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Computational barrier at Sandia

■ CFD model

■ 100 million cells
■ 200,000 time steps

■ High simulation costs

■ 6 weeks, 5000 cores
■ 6 runs maxes out Cielo

Barrier

■ Fast-turnaround design ■ Uncertainty quantification

Objective: break barrier via nonlinear model reduction
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ROM: state of the art [Benner et al., 2015]
• Linear time-invariant systems: mature [Antoulas, 2005]
• Balanced truncation [Moore, 1981]
• Empirical balanced truncation [Willcox and Peraire, 2002, Rowley, 2005]
• Moment matching

[Bai, 2002, Freund, 2003, Gallivan et al , 2004, Baur et al., 2011]

• Loewner framework [Lefteriu and Antoulas, 2010, lonita and Antoulas, 2014]
+ Reliable: guaranteed stability, a priori error bounds
+ Certified: sharp, computable a posteriori error bounds

• Elliptic/parabolic PDEs (FEM): mature [Rozza et al., 2008]
• Reduced-basis method

[Prud'Homme et al., 2001, Veroy et al., 2003, Barrault et al., 2004]

• Subsystem-based reduced-basis method
[Maday and Ronquist, 2002, Phuong Huynh et al., 2013, Eftang and Patera, 2013]

+ Reliable: a priori error bounds
+ Certified: sharp, computable a posteriori error bounds

• Nonlinear dynamical systems: unproven
• Proper orthogonal decomposition (POD)—Galerkin
- Not reliable: Stability and accuracy not guaranteed
- Not certified: error bounds not sharp
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Our research goal

Nonlinear model-reduction methods that are
accurate, low cost, certified, and reliable.

+ Accuracy
■ Improve projection technique
■ Preserve problem structure

+ Low cost

■ Sample-mesh approach
■ Leverage time-domain data

+ Certification
■ Error bounds
■ Statistical error modeling

+ Reliability
■ A posteriori h-refinement
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Our research goal

Nonlinear model-reduction methods that are
accurate, low cost, certified, and reliable.

+ Accuracy
■ Improve projection technique [C. et al., 2011a, C. et al., 2015a]
■ Preserve problem structure

+ Low cost

■ Sample-mesh approach
■ Leverage time-domain data

+ Certification
■ Error bounds [C. et al., 2015a]
■ Statistical error modeling

+ Reliability
■ A posteriori h-refinement

Collaborators: M. Barone (Sandia), H. Antil (GMU)
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POD—Galerkin: offline data collection

dx
f (x; t, µ); x(0, = x° (au), t E [0, T] , µ E D

dt

1 Collect 'snapshots' of the state

x1 x2 x3

•

•
•
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POD—Galerkin: offline data collection

2 Data compression

• Compute SVD: [X1 X2 X3] =

ii
• Truncate: 0= [ui • • • up]
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POD—Galerkin: online projection

Full-order model:
dx

f(x; t, p,), x(0, p) = x°(µ)
dt

1 x(t) z(t) = Ci(t)

Galerkin ROM:

1
2 4:07-(f(ii; t, — ar
(1

dk 
= 

T 
f (0x; t, p,), '/(0,µ) = 07-xo(p)

dt
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Cavity-flow problem. Collaborator: M. Barone (SNL)

• Unsteady Navier—Stokes

• DES turbulence model

• 1.2 million degrees of

freedom

• Re = 6.3 x 106

• Moo = 0.6

• CFD code: AERO-F

[Farhat et al., 2003]
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Full-order model responses

vorticity field

pressure field
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POD—Galerkin failure

2.8

2.6

2.4

1.4
0

—FOIVI, At = 6.0015
—0 =9.375e-05

=0.0001875
=0.000375
=0.00075
=0.0015
=0.003
=0.006
0.012
0.015
0.024

1 2 3 4

time

- Galerkin ROMs unstable

6
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How to construct a ROM for nonlinear dynamical systems?

• Optimize then discretize? (Galerkin)

• Discretize then optimize? (Least-squares Petrov—Galerkin)

LSPG ROM )
IDAE 

optimal
projection

Full-order model  optimal

ODE projection

♦

time discretization

♦ 
44 Full-order model

time discretization

♦ 

Galerkin ROM
OAE OAE

• Outstanding questions:
El Which notion of optimality is better in practice?
El Discrete-time error bounds?
le Time step selection?
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Full-order model
ODE

time discretization

Full-order model
OAE
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Full-order model (FOM)
• ODE: time continuous

dx
—
dt 
= f(x, t), x(0) = t E [0, T]

• OAE, linear multistep schemes:

r" (x) := apx — Att@of(x,

rn (xn) = 0 , n =1, , N

k k

j=1

xn = xn (explicit state update)

• OAE, Runge—Kutta:

— At /3.if tn—i)

(x111, , xs.n) = 0

j=1

, i = 1, ...,s

rj (xi, , x5) := xi — f(xn-1 + At aux.], tn-1+ ciAt)

xn = xn-1+ At bix7 (explicit state update)
i=1

This talk focuses on linear multistep schemes.
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Galerkin ROM: first optimize

Full-order model
ODE

'1'

time discretization

Full-order model
0.6.E

Galerkin
projection

r-
Galerkin ROM

ODE
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Galerkin: first optimize, then discretize

Full-order model
ODE

time discretization

Full-order model
0.6.E

Galerkin
projection

time discretization

Galerkin ROM
0.6,E
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Galerkin ROM
• ODE

dX 
= 

dt 
4)7 f(1)k , t), k(0) = (1)Tx°, t E [0, T]

+ Continuous velocity 2 is optimal
Theorem (Galerkin ROM: continuous optimality)

The Galerkin ROM velocity minimizes the time-continuous FOM residual:

(x,t) = arg min v f(x, t) 122dt vErange(0)

• OAE
in (kn) = 0, n = 1, , N

rn (1() := (Xoji—At,13007"(4)1(, tu)+
k k

1=1 1=1

- Discrete state Sin is not generally optimal

Can we fix this? Will doing so help?

T f (i)j,(13-1 tn—j)
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LSPG ROM: first discretize, then optimize

LSPG ROM )
OAE 

Petrov—Galerkin
projection

Full-order
model
ODE

♦

time discretization

♦
Full-order
model
OAE

Galerkin
projection

time discretization

Galerkin Galerki ROM
projection OAE
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LSPG ROM

• FOM OAE

rn (xn) = 0, n = 1, , N

• LSPG ROM OAE:

kn = arg rnin lArn (01) 112
2
.2ERP

n(kn)T rn (okn) 0, Wn(k) . ATAar: kij (0300

• A = I: LSPG [LeGresley, 2006, Bui-Thanh et al., 2008, C. et al., 2011a]

+ Discrete solution is optimal
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Does the LSPG ROM have a time-continuous representation?

