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Motivations for Si quantum computing 

■ End of Moore's law & special purpose speed-ups (e.g.,
quantum simulation, search)

■ Qubits decohere in short times leading to errors (T2)

■ Require error correction (QEC)

■ Higher fidelity qubit requires less QEC

■ Silicon offers promise of realizing higher fidelity & less QEC
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Today's Si MOSFET

Quantum dot architecture
(e.g., Loss-DiVicenzo)

Single atom architecture
(e.g., Kane)

[1] B. E. Kane, "A
silicon-based nuclear
spin quantum
computer," Nature, vol.
393, no. 6681, pp. 133-
137, 1998.

• Open question as to how to proceed

• Question has been framed as Ds or QDs?

• One message: QD-D system, not one or the other.

feembirdm SITt1] D. Loss and D. P. DiVincenzo, "Quantum computation with quantum dots," Phys.
ev. A, vol. 57, no. 1, pp. 120-126, Jan. 1998.
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First part of talk Taxonomy of Si qubits 
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Nanostructure fabrication at Sandia National Labs 

Front-end in silicon fab

SiO

. 2000 A .01 -si
n+ (As) )

Si02 gate oxide

viL

 V

250 A Nitride etch stop
(10 — 35 nm) Si substrate

Goal: Use Poly-Si etched structures to
produce donor-based qubits
Rationale:

Self aligned implant
Foundry like processing
Potential long term benefits for charge stability

Back-end nanolithography

Si02 gate oxide

HV
5.00 kV

HFW WD mag tilt det
1.71 m 5.4 mm 150 000 x ° TLD

111.
500 nm

Nordberg et al., PRB 80 115331 (2009)

Tracy et al., APL 103 143115 (2013)
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Implant
window

Gate wire with implant — QD coupling to donor 

CP AG
polysilicon

Si02
<— SET island

donorSi substrate

Single dot 

S/ D

0

-0-

lE=
c

• Poly-Si gated nanostructures

• Use Poly-Si for self-alignment of donors

• Donor qubit readout through quantum dot

• Quantum dot senses the spin dependent ionization of the donor
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Implant

window

Gate wire with implant — QD coupling to donor 
SET offsets (detection of ionization) 

CP AG
polysilicon

Si02
<— SET island

donorSi substrate

Single dot

S/D

0

-0-

tE=
; c

• Poly-Si gated nanostructures

• Use Poly-Si for self-alignment of donors

AG 1D=

1

8

6

CP
Spin dependent ionization 
Read

Source

/Drain

or"

• Donor qubit readout through quantum dot

• Quantum dot senses the spin dependent ionization of the donor

Ez

Donor

Morello et al., Nature 2010

Tracy et al., APL 2013
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Single donor qubits & dephasing metrics 

Ohmics

Donor

Quantum
Dot
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pulse length (us)

28Si epilayer

• 2.5 ium thick
• 500 ppm 29Si (ToF SIMS)

Nominally identical processing

Tracy et al. (in preparatio
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Single donor qubits & dephasing metrics 

Ohmics

Donor

Quantum

Dot

S=[1:]/1013 cm-3

Tr/2 ]-(/ 2

Ramsey exp.

28Si epilayer

• 2.5 ium thick

• 500 ppm 29Si (ToF SIMS)

Nominally identical processing
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• Ramsey and Hahn-echo: T2 = 0.31 ms, T2* = 10-20 [is

• Line width is approximately 30 kHz

• B1 corresponds to

• In natural silicon: line width is order of 5 MHz

• T2* — 50 ns

1

20 25

ox iO4
Magnetic field shift (ttG)

Witzel et al., PRB 2012
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Preliminary GST Results 

# Germ
1 ax
9 Gy
3 Gi
4 Gx • Gy
5 Gx • Gy • Gi
6 Gx • Gi • Gy
7 Gx • Gi • Gi
8 Gy • Gi . Gi
9 Gx • Gx • Gi . Gy
10 Gx • Gy • Gy • Gi
11 Gx . Gx • Gy • Gx • ay • Gy

• Gate set tomography used to characterize rotations
• General idea:

o Provide initial state of unknown "quality"

o Provide measurement of unknown "quality"
o Apply sequences gates and idles

o Results characterize gates and SPAM errors

Gate Process Infidelity

Gi 0.026748

Gx 0.047344

Gy 0.055106

• Maximum length concatenations we used was 8.
• 400 ns pulse times, 1.8 us clock cycle, 100 kHz BW on read-out
• SPAM error of order 6% & Idle error —3%
• X/Y rotations are of order 4-5% error. Looks like phase error between X and Y
• Order of 1 % uncertainty in infidelity estimates

Blume-Kohout, Nielsen, Gamble
Sandia
National
Laboratories



ESR line

(39 GHz

Read-out circuit (AM HEMT) 
Si chip

HEMT amplifier

100k

10 nF

1M

Vgl

10 nF

 II 

1M

Vg2

Vs2

• Dry fridge noise a real nuisance

• Cryo-preamplification & AM technique (300 kHz)

