \cos\left(\frac{1+\pi x}{2}\right) + \sum_{i=1}^d \lambda_i \phi_i(x) z_i$$

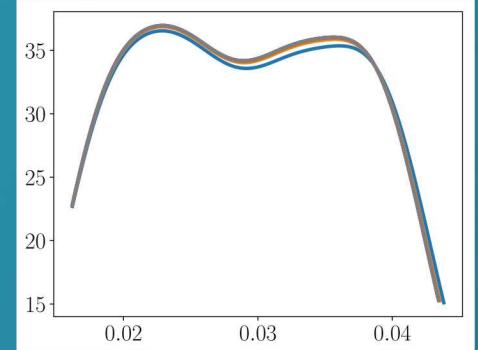
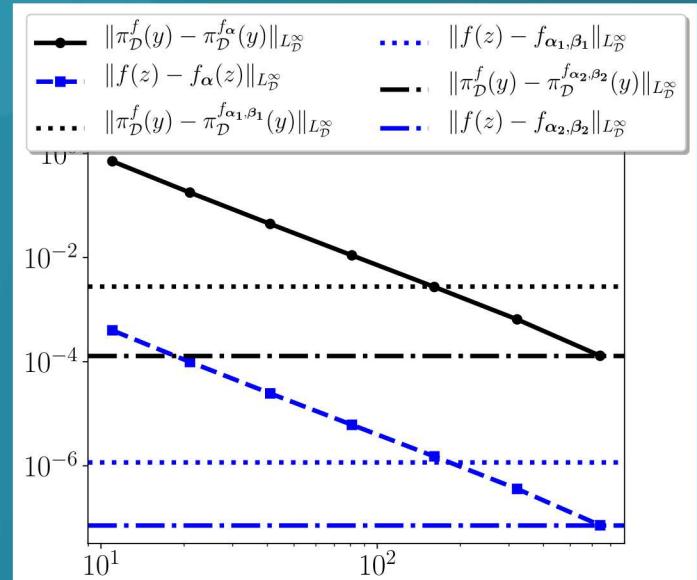
$\lambda_i, \phi_i(x)$ are derived from $C(x_1, x_2) = \exp\left(-\frac{|x_1 - x_2|}{l}\right)$, $l = 1, d=5$

Mesh size: $\Delta x_{\alpha_1} = \Delta x_0 2^{-\alpha_1}$

QoI: $f_\alpha(z) = u(x = 0.5, z)$

We compute error in approximation using ($S = 10,000$)

$$\|f - f_M\|_{L^\infty} \approx \max_{s=1, \dots, S} |f(Z^{(s)}) - f_N(Z^{(s)})|$$



$$\begin{aligned} \frac{du(x, t)}{dt} &= -10\nabla u + \nabla \cdot (k(x, z)\nabla u) + 10, & \text{in } \mathcal{B} = [0, 1] \times [0, T] \\ u(x, t) &= 0, & \text{on } \partial\mathcal{B} \end{aligned}$$

Use KLE of exponential covariance kernel

$$\begin{aligned} \log k(x, z) &= \bar{k}(x) + \sum_{i=1}^d \lambda_i \phi_i(x) z_i \\ \lambda_i, \phi_i(x) \text{ are derived from } C(x_1, x_2) &= \exp\left(-\frac{|x_1 - x_2|}{l}\right), l = 0.1, d=5 \\ \bar{k}(x) &= \log\left(\frac{1}{20}\left(2 + \sin\left(\frac{\pi x}{2}\right)\right)\right), \quad T = 1 \end{aligned}$$

Mesh size: $\Delta x_{\alpha_1} = \Delta x_0 2^{-\alpha_1}$

Time-step size: $\Delta t_{\alpha_2} = \left\lfloor \left(\frac{2T k^*}{\Delta x_{\alpha_1}^2} + 1 \right) 2^{\alpha_2} \right\rfloor^{-1}$ (smallest time step must satisfy CFL condition)