LSPG ROM )
OE,0, 

Petrov—Galerkin
projection

Full-order
model
ODE }

♦

time discretization

♦
Fu I I-order
model
OAE

Galerkin
projection

Galerkin
projection

time discretization

Galerki ROM
OAE
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Does the LSPG ROM have a time-continuous representation?

Sometimes.

LSPG ROM
ODE

Petrov—Galerkin
projection —4 —

Full-order
model
ODE

Galerkin
projection

♦
time discretization time discretization

Petrov—Galerkin
projection

♦
Full-order
model
OAE j

Galerkin
projection

time discretization

Galerki ROM
OAE
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LSPG ROM: continuous representation

Theorem

The LSPG ROM is equivalent to applying a Petrov—Galerkin projection to
the FOM ODE with test basis

if

Of
I , t) = AT A (a0I — At/30—(x° + (1)3i, t))

ax

H = 0, j > 1 (e.g., a single-step method),

El the velocity f is linear in the state, or

II 0o = 0 (i.e., explicit schemes).

Time-continuous test basis depends on

time-discretization parameters!
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Are the two approaches ever equivalent?

• Galerkin: (DT rn

• LSPG: rn (ipk,n)

Does illn(kn) = ever?

Yes.

rn
xlin(k) := AT A° 

OX OX 
(CO = AT A (ozo/ — At130-

01
(40k, tn)) 0

Theorem

The two approaches are equivalent (Iiin() =

il in the limit of At 0 with A = 1/A/aol,
Ei if the scheme is explicit Po = 0) with A = 1/0xol, or

p if 5, is positive definite with [5:]-1 = AT A.
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• Runge—Kutta

Or!'
, ks) :=ATifti(kj, , ks)

Oxi

(=ATA; /du — Atall ()c"-1 + AtO 0aikkk, t"-1 + ciAt) 
k=1

Of

Corollary

Galerkin projection is discrete-optimal (i.e., nin(k) = 4:) for
Runge—Kutta schemes with Ai = I in the limit of At O.
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Discrete-time error bound

Theorem

lf the following conditions hold:

f(•, t) is Lipschitz continuous with Lipschitz constant lc, and

El At is such that 0 < h := 104 — PolkAt,

then

k 
115XG11 

At

h 
El/3E111(i -v) f (x0 + 4,1(0 11+—hE (lodkAt + lad) 116xV11t=0

118x211 <
=c,

10e111 - ll'")r (xo + 01(2-1 II - (10dicAt + lad) 1154-'11,
E=1

with

■ 45xt := x,rn — 4:0*.

■ 45x7:= x,1/47 — 01c2

■ V := 04)T
• Ton (019T0)-1 (pti)T
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LSPG ROM yields a smaller error bound

Theorem (Backward Euler)

lf conditions (1) and (2) hold, then
n-1 

1

116,cH < At 
(" 

. 
+ 

(i — f (xo + oxG
cG

n-1 

116411 At E  (h1 / — Pn—i) f (1CO ("2—i)

j=0

= Atf (x0 +01(0 — 4:11c171 11

Et =11051i Atf (x0 + 0'10 — okri II = min HOY — Atf (xo + 0y) —

Corollary (LSPG smaller error bound)

lf kkci kkG-1 then 5k <L G.
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LSPG ROM has an interesting time-step dependence

Corollary (Backward Euler)

Define

• := — iciL-1 and

• Aki: full-space solution increment from

Then, the LSPG error can also be bounded as
n_j

116Xa < At(1 + kAt)>_, (h

ii

)J+1- + A)-(11-i)11
i=o

with pi :=11(1)Alki

Effect of decreasing At:

+ The terms At(1+ icAt) and 1/(h)j+1 decrease

- The number of total time instances n increases

? The term may increase or decrease, depending on the

spectral content of the basis 0
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Galerkin and LSPG responses for basis dimension p = 204

1 2 3 4

time
(a) Galerkin

5 6

2.8

2.6
13.)
L-

2.4

In

112

2

1.60 

—F6M, At = 0.0015
— t=0 00115

0 0011
3
875
75

5
5t;t=

time
(b) LSPG

- Galerkin ROMs unstable for long time intervals

LSPG ROMs accurate and stable (most time steps)

10 4
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LSPG ROM: superior performance

110-

O

10 5

--Minimum residual

At

(c) 0 < t < 0.55

O

-

11:0
—Minimum residual

10
At

(d) 0 < t < 1.1

A le
!
O

—Galerkin
—Minimum residual

10
At

(e) 0 < t < 1.54

✓ LSPG ROM yields a smaller error for all time intervals and

time steps.
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LSPG performance (t < 12.5 sec)

.io°

1

a)

0•-
1.0

-3

s.
0

4o-4
10-5

—p = 204

—p
—p 368
= 564 
= 

10-3 10-2
At

10-1 10,
103
10-4 10-3 10-2 10-1

At

V An intermediate At produces the lowest error and better speedup.

p = 564 case:

• At = 1.875 x 10-4 sec: relative error = 1.40%, time = 289 hrs

• At = 1.5 x 10-3 sec: relative error = 0.095%, time = 35.8 hrs
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Summary: Improve projection technique

• Discrete optimality (LSPG) outperforms continuous optimality
(Galerkin) in practice

• Equivalence conditions

El Limit of At 0
El Explicit schemes
la Positive definite residual Jacobians

• Discrete-time error bounds

• LSPG ROM yields smaller error bound than Galerkin
• Ambiguous role of time step At

• Numerical experiments

• LSPG ROM yields a smaller error than Galerkin
• Equivalent as At 0
• Error minimized for intermediate At

• Reference: C., Barone, and Antil. Galerkin v. least-squares
Petrov—Galerkin projection in nonlinear model reduction.
arXiv e-print, (1504.03749), 2015.
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Our research goal

Nonlinear model-reduction methods that are
accurate, low cost, certified, and reliable.