• Good visibility w/ —1% threshold overlap

• Telectron g‘j 200 mK

0.6 -

0.5 -

0.4 -
CD

O • 0.3-

200

0

0.0 -

BW = 100 kHz

0 Time [ms] 5

-0.1 
0.0 
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Vscope
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Rabi oscillations 

10 kHz BW

o
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0.0
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pulse length (us)

0

96% visibility w/100 kHz BW

pulse length (us)

Long lived Rabi oscillations

Visibility reduced because preamplifier BW was not optimized (BW — 10 kHz)

For example, fast spin-up tunneling events can be missed.
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Stability plot movie with charge instability 
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Cryogenic Preamplification Using a Heterojunction Bipolar Transistor (HBT)

(a)r RSET :7- 100 kcl - 1 GO
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0
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_L _L

(b)

416 

61,Z
S91.13NNIO •

M.J. Curry et al., Applied Physics Letters 106 203505 (2015)

Measurements

done at T = 4 K

• SiGe HBT motivations: more uniform for design, higher G/Idevice and possible non-linear

option

• Several HBT configurations of interest.
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Time-Domain Single-Shot Readout State of the Art

Single-Shot

Readout Technique
Group Reference

H BT

(Single-Stage)
Sandia/UNM/CQuIC 

This Presentation

Also: APL 106, 203505 (2015)

HEMT

(Single-Sta e

HEMT

(Dual-Stage)

RF-QPC

Delft APL 91, 123512 (2007)

Sandia Manuscript I n Prep. (2015)

Harvard

CQC2T

NRC Canada

RF-SET

PRB 81, 161308(R) (2010)

APL 91, 222104 (2007)

Physica E 42, 813 (2010)

Harvard PRB 81, 161308(R) (2010)

Wisconsin/Dartmouth APL 101, 142103 (2012)

Gate-Dispersive RF ARC Sydney

RF Transmission

SC Cavity + JPA
P finceton

PRL 110, 046805 (2013)

PR Applied 4, 014018 (2015)

Ca rrier

Frequency

N/A

N/A

Time-Domain

Bandwidth

30 kHz

100 kHz

1 MHz

3 MHz

800 kHz

300 kHz 100 kHz

220 MHz

332 MHz

763 MHz

5 MHz

500 kHz

1 MHz

220 MHz 10 MHz

936 MHz 2 MHz

700 MHz

7.88 GHz

30 kHz

2.6 MHz

Time-Domain

SNR

Charge

Sensitivity

(peN77i)

13 400

10 300

7 100

4 100

3 400

10 300

2 200

7 200

7 100

4 80

4 100

1 6000

9 80

o Cryoamps motivation: low overhead & support SiPmod-SET development

o SiPmod-SET = optical isolation and modulator resonance instead of RF tank-circuit. Gain analysis promising.

o Threads of inquiry: frequency shift vs. non-linear, HEMT vs. HBT, most suitable for SiPmod-SET?

law.i.iiiiit..s.,, Sandia
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Summary of single donor qubit (ESR/NMR) 
■ 28Si introduced in to local ESR donor qubit fab platform (L. Tracy)

■ Line width of —30 kHz observed two times

■ T2 comparable to previous reports

■ Cryo-HEMT circuit used to overcome dry fridge noise and produce high SNR read-out
■ > 90% fidelity at 100 kHz bandwidth (high SNR)
■ Video-like stability plots (100 ksamples/sec)

■ Looking in to HBT circuits (M. Curry & T. England)
■ HBT has higher gain for same current levels & details of cold noise models are also not known

■ Relatively high fidelity gates. Comparable control fidelities (Australian metric). Gate

set tomography used to characterize fidelity (Nielsen, Gamble, Blume-Kohout)
■ 2-3% SPAM error

■ 4-5% X-Y rotation error

■ Analog source is possible cause of error

■ NMR demonstrated and also behaving similarly

Offill.fautes Islonatlea SIT
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Donor-donor coupling concept 
Kane (1998)

_ I j= 1n. I
_

=

"' J-Gate-
- A-Gate A-Gate

I-1 177I I-1 

J>0:

- J-Gate
- - A-Gate A-Gate
-  

B=2 T:

21.1/3B/h=56 GHz

0 100 200 300

Donor Separation (A)

• Donors are a great qubit

• Many ideas about coupling donors that use

interface

el

el

r1.2

e2

Transport: Skinner & Kane (2003)

Also tran_ rt: Hollenberg (2007),

Morton (2009); Witzel (2015)

■ Very general question that we are presently G-factor control for EDSRv=ov>,)
addressing: can a donor practically be coherently-

coupled to something at an interface and can that
low gi

capability be extended high g *

30

Ge
Sio23Ge037 barrier

Sia.lsGeuss
SioAGeo.6
Si0.23Ge077 barrier

n-SiciAGeo 6 ground plane

— Si-Ge buffer layer

— Si substrate

Vrijen (2000)
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Donor-donor coupling concept 
Kane (1998)

