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Quantification of chemical segregation for each specimen was

Microstructure near fusion pores performed by DLEPR, revealing a substantial reactivation current
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steel. A majority of the local corrosion attack occurring in the
austenite located adjacent to o-ferrite for the LENS material. The
large Cr content in the o-ferrite observed in the LENS material led
to a more protective passive corrosion product compared to
austenite, leading to the preferred corrosion of the austenite.

Conclusions

The microstructure and corrosion response of 304L stainless steel manufactured using two LENS processes
was investigated. The cyclic potentiodynamic polarization measurements revealed the breakdown and
repassivation potentials for LP and HP LENS were comparable to wrought 304L. The abundance of fusion
pores present in the HPLENS material often led to premature breakdown while the gas pores in the LPLENS
had much less impact on pit initiation. The DLEPR experiments verified the presence of &-ferrite can lead to
local dissolution of the austenite phase, however this effect did not appear to correlate to an increased
susceptibility to pit initiation. Fusion pores were evidently observed to be the controlling factor in pit initiation
for these materials., with their mechanism for increased corrosion activity similar to that for crevice corrosion.
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