QoI: $f_{\alpha}(z) = u(x = 0.5, t = T, z)$

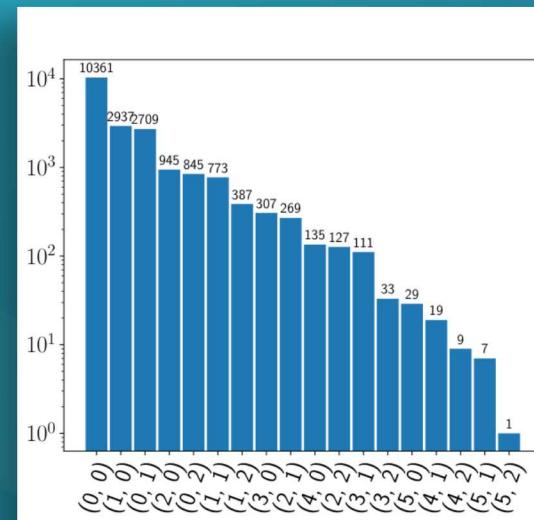
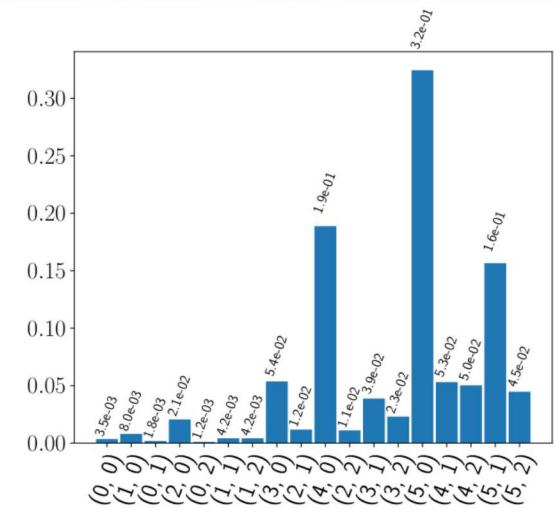
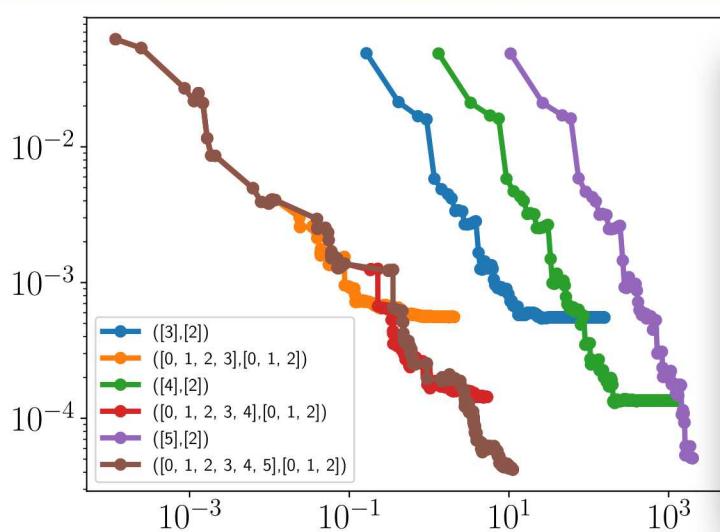
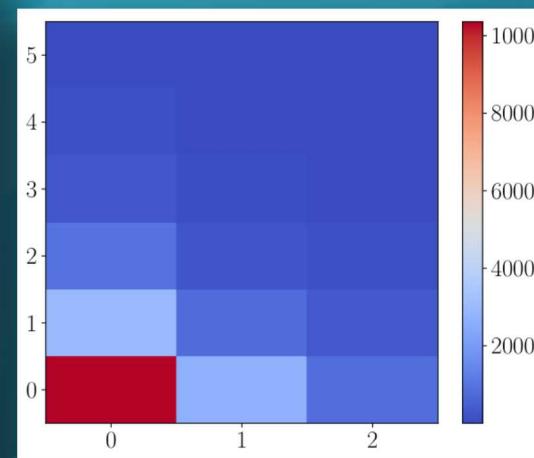
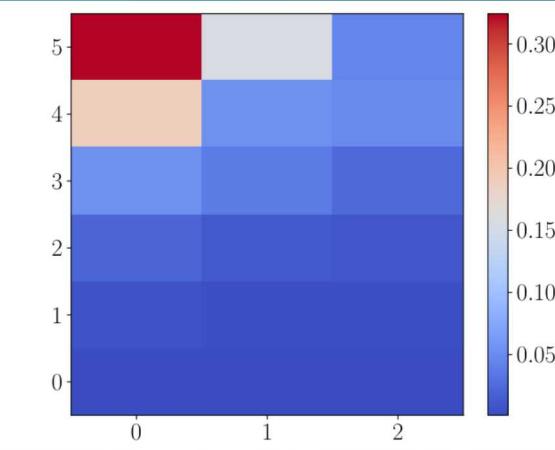
We compute error in approximation using ($S = 10,000$)

$$\|f - f_N\|_{L^\infty} \approx \max_{s=1, \dots, S} |f(Z^{(s)}) - f_N(Z^{(s)})|$$