J=0: J-GIate
A-Gate A-Gate
I-1 177 1-1 

- J>0:

- J-Gate
- - A-Gate A-Gate
-  

0 100 200

Donor Separation (A)

300

Kane (2000)

b) Si02

Metal

• Donors are a great qubit

• Many ideas about coupling donors that use
interface

• Very general question that we are presently
addressing: can a donor practically be coherently-
coupled to something at an interface and can that
capability be extended

• SNL: donor coherently coupled to MOS QD recently

• This is a platform to look at these questions

Si p+ Si

Donor

-.100 A 150 A -500 A

C. B.

V. B.
CD 0c

o

[1] B. E. Kane, N. S. McAlpine, A. S. Dzurak, R. G. Clark, G. J. Milburn, H. B. Sun, and H. Wiseman,
Phys. Rev. B 61, 2961 (2000).

Dot electrons

Donors

Back gates ----'

epletion

gates

Insulator

Pica & Lyon (2015)

And others: Vrijen (2000) for EDSR

through g-factor modulation



Approach: couple buried donor to surface QD 

CP EG1

xide
CS

Canonical S/T qubit

AST = J(Erdz + '6E3Z (Erdx

Donor-QD S/T qubit

o Encode as singlet-triplet qubit

o Rationale for using this choice as test platform:

o Platform to examine tuning of the charge &
dynamics (e.g., tunnel coupling)

o Produces an appealing two-axis controlled
S/T qubit

o Rotation frequency is chemically distinct

o Opens up a potential electrical read-out of
nuclear spin

o Directly probes coherence times of surface-
bulk-donor coupling

AI • S

Qubit Bloch Sphere

- 00- fit)
Ira) - +11t)
Ir- - 111)
ir-t) - In) rro

PST = -1(E)erz Etz erx

11-D
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Approach: Couple a N=1 MOS-QD to a Buried Donor

2-spin singlet-triplet qubit

D QD

CP EG1 CS

o Extend the single donor qubit lay-out
to include a charge sensor

o Charge sensed donor-QD system is
now an experimental double
quantum dot platform to test the D to
surface coupling idea

charge sensor (SET)

O C

EDit
quantum donor

dot (31P)
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Approach: Couple a N=1 MOS-QD to a Buried Donor

CS

•

CP EG1 CS

2-spin singlet-triplet qubit

D QD

(QD,D)

(2, 0)

o Extend the single donor qubit lay-out
to include a charge sensor

C\J

o Charge sensed donor-QD system is
now an experimental double
quantum dot platform to test the D to
surface coupling idea

(1, 0)

(0, 0

VG1

P

charge sensor (SET)

O C

EDit C

quantum donor

dot (31P)

12

10

8

6

4

2
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2.3

2.25

" 2.2
0

2.15

2.1

2.05

2
-7 5

Device tuning to donor crossing at N=1 
(c)

Magnetic field (T)

-7 -6.5

VCP ( V)

-5,5

• Device can be tuned over wide range

• This allows donor crossings to be
identified at N=1

• Magnetospectroscopy used to check
for singlet to triplet like transition

dlcs/dvcp (ab. u.)
0.25

-4.5

-0.05

-0.1

-0.15

-0.2

1.55

1.45

1 .4

1.35

1.25

1.2

d les/0 Vep (arb. u.)

-0.6 -0.4
Vcp (V)

-0.2 0
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2.4

2.35

2.3

2.25

2.2
0

2.1 5

2.1

2.05

2

Device tuning to donor crossing at N=1 
(c)

dlcs/dvcp (ab. u.)
0.25

la

111d, —g46

Magnetic field (T)

-7 5 -7 -6.5 -6

VcP (V)

-5,5

• Device can be tuned over wide range

• This allows donor crossings to be
identified at N=1

• Magnetospectroscopy used to check
for singlet to triplet like transition

-5 -4.5

0.2

0.15

9.1

C Os

-0.05

-0.1

-0.15

-0.2

d leski Vep (arb. u.)

Illustrative example
1=10 nm —> UE=12.1, Uo=4.0; Uv=0.22 ; UE=3.1 mev

0.6 

0.4

0.2

-0.2

-0.4
0

O
o

3 4
B (T)

6

(1,0)-(2,0)

-0.375 -0.37 -O. -.5
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Valley splitting in MOS QD 

O Theory
• Experiment

1.4 1.6

slope = 0.159

• \

slope = 0.112

1.8 2.0 2.2

Vp (V)

Vertical field

2.4 2 6

• The valley splitting is measured using pulsed spectroscopy
• Measured in multiple MOS QDs with comparable results

• Valley splitting was measured over large range of voltages (i.e., - Evs
8 < CP <0)

• Barrier tuned at each location to enable pulsed spectroscopy
• Evs theoretically predicted to go to zero at zero vertical field
• Disagreement between ideal interface model & experiment is

being investigated (e.g., disorder, accuracy of threshold, ...)

