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Nozzle Aero-Thermal-Structural Design DAKO IA
Inseired b the X-47B aircraft

Apnlicatirin
• Unmanned combat vehicle aircraft
demonstrator, capable of carrier
take-off and landing

• Complex nozzle shape integrated into
aft end of vehicle

• Advanced materials and significant
heat environment and thermal
management issues

• Nozzle weight is a substantial portion
of the overall propulsion system
weight

• Uncertainties in all areas of multi-
physics problem

• Complex multi-physics analysis and
design problem

and predict wit confidence
Top image: Northrop Grumman X-47B UCAS Data-sheet, 2015
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Multidisciplinary analysis (MDA) DAKO i A

MDA is essential for accurate modelling of the nozzle
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Aero Analysis DAKO IA

3D RANS CFD computation

Steady analysis: engine transients do not impact problem

formulation sufficiently to justify cost of unsteady analysis

(AFRL visit)

Model is fully automated and robust with respect to

nozzle shape perturbations

xp ore and predict with confidence
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Fluid-Structure Interface DAKOIA

The wall pressure and temperature
computed using the aero analysis
are interpolated onto the structural
mesh

Explore and predict with confidence Interpolated pressure onto structural mesh



Thermo-structural Analysis DAKO IA

Thermal analysis : wall layers + air gap
Conduction & convection modeled
BC: prescribed temperature on inner surface of
innermost layer; convection on outer surface of
outermost layer

anaivgig• wail laverc gtrinperg

failure Material  criterion (e.g. maximum strain)
available for composite materials
Pressure and temperature-induced forces in load
layers, only temperature-induced forces in thermal
layer

Stru ural m

Baffles Stringers

Mech load Thermal load
layer layer



Multifidelity Modeling DAKO IA
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Forward UQ DAKO iA

Variables

Inner wall shape

Wall thicknesses

Stringer locations

Material properties

Inlet conditions

Heat transfer coefficient

Z = Zl,...,Zd u(z)
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Must compute statistics from limited number of samples (simulations)

uomputationai cost is ampnea as number of uncertainties increases• • . • • r•
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Convergence of densities DAKO A

Most literature focuses on convergence of statistics of sequences of
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But convergence in distribution does not imply convergence almost
surely.
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Convergence of densities DAKO A

Assumption 1

Letn-(z) be chosen such that sup rt-pf (y) < B1, B1 > 0 and n-Df is
yED

continuous on D except on a set A c D of zero p.D measure

Definition 1
A sequence of functions is asymptotically uniformly equicontinuous
(a.u.e.c.) if

ve. > o, 36(0 S. t. ly — xl < > M(E) Ifiti(x) fm(Y)1 < E

Assumption 9
Let fmbe an sequence of approximations to f, 3B2 > 0 s.t for any M

sup 4' (y) B2. Moreover for any 6 > 0 3D6 c D s.t A c D8 and
yED

RD (I) 6) < 6 the sequence 71-1t4 is a.u.e.c. onD\D8.



Convergence of densities DAKO IA

Proof. Choose
E

6 = 
2(B1 + B2)

114(y) — 74114 (3) 11 e° (D) ll 14 (Y) — 7411/1 (Y) 11 e° (D8 ) + 1114 (3) — 74114 (Y) 1 l Loo (D \DB )

• By choice of 8 first term bounded by E/2

• By Theorem 1 in [Swe86] ri-DfNi 74 uniformly on D\Do thus second term can be bounded by E/2

by choosing M sufficiently large

114(f(z))-Th-fP(fm(z))111,00(r) 1174(f(z))-74(fivi(z))11L00(-,)+11n-11.)(fm(z))-n-Pv1(fM (Z)) 11Lc° (F)

• By V8 > 0, 3 M* s. t. M > M* ll hi (z) — f (z)111,00 (r) < 6 and Assumption 1 there exists 6 such
that first term bounded by E/2

• Tho nrwm 11 11 _,,,,,_.. ic oriiiivalont tn 11 11 _,,,,,,._. cinro tho arm imontc trI tho rioncitioc are irlontiral crlIV,...11%.1%,V1 JV

r by the second argument in top box second term can also be bounded by E/2

Explore and predict wit confidence



Convergence of densities using KDE and
ssarse @rids 

DAKOliot

Kernel Density Estimation constructed

with M7 samples (satisfies Assumption 1)
11/17(

1 I
K(Y 

— yi
40.(Y) = 

I 4 hd hTc mmir i=1 7r

If Tcfr, has continuous s derivatives and K(y)
L/

11Th.f0.(y)-ftL(37)11L00(r) <c
is a s-th order kernel then

(log /147\s1(2s+d)
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Convergence of densities using KDE and
ssarse grids 

DAKO i A

Proof:

1174(f (z)) - Fr ).) v qfm(z))11,,com < lk4(f (z)) - g(f (z))I1,00 (r) + Mg.(f (z)) - '14N I (1. (z))11 Lo 0 m +

llgm (f (z)) - ftki (fm(z))11L00(r)
By Lipschitz continuity of K

11A-4(f(z))-gm(f(z))11L00(,),11g(f(z))-gm(fm(z))11L00(,) ClIfm(z) — f (z)11Lav)

