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Computational barrier at Sandia

m CFD model m High simulation costs

m 100 million cells m 6 weeks, 5000 cores

m 200,000 time steps m 6 runs maxes out Cielo
m Fast-turnaround design m Uncertainty quantification

Objective: break barrier via nonlinear model reduction
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ROM: state of the art [genner et al., 2015]

m Linear time-invariant systems: mature [Antoulas, 2005]
m Balanced truncation [Moore, 1981]
m Empirical balanced truncation [Willcox and Peraire, 2002, Rowley, 2005]
m Moment matching
[Bai, 2002, Freund, 2003, Gallivan et al., 2004, Baur et al., 2011]
m Loewner framework [Lefteriu and Antoulas, 2010, lonita and Antoulas, 2014]
+ Reliable: guaranteed stability, a priori error bounds
+ Certified: sharp, computable a posteriori error bounds
m Elliptic/parabolic PDEs (FEM): mature [Rozza et al., 2008]
m Reduced-basis method
[Prud’'Homme et al., 2001, Veroy et al., 2003, Barrault et al., 2004]
m Subsystem-based reduced-basis method
[Maday and Rgnquist, 2002, Phuong Huynh et al., 2013, Eftang and Patera, 2013]
+ Reliable: a priori error bounds
+ Certified: sharp, computable a posteriori error bounds
m Nonlinear dynamical systems: unproven
m Proper orthogonal decomposition (POD)—Galerkin
- Not reliable: Stability and accuracy not guaranteed
- Not certified: error bounds not sharp
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Our research goal

Nonlinear model-reduction methods that are
accurate, low cost, certified, and reliable.

+ Accuracy
m Improve projection technique
m Preserve problem structure
+ Low cost

m Sample-mesh approach
m Leverage time-domain data

+ Certification

m Error bounds
m Statistical error modeling

+ Reliability
m A posteriori h-refinement
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Our research goal

Nonlinear model-reduction methods that are
accurate, low cost, certified, and reliable.

+ Accuracy
m Improve projection technique [C. et al., 2011a, C. et al., 2015a]
m Preserve problem structure
+ Low cost
m Sample-mesh approach
m Leverage time-domain data
+ Certification
m Error bounds [C. et al., 2015a]
m Statistical error modeling

+ Reliability
m A posteriori h-refinement

Collaborators: M. Barone (Sandia), H. Antil (GMU)
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POD-Galerkin: offline data collection

%:f(x;t,u); x(0,p) = x°(u), te[0,T], peD

1 Collect ‘snapshots’ of the state
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POD-Galerkin: offline data collection

2 Data compression
m Compute SVD:  [X; X, X3] =

II I\ 1

m Truncate: ® = [ug -+ up)
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POD-Galerkin: online projection

dx
dt

Dx(t) ) — &

Full-order model: =f(x;t,pn), x(0,p)=x"(p)

~
~

~

~

ax

Galerkin ROM:
dt

=0T f(®x:t,p), X(0,p) =@ x(p)
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CaVity—ﬂOW pr0b|em. Collaborator: M. Barone (SNL)

m Unsteady Navier—Stokes m Re =6.3 x 10°

m DES turbulence model m M=06

m 1.2 million degrees of m CFD code: AERO-F
freedom [Farhat et al., 2003]
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Full-order model responses

vorticity field

pressure field
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POD-Galerkin failure
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- Galerkin ROMs unstable
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How to construct a ROM for nonlinear dynamical systems?

m Optimize then discretize? (Galerkin)

m Discretize then optimize? (Least-squares Petrov—Galerkin)

LSPG ROM
OAE

Full-order model optimal Galerkin ROM
ODE projection ODE

time discretization time discretization

| |

optimal Full-order model -

m Outstanding questions:
Which notion of optimality is better in practice?
Discrete-time error bounds?
Time step selection?
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Nonlinear model reduction