Full 3D
calculations to
extract vertical
field and
predicted valley
splitting

No-disorder

SNL-MOS

Other work?

Vertical field

Gamble et al. in preparation
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Steps towards coherent control 
1 A6

P 0
Detuning, E

A—>

Approach 
• Prepare (2,0) singlet — note we are working in (4,0) for ST

splitting 
• Pulse into (1,1)
• Ramp rate must be balanced against charge adiabaticity but

diabatic relative to J-A anti-crossing
• Shift to higher tunnel coupling through higher N in QD

-0.32 -0.28 -0.24

V (V)
CP

gate (n+ poly-Si)

oxide (35 nm Si02)



Steps towards coherent control 

P 0
Detuning, E

A—s

Approach 
• Prepare (2,0) singlet
• Pulse into (1,1)
• Ramp rate must be balanced against charge

adiabaticity but diabatic relative to the crossing
where J < A

• Shift to higher tunnel coupling through higher
N in QD

(1,1)S,T0

tc

(2,0)S

 0
detuning

-0.32 -0.28

V
CP 
(V)

, charge
crossing

spin
crossing

(1,1)11-

(1,1)1-1 
ABz

1010

108

106

104

100afr

1
0 01

-0.24

dE —27r

.dt in Pi 7 A
diabatic
region

io-910-sio-710-610-510-4
tc (eV)
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Pulse sequence & singlet-triplet rotations 
1.4E; t5 N=1 '

-4 0 4 . .., 0.5
measure . 15

03 0.49
1::t

25. cL(4,1) . 0.48
E

° 1 45 .,.. 0.47
. -  —4.

92
< n151113
detuning if) 0.46

a
(3,1) -=

(3,q 1- 0.45

-0.32 -0.28

V (V)cP

-0.24-

. 3

0.44
0

f= 56.9 ± 0.4 MHz
Bulk value: 58.5 MHz

5C1 100 150 200
Manipulation time (ns)

o Coherent oscillations observed for variable time & fixed
detuning
• Note: only the measurement point differs

o Oscillation frequency is close to bulk donor contact
hyperfine value of 58.5 MHz

o Closer to measured single donors in ESR case

o [ u e n cy is detuning depende..

o T2* order of 1 us from coarse measures at longer times
and different detunings

250

Qubit Bloch Sphere

thl - ot
tr.) - -on)
r-) -

Or) rro

PST = -1(E)erz ± ADZ ax

300

,;
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Pulse sequence & singlet-triplet rotations 
1.4E; t5 M=1 '

-4 0 4 • ..% 0.5
measure . 15

CZ 0.49
szi

25. 0_(4,1) . 0.48
E

° 1 45 .,.. 0.47
. -  —6.

92
< n151113
detuning if) 0.46

(3,1) 
Ti_
-=

(3,q 1— 0.45

-0.32 -0.28

V (V)
CP

-0.24

. 3

f= 56.9 ± 0.4 MHz
Bulk value: 58.5 MHz

0.44
0 50 1 00 150 200

Manipulation time (ns)

Triplet return probability
0.2 0_3 0.4

o Coherent oscillations observed for variable time & fixed
detuning 100

• Note: only the measurement point differs
80

E

o Oscillation frequency is close to bulk donor contact
hyperfine value of 58.5 MHz

0 60

a 40

o Frequency is detuning dependent —J changes C13
2

o T2* order of 1 [is from coarse measures at longer times
and different detunings

20

•

•

•

•

•

250 300

0.5

200 400 600 800
Detuning (peV)
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Comparison to numerical simulation 

ST Band Structure

detuning

• Phenomenlogical Hamiltonian solved for relevant detuning range
• Dynamics of master equation solved using Lindblad formalism (A assumed, tunnel coupling is fit)
• A number ot similar qualitative and quantitative behaviors are exhibited

Singlet state is preserved until it is moved to the (1,1) charge state
Deeper detuning target reduces J and rotation rate saturates near expected A/2 value
Ramp rates affect the rotations including subtle effects of changing integrated time in high J region
Reasonable experimental parameters (some directly measured) provide good qualitative agreement

• All consistent with a contact hyperfine driven singlet-triplet qubit
• MAJIQ: MOS, contact-hyperfine (A), exchange (J), single-nuclear-spin-driven (I), qubit

Jacobson
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Comparison to numerical simulation 

ST Band Structure

100
-71)
c

80

60

co

sp_ 40

co
2 20

detuning

Triplet probability
0.2 0.3 0.4 0.5

0 200 400 600 800

Detuning (peV)

c

a)

100

80

60

•E
40

2
20

Model

t, = 20 ueV

Triplet probability (Model)
0.2 0.4 0.6 0.8

0 200 400 600 80

Detuning (peV)

• Phenomenlogical Hamiltonian solved for relevant detuning range
• Dynamics of master equation solved using Lindblad formalism (A assumed, tunnel coupling is fit)
• A number of similar qualitative and quantitative behaviors are exhibited