Corrollarv 1 mivv181: Given that the isotropic level I sparse grid with
Clenshaw-Curtis abscissa satisfies

Then

a
Um (z) - f (z)II L.° (r) C - 1(6)1141111' l'il— 1 + log 2d

lo g m s'/(2.5-Ed)•
114 (f (z)) — ir 3,1' (hi (z))11 Lco 01 < c 

(  
M 

)
+ c

i 
(a) iir

1
 P1)
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Convergence of densities
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Multivariate Approximation DAKO A

cco0 •
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Let f = Q(u(x,t,z)) be a functional of the solution of a PDE u(x, t,

The error in the approximation of f is bounded by

fa,api34, Ilf falIV fa,api34,

a: multi-index specifying PDE discretization
multi-index specifying sampling discretization

w: PDF of variables Z

To minimize simulation cost we should balance physical error (I) with
stochastic error (II). I.e. only sample highest fidelity model when

stochastic error is smaller than deterministic error



Multilevel Monte Carlo Quadrature DAKO i A

Monte Carlo Quadrature using an approximate mor4 l fa
We can approximate the expectation of a function f by

1
E A 4 (13)[fa] ';'-'"" age = m(g)I (zt) V[0 ayfl]

i 

f

=i
The mean squared error in the approximation

E [(0a,fl — E [Q112] = V[0 ayig] (E[0a,fl] — E [02
a

V [fa]

M CIO

Multilevel Monte Carlo: reduce computational rost 1-Ixi balancing
physical and deterministic errors
Use converging sequence of functions fa to reduce variance of
estimator

L Ma

E[f] 03 =I All- D(fa(Zi) fa-1(Zi)) = fla
a= 0 

a 

i=1 a=1
fo =

Allocate samples across function levels to achieve accuracy E

C(0/149 = L Ca Ma

MVV[Ya] = E2/2
a=0

Ma = 
2 
2 [1 

07[Ya]Ca)1/21 
\107[Ya])

C
a=0 

a
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space (x)

Exact solution(left)
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MC and MLMC applied to an
--'‘' version of the nozzle model



Multilevel collocation DAKO IA

Approximate PDE solution(functional)

using a sequence of FEM models with
r-r n A 1 r 1

1.1.( I HAN! 11 f-J

Let Fit4(fl) be a sequence of interpolation

operators

fa,fl (Z) = FM(0) [fa] (Z)

Let fa = f (ua(x, z)) be a sequence of
functions which are functionals of PDE FEM

solutions with decreasing mesh size ha

The multilevel approximation is
L

fa,[3(Z) = FA4A)[fat — fat-11(z)
1=0

— \VUJ — —
< M(Ri < ••• < A4(fly)

and

h > h > • • • > hao — — — L

Bi-level scheme first propncori by [NL-12] I

space (3)

Effectiveness of method depends of rate of

discrepancy decay vs approximation error decay
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Multilevel collocation D IAKO A

Approximate a functional of the exact PDE
solution using a sequence of models with
increasing mesh refinemenl-
The error in the approximation is given by

fa,44, Ilf llfa — fa,flIlL7134,
Assume

119 -9fllle Cjaa“g),

C 11,1 6 )), — fa-i) C<q,
and

Ilf Cs1111`,
Then if we choose interpolation operators such
that

\
o-i   ((L + 1)C,C7 I WHI,„le

llfa LP <ICICo-L_ah7, = Cshl

la LA. 

Then

w
a=0

llf fa,flll LP, 2Cshlic, 411

1y

Single fidelity cost is CE < E µ K

Theorem 3 [TJWG15 : The following holds
for sparse grids using a Lagrange basis

Cia = 4 (a) 11(d)

Assume 3y such that the cost Ca < CchaY.
For multigrid solver y = D
Assume lc min((3,py) then 3 a level L
such that

Ilf—fa,fl14
for any E < e -1 and

Cc = M(L — a)Ca

< E,

2.0

1.5

n.  
0 0.2

space ( ) 0.5

Effectiveness of method depends of rate of
aiscrepancy aecay vs approximation error aecay



Convergence of densities DAKO A

ThPnrPm 4 [BJWPrepriro : Under assumptions of Theorem 1 there
exists a M such that the error in the multi-level sparse grid
approximation satisfies

71-fl (f (z)) (fM (z))11 1,00
7(log m.7).51(2s+d)\

11 (r) 
~ 2C 

M7T

Which can be computed with cost

< c /Tog 6.1-'7', )6' = Ply

1
c

1 
> iuy

CE M(L — a)Ca

< PY

log Mir)sl(2s+d)

Where we have chosen E =

Prnr Direct application of Corrolary 1 and modification of Theorem
3 to use L°° norm



Tensor product interpolation DAKO 1 A

Univariate interpolation
Define set of 1D samples

Zinc,i(ok) = (zi(c1), ... zi(cm(flk))