+ Accuracy
■ Improve projection technique
■ Preserve problem structure

+ Low cost

■ Sample-mesh approach [c. et al , 2011b, C. et al , 2013]
■ Leverage time-domain data

+ Certification
■ Error bounds
■ Statistical error modeling

+ Reliability

■ A posteriori h-refinement

Collaborators: C. Farhat, J. Cortial (Stanford)
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LSPG performance (t < 2.5 sec)

ria
ci)

4o-1
a.)
b.0cd
4o-2

4o-4
io-5

—
p— 
= 5364 

68
p 

io-4 10 —3 10-2
At

10-1 10°

10

8106-

.( 11:15

0
.z-4"104

io-4 10-3 10-2 10-1
At

+ Always sub-3% errors

- More expensive than the FOM

• FOM simulation: 1 hour, 48 CPU
• LSPG ROM simulation (fastest): 1.3 hours, 48 CPU

Nonlinear model reduction Kevin Carlberg 33



Hyper-reduction via Gappy POD [Everson and Sirovich, 1995]

= arg rnin 1lArn 0)1)113-iERP

Can we select A to make this inexpensive?

1. rn(x),, (x) = an(x) 2. r(x) = arg min — Prn(x)112

= arg mjn

2

17 2 ,,  2x = arg min Il in (4*)112 = arg rnin 114)Rr
n 
(4)z) 11 = arg min

2ERP 
11 i." ((Di') 113

lERP 1ERP

= arg rnin 11 (P(DR)E P rn(4)2) 113.
2E RP \—....,—...

A

+ GNAT: A = (POO+ P leads to low-cost

• Offline: Construct (1)., (POD) and P (greedy method)
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Sample mesh: HPC implementation

kn= arg rne
IIBP 
 11)(PORYP Pr° ()112

z 

• Key: GNAT samples only a few entries of the residual Prn

• ldea: Extract minimal subset of the mesh

• Related: subgrid [Haasdonk et al , 2008], reduced integration domain
[Ryckelynck, 2005]

Id

• Sample mesh: 4.1% nodes, 3.0% cells

+ Small problem size: can run on many fewer cores
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GNAT performance (t< 12.5 sec)

vorticity field

GNAT

ROM

FOM

pressure field

▪ < 1% error in time-averaged drag
+ 229x CPU-hour savings

• FOM: 5 hour x 48 CPU
• GNAT ROM: 32 min x 2 CPU
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Our research goal

Nonlinear model-reduction methods that are
accurate, low cost, certified, and reliable.

+ Accuracy
■ Improve projection technique
■ Preserve problem structure

+ Low cost
■ Sample-mesh approach
■ Leverage time-domain data [c et al , 2015b]

+ Certification
■ Error bounds
■ Statistical error modeling

+ Reliability
■ A posteriori h-refinement

Collaborators: L. Brencher, B. Haasdonk, A. Barth (U Stuttgart)
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Our research goal

Nonlinear model-reduction methods that are

accurate, low cost, certified, and reliable.

+ Accuracy

■ Improve projection technique
■ Preserve problem structure

+ Low cost

■ Sample-mesh approach
■ Leverage time-domain data

+ Certification

■ Error bounds
■ Statistical error modeling

+ Reliability

■ A posteriori h-refinement [c , 2015]
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GNAT performance (t< 12.5 sec)

GNAT

ROM

FOM

vorticity field pressure field

•

▪ < 1% error in time-averaged drag
+ 229x CPU-hour savings

• FOM: 5 hour x 48 CPU
• GNAT ROM: 32 min x 2 CPU

- However, ROMs are not guaranteed to be accurate.

ROM accuracy is limited by the information in O.
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Example: inviscid Burgers equation [Rewienski, 2003]

0u(x, T) 1 0 (1_12 (X , T))
0.02e0 02x

OT + 2 Ox
u(0, T) = 3, V T > 0

u(x, 0) = 1, Vx E [0, 100],

• Discretization: Godunov's scheme

• Simulate T E [0, 50]

• FOM: 250 degrees of freedom

• ROM: 150 degrees of freedom

• (1) constructed via POD using snapshots in Ttrain E [0, 2.5]
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ROM accuracy limited by relevance of training data

5.5

5

4.5

4

3.5

3

2.5

2

1.5

1
0 50 100 150

x
200 250

- ROM inaccurate when outside predictive domain of 40
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Existing ROM adaptation methods

■ A priori adaptation: unique ROM for separate regions of the

■ input space [Amsallem and Farhat, 2008, Amsallem et al., 2009,
Eftang et al., 2010, Eftang et al., 2011, Haasdonk et al., 2011,

Drohmann et al., 2011, Peherstorfer et al., 2014]

■ time domain [Drohmann et al., 2011, Dihlmann et al., 2011]
■ state space

[Amsallem et al., 2012, Washabaugh et al., 2012, Peherstorfer et al., 2014].

+ Reduces the dimension of the ROM
- No mechanism to improve the ROM a posteriori

■ A posteriori adaptation

■ Revert to the FOM, solve it, and add solution to the basis
[Eldred et al., 2009, Arian et al., 2000, Ryckelynck, 2005]

+ Improves the ROM a posteriori
- Incurs large-scale operations

Goal: Cheap, a posteriori improvement of the ROM
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Main idea
ROM analog to mesh-adaptive h-refinement

• 'Split' basis vectors

;-*
MN
MN
• •
• •

MN

• •
MN

finite element h-refinement ROM h-refinement
• Generate hierarchical subspaces

range 1 c range

. ROM converges to the FOM

•••

NM
ME

•

ME■
MN
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h-refinement ingredients

El Adaptive algorithm
El Refinement

finite element h-refinement ROM h-refinement

la Error indicators

dual solve prolongation dual solve prolongation

finite element h-refinement ROM h-refinement

Nonlinear model reduction Kevin Carlberg 44



Ingredient 1: Adaptive algorithm

Adaptive algorithm

ig Refinement

finite element h-refinement ROM h-refinement

la Error indicators

dual solve prolongation

L,
dual solve prolongation

finite element h-refinement ROM h-refinement
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Adaptive algorithm

Algorithm 1 Outer loop

input: timestep n, current basis
Output: updated basis (1), generalized state Sin

1: Solve (DT rn(Cin; tt) = 0 for current ROM solution ie.
2: if estimate of output error Ss is 'too large' then
3: Refine basis: Refine (0, kn).

4: Return to Step 1.
5: end if
6: if mod (n, n„„t) = 0 then

7: Reset basis: 4)(°).