Singlet state is preserved until it is moved to the (1,1) charge state
Deeper detuning target reduces J and rotation rate saturates near expected A/2 value
Ramp rates affect the rotations including subtle effects of changing integrated time in high J region
Reasonable experimental parameters (some directly measured) provide good qualitative agreement

• All consistent with a contact hyperfine driven singlet-triplet qubit
• MAJIQ: MOS, contact-hyperfine (A), exchange (J), single-nuclear-spin-driven (I), qubit
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Extended time trace & coarse T2* estimate 
A

B

140

o_
135

co

>7, 130

a 120

115

204

202

• 200

a 196

I—

= 868 !_teV

time bin

0.1

73 = 1.3+0.7 µ.s

I l I I 

0.2 0.3 0.4 0.5 0.6

Manipulation time (ps)

F

194
0

E = 635 lieV

0.1 0.2

73 = 0.96 ± 0.31 1..ts

o
.

I l % l I 

0.3 0.4 0.5 0.6

Manipulation time (ps)

• Long time trace. Average of 10 lines

• T2* order of 1-2 us

• Detuning dependent

• Width of frequency is less than 1 MHz (enriched Si)

1.5

_ci 1
co
—1_ 0.5

- . A.A
50 100

Frequency (MHz)

1

50 100
Frequency (MHz)

0.7 0.8 0.9 1



Exchange extraction & charge noise model 

Visibility decay J extraction

5

e = 868 µeV

0.5

73 = 0.96 ± 0.31 µs

1

0 
E = 635 µeV 

0 0.5
Manipulation time (ps)

N
1

2

1

80

60

_0.

80

60
2

40

40  20
200 400 600 800 1000

Detuning (peV)

A/2h = 49.8 ± 2.3 MHz

Charge noise
model

1.5

0.5

0 
400 600 800 1000

Detuning (peV)

Charge-noise limited.
Possibly extended to > 10 ps
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Summary of few electron D-QD & MAJIQ

• Few electron QD regime identified and QD brought in to resonance with donors

• Singlet-triplet spin filling behavior identified using magnetospectroscopy

• We see Pauli-blockade signatures at (2,0)-(1,1) and (4,0)-(3,1) however (4,0) is bigger splitting

• Possible full shell argument. Caution: this isn't yet bullet proof.

• We can prep singlets preferentially N=2 on QD

• We show coherent rotations between S/T

• The rotations and dependence on detuning are consistent with a phosphorus nuclear spin
producing the gradient (f 50 MHz possible)

• The decoherence is consistent with enriched silicon that is limited by charge noise (T2* — 1 us)

Future directions:

• Repeat & test tunability of D-QD tunnel coupling

• Full control of qubit space

• Single shot read-out

• NMR

• Capacitive coupling between qubits

CI

c uits

S/T qubit (dB for 2nd-axis)

I /I)* TwolubItcouple
cal

Oubit BQubit A

Taylor (2005); Levy (2009); Trifunovic (2013)
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Outline 

• Motivations

• MOS single donor ESR & NMR qubits

o Cryoamplification

• Coherent coupling of D-QD — new qubit structures

o Donor hyperfine driven S/T qubit
D-QD S/T qubit

• Coherent donor spin coupling to surface QD

o Latch read-out for S/T qubits  >
quantum donor

dot (31P)

• MOS QD Design for future D-QD structurr‘c
Signal time

• Summary
Std. 0 Short (1-100 p.$)

Latch +1 Long (ms — sec.)

(41'1rfeembirdwiti
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QD-D system has hysteretic charge transitions due to 
single-sided reservoir 

Charge stability diagram

(QD,D)

(N,O)

(N-1,1)
(N-1,0) 

e
e
e 

%
e %

e
e
e %

%
%e

e %
e %

N,1)

sweep

,,, 4E1

quantum donor

dot

QD

(31P)

For DQD version: C. H. Yang, A. Rossi, N. S. Lai, R. Leon, W. H. Lim, and A. S. Dzurak, "Charge state hysteresis in semiconductor quantum dots,"
Appl. Phys. Lett., vol. 105, p. 183505, 2014.
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New read-out concept using latching behavior (illustrated) 

Transition energy (µeV)

GROUND STATE (GS)
WITH 1st QD EXCITED STATE (ES)

(2,0)

(2,1)

VR

QD

(2,0)GS 4 (2,0)

Inspired from: S. A. Studenikin, J. Thorgrimson, G. C. Aers, A. Kam, P. Zawadzki, Z. R. Wasilewski, A. Bogan, and A. S. Sachrajda, "Enhanced charge
detection of spin qubit readout via an intermediate state," Applied Physics Letters 101, 233101 (2012).
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VL

(QD,D)

(1,0)

Readout concept (illustrated) 

GROUND STATE (GS)
WITH 1st QD EXCITED STATE (ES)

(2,0)

(2,1)

VR

QD

(2,0)ES 4 (2,1)

(2,0)GS 4 (2,0)

Excited state is associated with a triplet manifold and consistent with magnetospectroscopy (0.3T)
Inspired from: S. A. Studenikin, J. Thorgrimson, G. C. Aers, A. Kam, P. Zawadzki, Z. R. Wasilewski, A. Bogan, and A. S. Sachrajda, "Enhanced charge
detection of spin qubit readout via an intermediate state," Applied Physics Letters 101, 233101 (2012).
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Enhanced hysteretic energy
selective readout 

Pulse sequence

1.252

1.25

1.246

1.246

1.244

1.242

1.24

1.238

1.236

1.234

1.232
-0.45

cl/cs/dvcp (arb. u.