(U — 1)7r)
, m(1) = 1, m(l) = 21-1 + 1

m(flk)
(j)
Zk = COS

And univariate basis functions
m(k) (n)
1-1 (Zic—Zk )

Oflo (zk) = f (i) (n)

n=1,n~k Zk — Zk )

MultivariatP interpolation
lnterpolant is tensor product of 1D interpolants

d

fa,fl=lfa(z(1)) (I) 13 ,i(Z), (1),q,i, (z) = n oß„,ik (4)
i.E3 k=1

3 = ti l ik nOk))1 C = 1, ... , d}
Requires evaluating function on a tensor product grid

d d

z, = 04(,,,k), 114(fl)= flin(esk)
k=1 k=1

Zio = tz(ilic3, z(i) = (z;_i1), ... , 411:c1) )T



Sparse grid interpolation DAKO IA

rnrylhinofinin Torknini 1-CryIng2 laMP(1111

lnterpolant is tensor product of 1D interpolants

fL=
[3E4

The isotropic index set is given by

-L = { R I I. < 11 1-8111 1-}

Cflfig

Building the interpolant requires evaluating the

functions fa on the union of samples of all
tensor product grids

'IL= Uzie,
EIL

M(IL) = card(ZIL)

of Air e.rt--i--11-itNri rt--ir•-1evNt--rtrt^
I HUI HIJ I  IIIUU I Ul ULCILIU11 pal CIIII I
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Multilevel collocation

2.0 
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Stochastic discretization DAKO IA

Even for a specified deterministic
error it is not clear a priori how
which refinement is most efficient
(refine z1 or z2)

•

Adaptive sparse grids are great for

m(th) = (3, 5, 9, 17, 33)

Cnnve rap n

Explore and predict with confidence
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Deterministic discretization DAKO IA
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Multi-index collocation *DAKO IA

lnterpolant is tensor product of 1D interpolants
I-I/AN I lb]

fL=  Ca,fl fa,
[ce,MEIL

The isotropic index set is given by
/L = [a, 13] I L — (d + s) + 1 Ila + 131I1 <_L}

Multi-level scheme

Building the interpolant requires evaluating the
functions fa on the union of samples of all tensor
product grids

ZB = 
Zig , M (B) = card(ZB)

)3E13

s is number of model discretization parameters
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Adaptive refinement DAKO IA

Multi-level scheme
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Use adaptive algorithm proposed in [Heg03,GG03], using
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Steady-state advection-diffusion DAKO IA

10Vu(x) — V • (k(x, z)Vu(x)) = 1, in B = [0,1]
u(x) = 0, on dB

Use KLE of exponential covariance kernel

log k(x, = 1 + cos 
(1 +Trx)

2 + EciL1 (x)z,
•-% r4".0;‘,",-.1 -

"1, %pi kA.) UGI IVGLI I I %Jill -

exp  x / = 1,d=5

Mesh size: Axal = Ax02-a1
T /

k,201 tAZ ) = u(x = 
1-, 
)

•

We compute error in approximation using
(S = 10,000)

f_11 moNT f(7(s)1 f_i7(s))1
11/ J/14 IlL 111 V-

s=1,...,S

35-

30 -

25-

20 -

15

0:02 0:03 0:04

117b(Y) — 7rb" (Y)IILT, II f (z)
f (z) — f.(z)114. — . 114 (Y) — 7r"2'32 (Y) 11 LT,

• • • • !kirb(Y) irD"fri(Y)11/4; f (z) — faz,,32114-

10-2-

10

10-

M..

4

01 10
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Transient advection-diffusion DAKO IA

du (x , t)
 =

dt 
—10Vu + V • (k(x, z)Vu) + 10, in B = [0,1] X [0, T]

u(x, t) = 0, on al3

Use KLE of exponential covariance kernel

log k(x, z) = k(x) + EL ili4) i(x) zi

Ai, 013,i (x) are derived from C(x1, x2) = exp (— lxi-x2
/

1) , 1 = 0.1,d=5

1
k (x) = log (-

20 
(2 + sin (71-x) 

'
)) T = 1

2 

Mesh size: Axai = Ax02-a1

2Tk*
Time-step size: Ata2 = [(A., + 1) 2

LiAcri

QoI: fa(z) = u(x = 0.5, t = T, z)

a2 (smallest time step must satisfy CFL condition)

We compute error in approximation using (S = 10,000)

Ilf — fNIIL00 ,--• max If (Z Cs)) — fN (Z (s))I1s=1,...,s



Transient advection-diffusion DAKO A

Transient advection-diffusion model
relatil—ts

(12
(11

1 2 2

0 7.6e-06 1.5e-05 3.1e-05
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Transient advection-diffusion DAKO A
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Nozzle Model DAKO it,

2D Euler nozzle model costs in seconds

a
al 

2 1 2 3 4 5 5

0 36.3 39.3 44.2 61.5 131.2 347.9

1 88.5 90.5 95.7 113.1 184.2 386.8
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