8: end if
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Adaptive algorithm

Algorithm 2 Refine

input: initial basis 0, reduced solution lc
Output: refined basis (1)
1: Compute prolongation operator /hH and fine basis Oh (Ingredient 2)
2: Solve: Compute coarse adjoint solution (Ingredient 3)
3: Estimate: Compute fine error indicators (Ingredient 3)
4: Mark: Identify basis vectors to refine /
5: for i E / do
6: Refine: Split 0; into child vectors
7: end for
8: Compute QR factorization with column pivoting = QR, Ril = QR

9: Ensure full-rank matrix [Fri • • • Trr]
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Ingredient 2: Refinement

Adaptive algorithm

111 Refinement

finite element h-refinement ROM h-refinement

la Error indicators

dual solve prolongation

L,
dual solve prolongation

finite element h-refinement ROM h-refinement
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Tree data structure
•

d = 1
C (1) = {2, 3}
E (1) = {1,...,6}

d = 2
C (2) = {4, 5, 6}

d = 3
C(3) = {7, 8}

E (2) = {1, 3,4} j E (3) = {2, 5, 6}

d = 4 is> r d = 5 d = 6 d = 7 d = 8
C (4) = 0 C (5) = 0 C (6) = 0 C (7) = 0 C (8) = {9, M}
(4) = {1}} (5) = {3},i (6) = {4},, E (7) = {2} E (8) = {5, 6}

d = 9 d = 10
C (9) = 0 C (10) =

• Tree data structure with m nodes

• child function C : N (m) P (N (m))
• element function E : N (m) P (N (N))

• Requirements

Root node includes all elements E (1)

1E1 Each element has a single leaf node
la Disjoint support of children E (j) n E (k) = 0, Vj k E C (i)

121 UjEC(i) E (j) = E (i)

+ 1-2 ensure the ROM converges to the FOM
+ 4 ensures hierarchical refined subspaces

E (9) = {5} E (10) = {6}
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Tree example: N — 6

d = 1
C (1) = {2, 3}
E (1) = {1, , 6}

d = 2
C (2) = {4, 5, 6}

>  

E (2) = {1, 3, 4}

---...e. 
d = 4 d = 5 1,, d = 6 s d = 7 d = 8

C (4) = 0 C (5) = 0 C (6) = 0 C (7) = 0 C (8) = {9, 10}

‘E (4) = {1} , ‘E (5) = {3}, s. E (6) = {4} , E (7) = 121 E (8) = {5, 6}

d = 9 d = 10

C (9) = 0 C (10) = 0
E (9) = {5} E (10) = {6}

d = 3
C (3) = {7, 8}
E (3) = {2, 5, 6}

0(0) =

ca(1°) o 0 0
0 44°,) 0 0
cAT o 0 0
4)0 0 0 0

0 4,(501) 0
0 o 0(6°)
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Tree construction
State variables that are strongly correlated or

anticorrelated should reside in the same tree node.

El Normalize state-variable observation history
El If first observation is negative, flip over origin
la Recursively apply k-means clustering

35

30

25

nA 20

15

E 10
_o 5

0

—5

10
30 

5

2
25 20 1,5 10 5. 0

observation t

(j) before modification

5 10

0.4

0.3

0.2
c81
n0.1
o

o
10.1

—0.2

—0.3

0.16 0.17 0.18 0.19
observation 1

0.2 0.21

(k) after modification

State-variable observation history (variable index labeled).

0.22
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Refinement machinery

H = 0 h ht

NM
NM
• •

• 
• 
•

MN
MN

• coarse basis 4)H c RNx p

• fine basis 4)h c RNxq with q 
EP (d

=1

• prolongation operator Ihti e {o, l}qx13

• prolongated generalized coordinates zH = /Ike

• restriction operator 44 = (lhH)+
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Ingredient 3: Error indicators

El Adaptive algorithm
El Refinement

.Z.-*./XX. I -*• •• •• •MNMN
finite element h-refinement ROM h-refinement

la Error indicators: a) dual solve (coarse), b) prolongation (fine)

dual solve prolongation dual solve prolongation

finite element h-refinement ROM h-refinement
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Dual-weighted residual error indicators

• Goal-oriented: reduce the error in output g(x)

• Analogous to duality-based error control for
• differential equations [Estep, 1995, Pierce and Giles, 2000]
• finite elements [Babuška and Miller, 1984, Becker and Rannacher, 1996,

Rannacher, 1999, Bangerth and Rannacher, 1999, Becker and Rannacher, 2001,

Bangerth and Rannacher, 2003],

• finite volumes [Venditti and Darmofal, 2000, Venditti and Darmofal, 2002,
Park, 2004, Nemec and Aftosmis, 2007]

• discontinuous Galerkin methods [Lu, 2005, Fidkowski, 2007]
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Dual-weighted residual error indicators
• Approximate fine output:

gookh) g(4)Hki-i) Og (OH .0)40(iin ithe) (1)
Ox

• Approximate the fine residual:

(0h)T ropy) (40)T r(oH kH)+(oh)TL 
OX ‘

(014 ii.H)ohoe ,h
• HX

• Solve for the error:

ihilkH) [(017)T Oarx(oH kH)01-1(40)T rotHkH) (2)

• Substitute (2) in (1):

go:1)y) g(01- kl-1) cy,h)T (40)T r(oHkH)

with the fine adjoint solution if' E Rq satisfying

(40)7- ar (OH kfri)-ronkh _ (4:0)7- Og (OH jiH)T
OX‘ OX‘
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Dual-weighted residual error indicators

gephsih ) g(014,5i,H) (i,h) T (0h)T ropH jiH)

417)T Or (0/4 icy oni,/, (,:ph)Tpg (oHjiH)T
OX‘ \ 19X

• We want to avoid fine solve (4), so approximate ith as

YH — 'HY H,

where 5, H is the coarse adjoint solution to

(OH)T are:DH i(H)T 0H H (OH)T (OH kH)Tax 

• Substituting ýi/i for ÿh in (3) yields cheaply computable
g(vhi,(h) (..9hH)T(40)Tr(oHji.1-1).