(2,0)

empty

(1,0)

sweep

measur
-4 0
■

ti

load

ti

sca n

mesurement

coord.

a

stab. diag.

-0.4

vcp (V)

• Readout is based on GS-ES energy splitting (energy
selective).

• Readout signal is enhanced by mapping states with same
NTOT to different NTOT.

• Lifetime of readout signal can be extended through the
latching transition

• Note: empty and load points always the same — signal is for a
moving measurement point (new pulse sequence each time)

s

x 10

- 11

load ES cl/cs/d \b. (arb. u.)
1.255

1.254

5 1.253

1.252

1.251

83 1.25

1.249

1.248

1.247
-0 4 -0.395 -0.39 -0.385 -0.38 -0.375

CP measurement levd (V)

(411rfeembirdwiti
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Enhanced hysteretic energy
selective readout 

Pulse sequence

1.252
cl/cs/dvcp (arb. u.)

1.25

1.24B (2,0)

1.246

1.244
empty

1.242

1.24 (1,0)

1.23E1

1.236

1.234

1.232
-0.45

measure
mesurernent

▪ .r_

sca n

acr

stab. diag.

(2,1)

-0.4

vcp (V)

T(2,0) •

S(2,0)

1.255

1.254

• 1.253

load ES 
1.252

0,1 1.251
■ @ 1.25

<(-9 1.249

2

load GS

• Readout is based on GS-ES energy splitting (energy
selective).

• Readout signal is enhanced by mapping states with same
NTOT to different NTOT.

• Lifetime of readout signal can be extended through the
latching transition

• Note: empty and load points always the same — signal is for a
moving measurement point (new pulse sequence each time)

1.248

1.247
-0 4

1.255

1.254

5 1.253

1 1.252

E 1.251

1.248

1.247
-0 4 -0.395 -0.39 -0.385 -0.38 -0.375

CP memrement level (V)

-0.395

ramp

T(1,1)

? S(1,1)

dics/dVcp (arb. u.)

-0.39 -0.385

Lead-to-QD-relax

(2,1)
•
-11

x 10

4

(2,1) 

2

2

-0.38 -0.375

CP measurement level (V)

T(2,0)

S(2,0) •

ramp

T(1,1)

3

2

1

2

3

4

Lead-to-QD-relax

(2,1)

Harvey-Collard: APS March 2015
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Summary of latching read-out 

■ D-QD system in this lay-out produces hysteretic single lead coupling

■ Selective loading of either singlet or triplet can be produced by tuning tunnel
coupling to lead and pulsed loading

■ The hysteretic behavior can be used to convert an excited triplet in to a latched
(2,1) condition

■ This approach producing a full charge difference for detection. It also can produce
a long lived (2,1) state to detect
o Long integration time can produce a high SNR for S/T read-out

■ This approach might be engineered in other DQD5 provided there is sufficient
tuning in the coupling to the leads

■ Acknowledgement: B. D'Anjou & B. Coish for supporting calculations
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Outline 

■ Motivations

■ MOS single donor ESR & NMR qubits

o Cryoamplification

■ Coherent coupling of D-QD — new qubit structures

o Donor hyperfine driven S/T qubit

• Coherent donor spin coupling to surface QD

o Latch read-out for S/T qubits

■ MOS QD Design for future D-QD structures <-->

■ Summary
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New QD design 

o Limitations of gated wire design

• Wire is long (250nm), so transport is

difficult through small QD

• Very asymmetric biasing conditions

are necessary for few-electron QD

• Creates oblong well and

preferentially supports a DQD

• QD is difficult to physically move

• LAG gate has large C to ground,

limited BW

• Extended tunnel barriers susceptible

to disorder QD formation

• Community has been moving towards

separate reservoir gates
• New design that shrinks dimensions &

separates reservoir gates from QD gate

• Separate wire accumulation gates (SWAG)

(a)

1.99

5 1.98

(9 
1.97

._ • „i
•>

(c)

Many-electron regime
(b)

2.1
dlog(lcs)

dv

(arb)

05

1 95 -5

1

1 95

1 9

1 85

1.8
-3 -2.8 -2.6 -2.4 -2.2

VLCP(V)

0 1 0.2 0.3

VLCP (V)