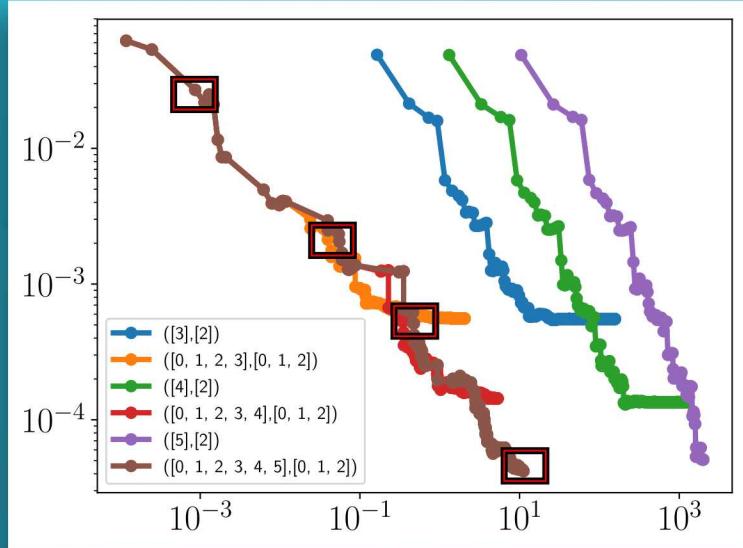
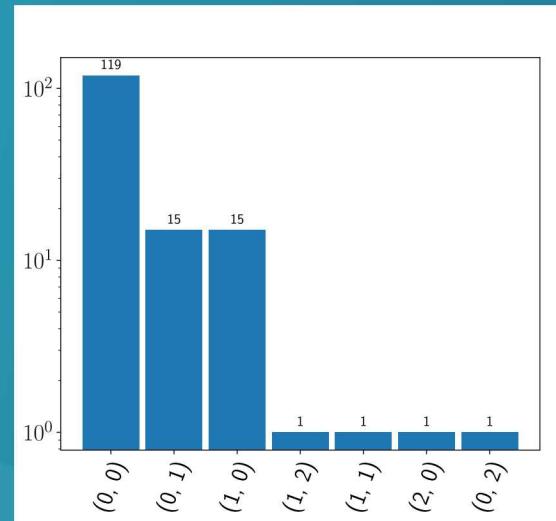
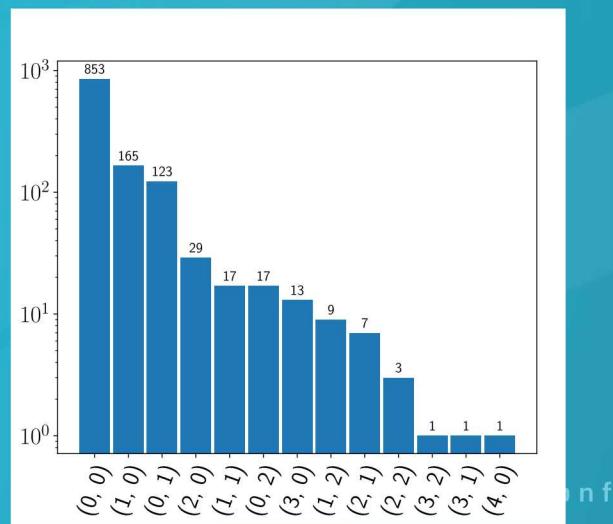
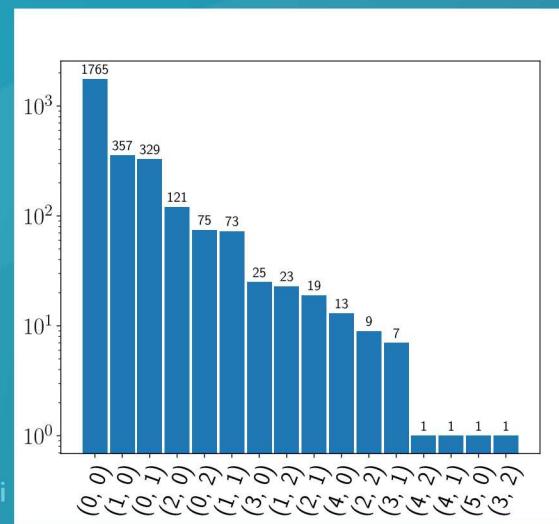
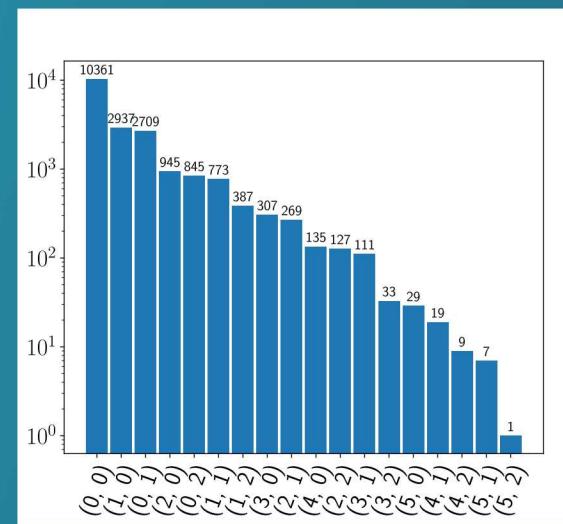
Transient advection-diffusion