• The RHS can be bounded by cheaply computable error
indicators

1(Y
01H) (oh)T ropHkH) h

(3)

(4)

= [A] (01/) T r (OH1(11.
i=1
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Previous example

50 100 150
x

200 250

• Generated by E R25°X15° using Ttrain E [0,2.5]

• Now try h-adaptivity with 0(o) 
E R25cd.o Ttrain E [0, 2.5].
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Previous example with h-adaptivity

50 100 150 200 250

• dim (1)(°) = 10

• meank(dim (1)(k)) = 44.3

h-adaptation allows the ROM to capture phenomena not
present in the training data!
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h-adaptivity enables error control

(a) tolerance E = 0.35

5.5

4.5

4

3.5

3

2.5

2

1.5

50 100 y 150 200 250

5.5

4.5

3.5

3

2.5

.510
0 100 y 150 200 250

(b) tolerance E = 0.05 (c) tolerance E = 0.01

E = 0.35 E = 0.05 E = 0.01
average basis dimension
per Newton iteration

33.6 44.2507 53.9

relative error (%) 12.2 0.51 0.078
online time (seconds) 4.61 4.63 7.64
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Summary: a posteriori h-refinement

• Adaptive h-refinement via splitting

+ Incrementally improves ROM
+ Does not require large-scale operations
+ Enables error control
+ Extends utility of ROMs to hyperbolic PDEs

• Reference: C., Adaptive h-refinement for reduced-order
models. lnternational Journal for Numerical Methods in
Engineering, 102(5):1192-1210, 2015.
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Our research goal

Nonlinear model-reduction methods that are
accurate, low cost, certified, and reliable.

+ Accuracy

■ Improve projection technique
■ Preserve problem structure

+ Low cost

■ Sample-mesh approach
■ Leverage time-domain data

+ Certification

■ Error bounds
■ Statistical error modeling [Drohmann and C , 2015]

+ Reliability

■ A posteriori h-refinement

Collaborator: M. Drohmann (Sandia)
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Strategies for ROM error quantification
El Rigorous error bounds

+ independent of input-space dimension
- high effectivity (overestimation), especially for nonlinear, time
depedent problems
improving effectivity incurs high costs
[Huynh et al., 2010, Wirtz et al , 2012] or intrusive reformulation of
discretization [Yano et al., 2012]
not amenable to statistics

▪ Multifidelity correction [Eldred et al , 2004]
(i)

• • zlow•

 ▪ •— gz
inputs ft

• model low-fidelity error as a function of inputs
• 'correct' low-fidelity outputs with model
+ amenable to statistics

curse of dimensionality
ROM errors highly oscillatory in the input space
[Ng and Eldred, 2012]
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Data-driven observation

10-5 10-4

Residual r/error bound

• ROMs generate error indicators that correlate with the error

• Main idea: map error indicators to a distribution over the
true error using Gaussian process regression

+ independent of input-space dimension

Reduced-order rnodel error surrogates
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ROMES

tranformed error
d(ö)

error indicator p
• Approximate deterministic au d(6) by stochastic p(µ) H d
• d: invertible transformation function
• d: randonyariable for transformed error.
• 6 := cl-1(d): random variable for the error

• ROMES ingredients:
11 error indicators p
I/ transformation function d
11 statistical model: Gaussian process

• Desired conditions
indicators p(p,) are low dimensional and cheaply computable

El distribution of random variable 6 has low variance
II statistical model is validated
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Normed errors: o(p,) = 11x(p,) — 41:05(p,)

• ROMs often equipped with bounds A(µ)> S(p) > 0

• Bound effectivity 77(µ) := °6[ILA)) > 1 often lies in a small range:

711 71(A) C 712, \yip

log A(µ) — log log 8(µ) > log A(µ) — logm, Vp

• Ingredient 1: indicator p = log

• Also consider cheaper p= log 11r(Ok(p); I-)112 because

A'x/(u) := 
II r(ok(p); /012 > Illx(p) 01(41)111

.VaLB(µ)

Ax(tt) := 
11r(ok(p);

N
A)112 

Ilx(p) ("(P)IIxh
c:ELB(µ)

and cxLB(µ) is costly to compute.

■ Ingredient 2: transformation function d = log
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General errors: S(u,)= g(x(µ)) — g(l)k(p,))

• Recall from before that dual-weighted residuals lead to

g(x) — —yT r(Ok).

with the adjoint solution satisfying

Ox

r
(01()Ty =

g 

Ox(CO

• To avoid this costly solve, we approximate it as y Yji with

yT y = yTLg (010
OX OX

such that

g(x) — g(40k) —YTYTI-(01c)

• Ingredient 1: indicator p= ijyrr(:Dk)

+ Uncertainty control: can add columns to dual basis Y

• Ingredient 2: transformation function d = id
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Ingredient 3: Ga ussia n process [Rasmussen and Williams, 2006]

Definition (Gaussian process)

A Gaussian process is a collection of random variables, any finite
number of which have a joint Gaussian distribution.

a(p) ̂  gP(m(p), k(P, pi))

• mean function m(p); covariance function k(p, pi)

• given a training set { d(6;), pill, can infer m(p) and k(p, pi)

• Consider kernel regression [Rasmussen and Williams, 2006]
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Kernel regression [Rasmussen and Williams, 2006]

2

o

0
-1

-2

-5 0input x

(d) prior

5 -5
input, x

(e) posterior

5

• prior: d(p) M(0, K (p, a2 I)

1110/27;i112 • k(pi, pi) = exp is a positive definite kernel

[■
Ptrain Ppredict T

ict COV(Ppredict))• posterior a(ppred Ar(rn(ppredict),
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ROMES Algorithm

Offline

El Populate ROMES database {(d(S(µ)), p(i)) E D}, where
)5 denotes candidate indicators.

Identify a few error indicators p C /5 that lead to a
low-variance GP.

El Construct the Gaussian process d(p) gl)(m(p), k(p, p')) by
Bayesian inference.

Online (for any tt* E V)

El compute the ROM solution

Ig compute error indicators p(pl

B1 obtain a(p(P*)) Ar(m(P(aa*))), k(10(11*),
13 obtain random variable for the error :(ti,*)= d-l(dcal)
la correct the ROM solution
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Thermal block

Ac.(x; p)u(x; tt) = o in Q x(µ) = 0 on ED

VC(P)X(P) • n = 0 on I-No Vc(µ)x(µ) n = 1 on r/v1

• Inputs µ e [0.1,10]9 define diffusivity c in subdomains

• ROM constructed via RB—Greedy [Patera and Rozza, 2006]
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Error //1: energy norm of error 6(µ) =111x(ett) 1(1-t)

10-2 10-1

Residual llr(Vii;
/ error bound A.