Few-electron regime
logc,(\l,cs)

(arb)

2

0

-2

Gamble, Carroll, Curry, Rudolpl-Tr
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New QD design 

o Limitations of gated wire design

• Wire is long (250nm), so transport is

difficult through small QD

• Very asymmetric biasing conditions

are necessary for few-electron QD

• Creates oblong well and

preferentially supports a DQD

• QD is difficult to physically move

• LAG gate has large C to ground,

limited BW

• Community has been moving towards

separate reservoir gates

• New design that shrinks dimensions &

separates reservoir gates from QD gate

• Separate wire accumulation gates (SWAG)

(a)

(c)

QD1

2

1.95

1 85

1.8
-3 -28 -2.6 -24 -2.2

VLCP(V)

Many-electron regime
(b)

2.0

0.1

2.1

0.2 0.3

VLCP (V)

Few-electron regime
QD2 (d)

dlog(lcs)

" dV

(arb)

-2

SWAU

Check for donor transitions

Gamble, Carroll, Curry, Rudolph
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Very good and tunable quantum dots in MOS 

• Can tune MOS QD to N=1 while keeping both barriers open
• Good charge sense signal from neighboring QD
• Stable or can be tuned to stable regions
• Hypothesis: design is central to controlling the potential at the

interface with small enough spatial resolution
• Still a good topic — can we do better?

15

10

0

0

5

1.1 1.2 1.3
i,a,V (V)

Transport

1.4 1.5 1.6

1.5

1.45

1.4

1.25

1.2

1.15
-0.8 -0.6

_D • $C1

quantum CIL._ donor

dot

-0.4 -0.2
V LLP (V)

(31P)

0 0 2

x 1 0
2
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Possible future lay-outs for MAJIQ

BEIMEA19113Z"..W

Capacitance coupling of MAJIQ-SWAG 
LD RD

Oxide
—11

r

• • —II— •—I 1-0• •

operation
layer

rnernory
layer

ce l 1 cell 2

capacitan e
 I I 
of

xchange

Simplified lay-out from old Taylor proposal

a ,cal 
IOW 

t_u__ 4
Two-qubit couple

chuits 
L

Te2
1Oubit A Oubit B

Taylor (2005); Levy (2009); Trifunovic (2013)

o Capacitance coupling by proximity for two qubit gate
o Approach would use resonant voltage drive and energy selection for each qubit location
o Might use nuclear spin as memory — might use other species for faster ST rotation
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Nuclear MAJIQ (nMAJIQ) 

Nuclear MAJIQ (nMAJIQ)
(b)

en
er

gy
 l
ev
el
 (
r-

ne
 

0.15

0 10

0.05

—0 05

—0 10

{c[

----
-0.2 —0.1 0

cletuning Orley)

I

(e) r-
(f-g)

6.1

X ® (2. + 1)
: 4

(Z + f ) X
e:,

-----

S. '2

I) - -(Z + (Z + isiY
ET .4,

X .8, (Z — 1) (Z — 1) is. X
,s

I) 1)
idle

(Z — (Z —
operating pz.i-ts

Baczewski et al. [SNL in preparation] (2016)

o Motivation: use the high fidelity nuclear spin (i.e., use high fidelity NMR gates as well as memory)

o Use the S/T qubit as short time coupling qubit
o Only tunnel coupling is between D-QD — circumvents disorder between MOS QD tunnel barriers

o NMR coil can be added around sample enclosure — no need for microwave striplines
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Summary of SWAG & MAJIQ-SWAG 

• The gated wire design has important limitations so a new design was developed (separate
wire accumulation gate — SWAG)

• Central idea was to move to approach similar to many in the community, separate the
reservoir gates. This produces a much more compact device with more tunability down to
N=1

• Very good single QD behavior is observed

• Tuning with implanted donors is also observed

• D-QD transitions can be identified at few electron regime

• Evidence that tunnel coupling between D and QD can be tuned

• Implication:

Hunt-and-peck for "goldilocks" D-QD tunnel coupling might be relaxed

Timed implant D-QD structures might be coupled with reasonable yield

• A double quantum dot (SWAG) has been designed to investigate coupling D-QD qubit
structures

• Two neighboring MAJIQ-SWAG coupled by capacitance proximity (Shulman, Science
2012)

• Nuclear MAJIQ is being considered as an approach to using and coupling nuclei

0641"..a.tes khrsatIes SIT
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QIST team & external connections 
■ QIST contributors at SNL 

QD & Timed Implant Qubit Fab: J. Dominguez, R. Manginell, T. Pluym, B. Silva, J. Wendt, S.
Wolfley

Qubit control & measurement: S. Carr, M. Curry, T. England, A. Grine, K. Fortier, R. Lewis, M.
Lilly, T.-M. Lu, D. Luhman, J. Rivera, M. Rudolph, P. Sharma, A. Shirkhorshidian, M. Singh, L.
Tracy, M. Wanke