Transient advection-diffusion model relative costs

α_2	1	2	2
α_1	0	7.6e-06	1.5e-05
	1	6.1e-05	1.2e-04
	2	4.9e-04	9.8e-04
	3	3.9e-03	7.8e-03
	4	3.1e-02	6.2e-02
	5	2.5e-01	5.0e-01
			1.0e+00



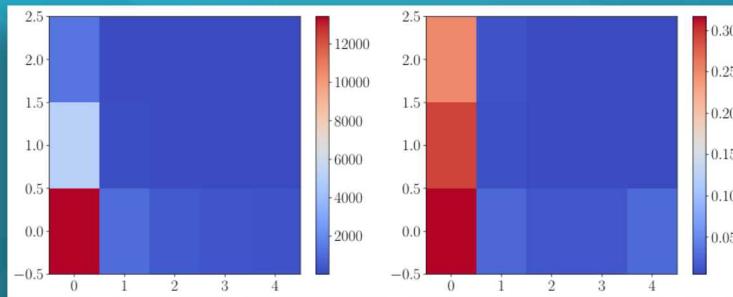
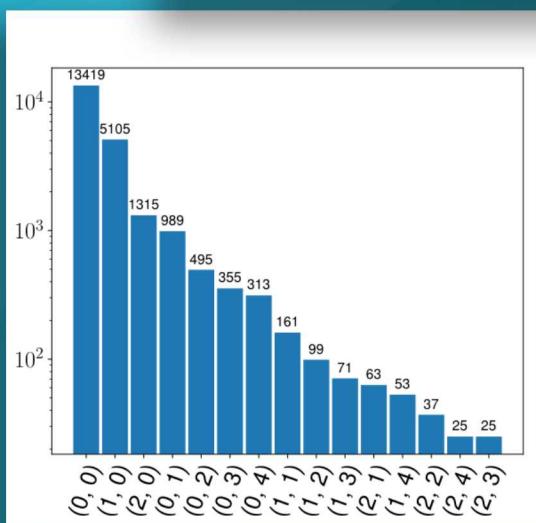
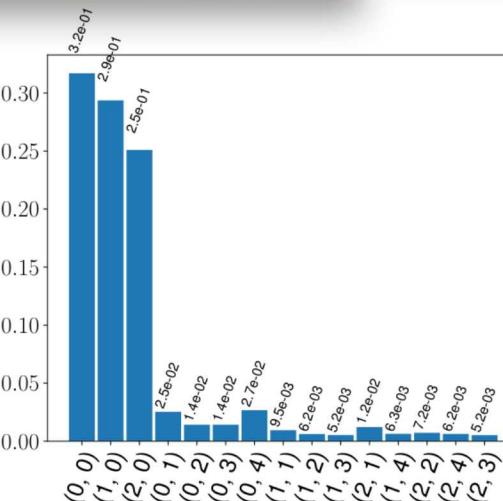
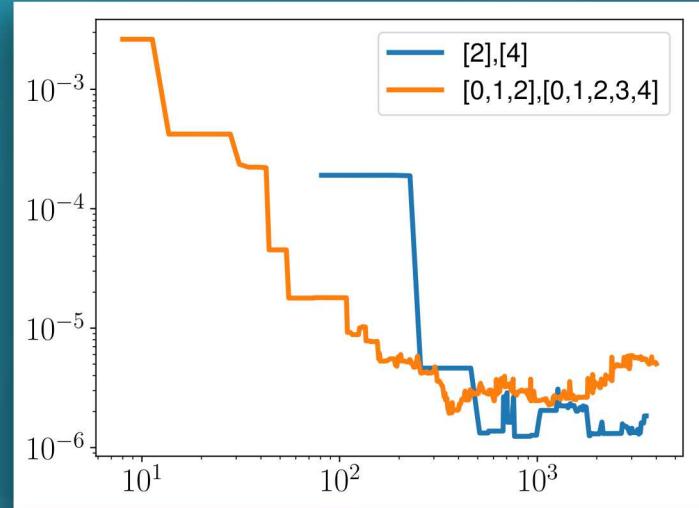
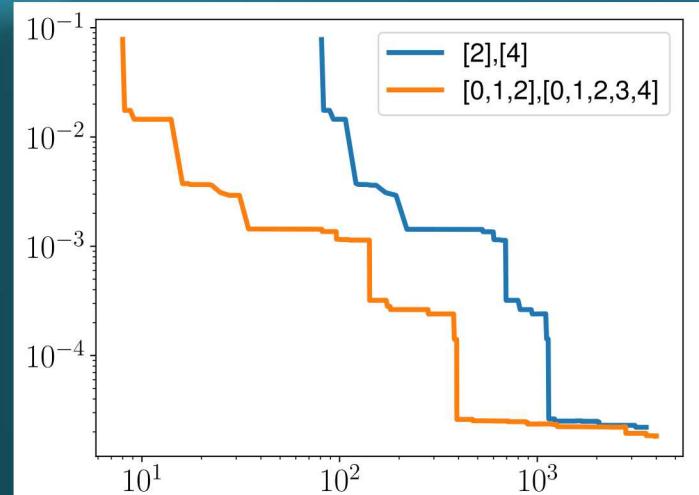
Transient advection-diffusion