+ Residual norm and error bound correlate with error

10-3 
10-2 10-1

+ ROMES (p = log Ilr(Ok(P); tt)112, d = log) promising
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Gaussian process validated

g 10
-0 4,

r; 5

f. 2

S 0

N = 10

O
O

deviation from GP-mean
N = 95

O

deviation from GP-mean

O

8

6

4 4
O 2

2 o

N = 35

a,, 86

4

,t° 2

cu
O

O
O

deviation from GP-mean

cu
O

N = 65

O
O

deviation from GP-mean

Validation frequency Wvahdat,.. (w)

predicted w N = 10 N = 35 N = 65 N = 95

0.80 0.49 0.71 0.76 0.78
0.90 0.59 0.82 0.87 0.88
0.95 0.68 0.89 0.92 0.93
0.98 0.76 0.93 0.95 0.96
0.99 0.80 0.94 0.96 0.97

histogram —N— inferred pdf
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Error #2: compliant-output error 6(µ) =

(i) Output error v. ROMES indicators

„ 113-2

O

10-4 10-3 10-2 10-1

Residual r/error bound

Att) — Yred(iet)

(ii) Output error v. system inputs

10-3

0 5 10

Parameters (Al, µ2)

+ ROMES: residual and error bound correlate with error

- Multifidelity correction: inputs are poor indicators
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Gaussian-process validation

• 0.99

d.) 0.95

0.9

0.8

Tr.

(i) ROMES

• 0.99

<t) 0.95

0.9
o :2

4 0.8

0 50 100

number of training points N

(ii) Multifidelity correction

0 50 100

number of training points N

—e— 80% —9-90% —9— 95% —*— 98% —4— 99%

ROMES: confidence intervals converge

Multifidelity correction: confidence intervals do not converge
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Error red uction

ls(µ) — sred(p) — mode(65(p))1 
expected improvement =

10°

10-2

(i) ROMES

_lefeet,pez,emewmesT5 Q_

50 100 0

number of training points N

Is(p) — sred(ett)l

104

101

10-2

(ii) Multifidelity correction

20 40 60 80 100

number of training points N

—6— mean + std —N— median Q minimum e maximum

ROMES: reduces error by roughly an order of magnitude

Multifidelity correction: often increases the error
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Error //  3: error in general output
o
u
t
p
u
t
 e
rr
or
 (
Ss
, 

(i)

6

dual RB size py =
40-2

10

,,,,°'11

(ii)

6

dual RB size py =
.10-2

15

,,,,,'

(iii)

6

dual RB size=py
.10-2

= 20

1- 1 i '
, 1 41- I 41-

4 •
•

:?: 4 •• ° 4

2 

0

44.-

t

al.

2

0

- / 41

I O-2 J-•
•
1 1 i L.•10-2 g -2 _I 1 1 l 1_10-2 -22 •10-2

-2 -1 0 1 2 -2 0 2 4 6 -2

dual weighted residuals dual weighted residuals

0 2 4 6

dual weighted residuals

Dual-weighted residuals correlate with error

Uncertainty control: less variance as columns added to Y

(i dual RB size py = 10 (ii dual RB size py = 15 (iF) dual RB size py = 20

100 To-rmf-Furru-011111111 100 100

io ‘0°,Q , • e,QQ0 Q 
20 40 60 80

number of training points N

10-2

entemme",15,-teausen

ITTTTITT1111111111[61111116

620 40 '0 80

ur2
11111111111111111111111111111

20 40 60 80

number of training points N number of training points N

+ Uncertainty control: error reduces as columns added to Y
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Summary: statistical error modeling

■ ROM ES

+ Uses cheap error indicators to statistical quantify ROM error
+ Outperforms multifidelity correction (inputs = poor indicators)
+ Uncertainty control for general errors

■ Related follow-on work
■ Reduction error models (REM) [Manzoni et al., 2016]

■ Our current work

■ Apply to nonlinear, time-dependent problems
■ Collaborators: Trehan, Durlofsky (Stanford)

■ Reference: Drohmann, C. The ROMES method for statistical

modeling of reduced-order-model error. SIAM/ASA Journal

on Uncertainty Quantification, 3(1):116-145, 2015.
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Questions?

tranformed error
d(S)

•

error indicator p

1
Nonlinear model reductio Kevin Carlberg 78



Acknowledgments

■ This research was supported in part by an appointment to the

Sandia National Laboratories Truman Fellowship in National

Security Science and Engineering, sponsored by Sandia

Corporation (a wholly owned subsidiary of Lockheed Martin

Corporation) as Operator of Sandia National Laboratories

under its U.S. Department of Energy Contract No.

DE-AC04-94AL85000.

Nonlinear model reduction Kevin Carlberg 79



3

3

3

Amsallem, D., Cortial, J., C., K., and Farhat, C. (2009).
A method for interpolating on manifolds structural dynamics

reduced-order models.
International Journal for Numerical Methods in Engineering,
80(9):1241-1258.

Amsallem, D. and Farhat, C. (2008).
An interpolation method for adapting reduced-order models
and application to aeroelasticity.
AIAA Journal, 46(7):1803-1813.

Amsallem, D., Zahr, M. J., and Farhat, C. (2012).
Nonlinear model order reduction based on local reduced-order

bases.
International Journal for Numerical Methods in Engineering,

92(10):891-916.

Antoulas, A. C. (2005).
Approximation of Large-Scale Dynamical Systems.

Nonlinear model reduction Kevin Carlberg 79



Society for Industrial and Applied Mathematics, Philadelphia,
PA.

Arian, E., Fahl, M., and Sachs, E. W. (2000).
Trust-region proper orthogonal decomposition for flow control.
Technical Report 25, ICASE.

Babuška, I. and Miller, A. (1984).
The post-processing approach in the finite element

method—part 1: Calculation of displacements, stresses and
other higher derivatives of the displacements.
International Journal for numerical methods in engineering,

20(6):1085-1109.

Bai, Z. (2002).
Krylov subspace techniques for reduced-order modeling of

large-scale dynamical systems.
Applied Numerical Mathematics, 43(1):9-44.

Bangerth, W. and Rannacher, R. (1999).

Nonlinear model reduction Kevin Carlberg 79



3

3

3

3

Finite element approximation of the acoustic wave equation:
Error control and mesh adaptation.
East West Journal of Numerical Mathematics, 7(4):263-282.

Bangerth, W. and Rannacher, R. (2003).
Adaptive finite element methods for differential equations.
Springer.