Advanced fabrication (two qubit): E. Bielejec, E. Bussmann, E. Garratt, J. Koepke, A. MacDonald,
E. Langlois, M. Marshal, B. McWatters, S. Miller, S. Misra, D. Perry, S. Samora, D. Scrymgeour,
R. Simonson, G. Subramanian, D. Ward, E. Yitamben

Device modeling: J. Gamble, S. Gao, M. Grace, T. Jacobson, R. Muller, E. Nielsen, I. Montano, W.
Witzel, K. Young

■ Joint research efforts with external community: 

o Australian Centre for Quantum Computing and Communication Technology (D. Jamieson, A.
Dzurak, A. Morello, M. Simmons, L. Hollenberg)

o Princeton University (S. Lyon, J. Petta)

o NIST (N. Zimmerman, M. Stewart, J. Pomeroy)

o U. Maryland (S. Das Sarma)

o National Research Council (A. Sachrajda)

o U. Sherbrooke (M. Pioro-Ladriere, C. Bureau-Oxton, P. Harvey-Collard)

o Purdue University (G. Klimeck & R. Rahman)

o U. New Mexico (I. Deutsch, P. Zarkesh-Ha)

o U. Wisconsin (M. Eriksson, S. Coppersmith, D. Savage)

o University College London (J. Morton)

o Zyvex (J. Randall)

o Chee Wee (U. Taiwan)

o McGill (W. Coish, D'Anjou)
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Su m ma ry

MOS S/T qubit driven by single donor 
ST Hyperfine Rotations
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... 0.5 — fit Bulk value: 58.5 MHz
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The MOS interface 

polysilicon

Gate 0)(1cle

Room temperature picture 
o Dit Interface traps and border traps within a

"tunneling" distance of interface

o Qf Fixed charge deeper in oxide

Si02

SiOx

Si

Low temperature picture 
o Shallow traps are most relevant

o Not much known about interface traps close to
band edge

o Fixed charge could be producing a dynamic
state at the interface

o Paramaganetic effect on decoherence

Defects

+ + + + + + + + + +

X X XX X X X XXX X

Qx

Qf

\Dit

/
10 nm

/-1-75 meV

/

nm

Witzel PRB 86 035452 (2012)
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Oxide defects and trapping potentials 

Binding E of single charge

—0.5

—1
E

>" —1 5
a)
c
L11

c

E —2.5

4 6
Defect Depth D (nm)

10

Binding E of two charges

5 10 15 20
Defect separation R (nm)

Rahman et al., PRB 85 125423 (2012)

Electron spin resonance (T N 4K) 

Princeton

SNL
X binge bu n (2—Valley)

0

Lyon group (Princet n)
10

—10 6 —4 —2 0

Energy, EF—Ec (rnev)

Jock et al., APL 100 023503 (2012)
Rahman et al. PRB 85 125423 (2012) [trap energies]
Pinsook et al., APL (2013) [bandedge DOS]

• Fixed charge produces distribution of trapping centers with DOS in energy

• Calculations predict energies similar to what is observed in ESR
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HFW WD mag
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Si02

Si

Characterization of tunnel barriers 

500 n

Poly-Si
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o Central component of quantum dots is the tunnel barrier
o Challenge: complex dependences on geometry and voltages [Friesen et al., ...] — hard to model
o Crude first approach:

• Use simplified parameteric model that captures barrier height, width, V dependence
• Find measurement method that can produce rapid characterization
• Begin to calibrate models Shirkhorshidian et al. Nanotechnology 26 (2015) 
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Measurement calibration details

A
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(d)

Back-up latch read-out figures
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Nuclear Rabi Osc. (electron down spin loaded on donor) 

32 traces avg., 128 shots per point per each trace
NMR: -50 dBm, 5 ms pulse, 1 kHz step and sweep

1.0 
ESR: -10 dBm, 10 MHz sweep, 100 us pulse
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16 trace avg. of Rabi osc., nuclear spin w/ down electron spin

NMR: 0 dBm, 80.9324 MHz, 128 shots per pt.

ESR: -10 dBm, 10 MHz sweep, 100 us pulse

0.6

o_
La_4= 0.4

0.2

■

•

•

•\.

0 20 40 60 80

pulse length (us)

100

(411rfeembirdwiti

Sandia
National
Laboratories



HEMT circuit noise performance
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Readout Circuit Output-Referred Noise Spectral Density
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Triangulation of donor position 

2 -1.5

dlog(lcs)
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• Modeling of slopes in stability diagrams (against all
gates) to help identify position of object

(a) 0 (N
o

log(az)

—10 —10

• Capacitances of multi-gate system are sufficient to locate

•
position
Visible donors are underneath LAG

N -20
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—20

—30
y = 900 nm
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• Depth/lateral extent of donors: y(nm) x(nm)

7 < z < 15 nm
15 < x,y < 35 nm

• This observation is also consistent with semi-classical
QCAD calculations of 45 meV "ionization contours"
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Pauli-blockade in D-SWAG system
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