Nozzle Model

2D Euler nozzle model costs in seconds

α_1	α_2	1	2	3	4	5	5
0		36.3	39.3	44.2	61.5	131.2	347.9
1		88.5	90.5	95.7	113.1	184.2	386.8
2		293.6	297.4	300.0	317.5	384.5	609.2



References

- [BJW18] T. Butler, J.D. Jakeman, and T. Wildey. Convergence of probability densities using approximate models for forward and inverse problems in uncertainty quantification. 2018.
- [BNR00] V. Barthelmann, E. Novak, and K. Ritter. High dimensional polynomial interpolation on sparse grids. *Advances in Computational Mathematics*, 12:273–288, 2000.
- [Boo85] D. Boos. A converse to scheffes theorem. *The Annals of Statistics*, 13(1):423–427, 1985.
- [GG03] T. Gerstner and M. Griebel. Dimension-adaptive tensor-product quadrature. *Computing*, 71(1):65–87, SEP 2003.
- [HANTT16] A. Haji-Ali, F. Nobile, L. Tamellini, and R. Tempone. Multi-index stochastic collocation for random pdes. *Computer Methods in Applied Mechanics and Engineering*, 306:95 – 122, 2016.
- [Heg03] M. Hegland. Adaptive sparse grids. In K. Burrage and Roger B. Sidje, editors, *Proc. of 10th Computational Techniques and Applications Conference CTAC-2001*, volume 44, pages C335–C353, April 2003.
- [NE12] L. Ng and M. Eldred. Multifidelity uncertainty quantification using non-intrusive polynomial chaos and stochastic collocation. In *Proceedings of 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference*, Honolulu, Hawaii, 2012.
- [NTW08] F. Nobile, R. Tempone, and C.G. Webster. A sparse grid stochastic collocation method for partial differential equations with random input data. *SIAM Journal on Numerical Analysis*, 46(5):2309–2345, 2008.
- [Smo63] S.A. Smolyak. Quadrature and interpolation formulas for tensor products of certain classes of functions. *Soviet Math. Dokl.*, 4:240–243, 1963.
- [Swe86] T.J. Sweeting. On a converse to scheffes theorem. *The Annals of Statistics*, 14(3):1252–1256, 1986.
- [TJWG15] A. Teckentrup, P. Jantsch, C. Webster, and M. Gunzburger. A multilevel stochastic collocation method for partial differential equations with random input data. *SIAM/ASA Journal on Uncertainty Quantification*, 3(1):1046–1074, 2015.