Barrault, M., Maday, Y., Nguyen, N. C., and Patera, A. T.

(2004).
An 'empirical interpolation' method: application to efficient

reduced-basis discretization of partial differential equations.

Comptes Rendus Mathématique Académie des Sciences,
339(9):667-672.

Baur, U., Beattie, C., Benner, P., and Gugercin, S. (2011).

Interpolatory projection methods for parameterized model
reduction.
SIAM Journal on Scientific Computing, 33(5):2489-2518.

Becker, R. and Rannacher, R. (1996).

Nonlinear model reduction Kevin Carlberg 79



Weighted a posteriori error control in finite element methods,
volume preprint no. 96-1.
Universitat Heidelberg.

Becker, R. and Rannacher, R. (2001).

An optimal control approach to a posteriori error estimation in
finite element methods.
Acta Numerica 2001, 10:1-102.

Benner, P., Gugercin, S., and Willcox, K. (2015).

A survey of projection-based model reduction methods for

parametric dynamical systems.
SIAM Review, 57(4):483-531.

A Bui-Thanh, T., Willcox, K., and Ghattas, O. (2008).
Model reduction for large-scale systems with high-dimensional

parametric input space.
SIAM Journal on Scientific Computing, 30(6):3270-3288.

ri C., K. (2015).
Adaptive h-refinement for reduced-order models.

Nonlinear model reduction Kevin Carlberg 79



3

3

3

International Journal for Numerical Methods in Engineering,
102(5):1192-1210.

C., K., Barone, M., and Antil, H. (2015a).

Galerkin v. discrete-optimal projection in nonlinear model

reduction.
arXiv e-print, (1504.03749).

C., K., Bou-Mosleh, C., and Farhat, C. (2011a).
Efficient non-linear model reduction via a least-squares

Petrov—Galerkin projection and compressive tensor
approximations.

International Journal for Numerical Methods in Engineering,

86(4155-181.

C., K., Cortial, J., Amsallem, D., Zahr, M., and Farhat, C.
(2011b).
The GNAT nonlinear model reduction method and its
application to fluid dynamics problems.

Nonlinear model reduction Kevin Carlberg 79



3

3

3

3

AIAA Paper 2011-3112, 6th AIAA Theoretical Fluid Mechanics

Conference, Honolulu, HI.

C., K., Farhat, C., Cortial, J., and Amsallem, D. (2013).
The GNAT method for nonlinear model reduction: effective

implementation and application to computational fluid
dynamics and turbulent flows.

Journal of Computational Physics, 242:623-647.

C., K., Ray, J., and van Bloemen Waanders, B. (2015b).

Decreasing the temporal complexity for nonlinear, implicit

reduced-order models by forecasting.

Computer Methods in Applied Mechanics and Engineering,

289:79-103.

Dihlmann, M., Drohmann, M., and Haasdonk, B. (2011).

Model reduction of parametrized evolution problems using the
reduced basis method with adaptive time partitioning.

Drohmann, M. and C., K. (2015).

Nonlinear model reduction Kevin Carlberg 79



3

3

3

The romes method for reduced-order-model uncertainty
quantification.

SIAM/ASA Journal on Uncertainty Quantification,

3(1):116-145.

Drohmann, M., Haasdonk, B., and Ohlberger, M. (2011).

Adaptive reduced basis methods for nonlinear

convection—diffusion equations.
In Finite Volumes for Complex Applications VI Problems & 
Perspectives, pages 369-377. Springer.

Eftang, J. L., Knezevic, D. J., and Patera, A. T. (2011).

An hp certified reduced basis method for parametrized

parabolic partial differential equations.
Mathematical and Computer Modelling of Dynamical Systems,
17(4):395-422.

Eftang, J. L. and Patera, A. T. (2013).
Port reduction in parametrized component static condensation:

approximation and a posteriori error estimation.

Nonlinear model reduction Kevin Carlberg



3

3

3

International Journal for Numerical Methods in Engineering,

96(5):269-302.

Eftang, J. L., Patera, A. T., and Ronquist, E. M. (2010).
An 'hp' certified reduced basis method for parametrized elliptic
partial differential equations.
SIAM Journal on Scientific Computing, 32(6):3170-3200.

Eldred, M. S., Giunta, A. A., Collis, S. S., Alexandrov, N. A.,
and Lewis, R. M. (2004).
Second-order corrections for surrogate-based optimization with
model hierarchies.

In Proceedings of the 10th AIAA/ISSMO Multidisciplinary 
Analysis and Optimization Conference, Albany, NY, number
AIAA Paper 2004-4457.

Eldred, M. S., Weickum, G., and Maute, K. (2009).
A multi-point reduced-order modeling approach of transient

structural dynamics with application to robust design
optimization.

Nonlinear model reduction Kevin Carlberg 79



3

3

Structural and Multidisciplinary Optimization, 38(6):599-611.

Estep, D. (1995).
A posteriori error bounds and global error control for
approximation of ordinary differential equations.
SIAM Journal on Numerical Analysis, 32(1):1-48.

Everson, R. and Sirovich, L. (1995).
Karhunen—Loève procedure for gappy data.
Journal of the Optical Society of America A, 12(8):1657-1664.

Farhat, C., Geuzaine, P., and Brown, G. (2003).

Application of a three-field nonlinear fluid-structure
formulation to the prediction of the aeroelastic parameters of
an F-16 fighter.
Computers & Fluids, 32(1):3-29.

Fidkowski, K. J. (2007).
A simplex cut-cell adaptive method for high-order 

discretizations of the compressible Navier-Stokes equations.
PhD thesis, Massachusetts Institute of Technology.

Nonlinear model reduction Kevin Carlberg



3

3

3

Freund, R. (2003).
Model reduction methods based on Krylov subspaces.
Acta Numerica, 12:267-319.

Gallivan, K., Vandendorpe, A., and Van Dooren, P. (2004).

Model reduction of mimo systems via tangential interpolation.

SIAM Journal on Matrix Analysis and Applications,

26(2):328-349.

Haasdonk, B., Dihlmann, M., and Ohlberger, M. (2011).

A training set and multiple bases generation approach for

parameterized model reduction based on adaptive grids in
parameter space.

Mathematical and Computer Modelling of Dynamical Systems,
17(4):423-442.

Haasdonk, B., Ohlberger, M., and Rozza, G. (2008).
A reduced basis method for evolution schemes with

parameter-dependent explicit operators.

Electronic Transactions on Numerical Analysis, 32:145-161.

Nonlinear model reduction Kevin Carlberg 79



3 Huynh, D. B. P., Knezevic, D. J., Chen, Y., Hesthaven, J. S.,
and Patera, A. T. (2010).
A natural-norm successive constraint method for inf-sup lower

bounds.

Comput. Methods Appl. Mech. Engrg., 199:1963-1975.

lonita, A. and Antoulas, A. (2014).

Data-driven parametrized model reduction in the loewner
framework.

SIAM Journal on Scientific Computing, 36(3):A984—A1007.

4 Lefteriu, S. and Antoulas, A. C. (2010).
A new approach to modeling multiport systems from

frequency-domain data.
Computer-Aided Design of Integrated Circuits and Systems, 
IEEE Transactions on, 29(1):14-27.

LeGresley, P. A. (2006).

Application of Proper Orthogonal Decomposition (POD) to 
Design Decomposition Methods.

Nonlinear model reduction Kevin Carlberg 79



3

3

3

3

3

PhD thesis, Stanford University.

Lu, J. C.-C. (2005).
An a posteriori error control framework for adaptive precision 
optimization using discontinuous Galerkin finite element 

method.
PhD thesis, Massachusetts Institute of Technology.

Maday, Y. and Ronquist, E. M. (2002).

A reduced-basis element method.

J. Sci Comput, 17(1-4):447-459.

Manzoni, A., Pagani, S., and Lassila, T. (2016).

Accurate solution of bayesian inverse uncertainty quantification
problems using model and error reduction methods.

Moore, B. (1981).

Principal component analysis in linear systems: Controllability,

observability, and model reduction.
Automatic Control, IEEE Transactions on, 26(1):17-32.

Nemec, M. and Aftosmis, M. (2007).
Nonlinear model reduction Kevin Carlberg 79



Adjoint error estimation and adaptive refinement for

embedded-boundary cartesian meshes.
In 18th AIAA CFD Conference, Miami. Paper 

AIAA-2007-4187.

Ng, L. and Eldred, M. S. (2012).

Multifidelity uncertainty quantification using non-intrusive

polynomial chaos and stochastic collocation.
In AIAA 2012-1852.

no Park, M. A. (2004).

Adjoint-based, three-dimensional error prediction and grid
adaptation.

AIAA journal, 42(9):1854-1862.

3 Patera, A. T. and Rozza, G. (2006).
Reduced basis approximation and a posteriori error estimation 

for parametrized partial differential equations.
MIT.

Nonlinear model reduction Kevin Carlberg



3

Peherstorfer, B., Butnaru, D., Willcox, K., and Bungartz, H.-J.

(2014).

Localized discrete empirical interpolation method.
SIAM Journal on Scientific Computing, 36(1):A168—A192.

Phuong Huynh, D. B., Knezevic, D. J., and Patera, A. T.

(2013).
A static condensation reduced basis element method:

approximation and a posteriori error estimation.
ESAIM: Mathematical Modelling and Numerical Analysis,
47(04213-251.

Pierce, N. A. and Giles, M. B. (2000).
Adjoint recovery of superconvergent functionals from pde
approximations.
SIAM review, 42(2):247-264.

Prud'Homme, C., Rovas, D. V., Veroy, K., Machiels, L.,
Maday, Y., Patera, A. T., Turinici, G., et al. (2001).

Nonlinear model reduction Kevin Carlberg 79



3

3

Reliable real-time solution of parametrized partial differential

equations: Reduced-basis output bound methods.
Journal of Fluids Engineering, 124(1):70-80.

Rannacher, R. (1999).
The dual-weighted-residual method for error control and mesh
adaptation in finite element methods.
MAFELEAP, 99:97-115.

Rasmussen, C. and Williams, C. (2006).

Gaussian Processes for Machine Learning.
MIT Press.

3 Rewienski, M. J. (2003).
A Trajectory Piecewise-Linear Approach to Model Order Reduction o

PhD thesis, Massachusetts Institute of Technology.

Rowley, C. W. (2005).
Model reduction for fluids, using balanced proper orthogonal
decomposition.

Nonlinear model reduction Kevin Carlberg



Int. J. on Bifurcation and Chaos, 15(3):997-1013.

Rozza, G., Huynh, D., and Patera, A. T. (2008).

Reduced basis approximation and a posteriori error estimation
for affinely parametrized elliptic coercive partial differential
equations.

Archives of Computational Methods in Engineering,

15(3):229-275.

Ryckelynck, D. (2005).
A priori hyperreduction method: an adaptive approach.

Journal of Computational Physics, 202(4346-366.

Venditti, D. and Darmofal, D. (2000).

Adjoint error estimation and grid adaptation for functional

outputs: Application to quasi-one-dimensional flow.

Journal of Computational Physics, 164(1):204-227.

Venditti, D. A. and Darmofal, D. L. (2002).

Grid adaptation for functional outputs: application to
two-dimensional inviscid flows.

Nonlinear model reduction Kevin Carlberg 79



3

Journal of Computational Physics, 176(1):40-69.

Veroy, K., Prud'homme, C., Rovas, D. V., and Patera, A. T.

(2003).
A posteriori error bounds for reduced-basis approximation of

parametrized noncoercive and nonlinear elliptic partial

differential equations.

AIAA Paper 2003-3847, 16th AIAA Computational Fluid 

Dynamics Conference, Orlando, FL.

Washabaugh, K., Amsallem, D., Zahr, M., and Farhat, C.

(2012).
Nonlinear model reduction for cfd problems using local
reduced-order bases.
In 42nd AIAA Fluid Dynamics Conference and Exhibit, Fluid 

Dynamics and Co-located Conferences, AIAA Paper, volume

2686.

3 Willcox, K. and Peraire, J. (2002).
Balanced model reduction via the proper orthogonal
decomposition.

Nonlinear model reduction Kevin Carlberg 79



3

AIAA Journal, 40(11):2323-2330.

Wirtz, D., Sorensen, D. C., and Haasdonk, B. (2012).
A-posteriori error estimation for DEIM reduced nonlinear
dynamical systems.
Preprint Series, Stuttgart Research Centre for Simulation 
Technology.

Yano, M., Patera, A. T., and Urban, K. (2012).
A space-time certified reduced-basis method for Burgers'
equation.
Math. Mod. Meth. Appl. S., submitted.

Nonlinear model reduction Kevin Carlberg 79