Full-order model
ODE

|

time discretization

|

Full-order model
OAE

Kevin Carlberg
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Full-order model (FOM)

m ODE: time continuous
% =f(x,t), x(0)=x° tel0,T]

m OAE, linear multistep schemes: , n=1,...,N

k K
r'" (x) := apx — AtSof(x, t") + Zajx"*j — AtZﬁjf (x"*j, t"/)

=1 =1
x" = x" (explicit state update)

m OAE, Runge-Kutta: | r] (x7,...,x]) =0 ‘ i=1,..,s

s
rf(x1,...,xs) = x;j — F(x"1 + Atz ajixj, t"1 + ciAt)
j=1

S
X7 =x"1 4 Atz bix} (explicit state update)
i=1
This talk focuses on linear multistep schemes.

Nonlinear model reduction Kevin Carlberg
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Galerkin ROM: first optimize

Full-order model Galerkin
ODE projection

time discretization

|

Full-order model
OAE

Nonlinear model reduction

Galerkin ROM
ODE

Kevin Carlberg
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Galerkin: first optimize, then discretize

Full-order model Galerkin
‘ ODE P projection e

|

time discretization

|

Full-order model
OAE

Nonlinear model reduction

Galerkin ROM
ODE

!

time discretization

'

Galerkin ROM
OAE

Kevin Carlberg
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Galerkin ROM

m ODE
dx T A ~ T,0
EZCD f(®x,t), x(0)=d'x", te]|0,T]
+ Continuous velocity ‘c’I—’;‘ is optimal

Theorem (Galerkin ROM: continuous optimality)
The Galerkin ROM velocity minimizes the time-continuous FOM residual:

e t) = arg min v = F(x, 0

s OAE

k k
P (%) = aok—Ath® F(0%, t")+Y k"I -At> | 5o F (a»?"—f , t"_j)
j=1 j=1
- Discrete state X" is not generally optimal

Can we fix this? Will doing so help?

Nonlinear model reduction Kevin Carlberg
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LSPG ROM: first discretize, then optimize

Full-order Galerkin
model
ODE

Galerkin ROM
projection ODE

time discretization time discretization

. Full-order .
LSP(;SAITEOM Petrov‘ Gglerkm riodel Ga_lerk_ln ROM
projection OAE projection OAE
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LSPG ROM

m FOM OAE
r"(x"y=0, n=1,..,N
m LSPG ROM OAE:
sn . n 3\ (|12
%" = arg min [|Ar" (92) 2
(¥

wEN T (X7 =0, W(R) = ATA%LX

m A = I: LSPG [LeGresley, 2006, Bui-Thanh et al., 2008, C. et al., 2011a]

()

+ Discrete solution is optimal

Nonlinear model reduction Kevin Carlberg
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Does the LSPG ROM have a time-continuous representation?

| 7 | Fill ordler Galerkin [ Galerkin ROM
( ) ) né%é projection ODE
time discretization time discretization

|

LSPG ROM Petrov-Galerkin F”““;'dle’ Galerkin Galerkin ROM
OAE projection mOOAE projection OAE
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Does the LSPG ROM have a time-continuous representation?

Sometimes.

Full-order Galerkin

' LSPGROM ! Petrov—Galerkin Galerkin ROM
‘ ODE i projection model projection ODE
,,,,,,,,, ! ODE
1
Y

time discretization firmaiseretization time discretization

1
' |
Y
LSPG ROM Petrov-Galerkin Full-order Galerkin Galerkin ROM
OAE projection projection OAE

model
OAE
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LSPG ROM: continuous representation

Theorem

The LSPG ROM is equivalent to applying a Petrov—Galerkin projection to
the FOM ODE with test basis

V(% t)=ATA (aol — Atﬁoaf

8—X(XO + ¢')?, t)) ¢

if
Bj=0,j>1 (eg., asingle-step method),
the velocity f is linear in the state, or

Bo =0 (i.e., explicit schemes).

Time-continuous test basis depends on
time-discretization parameters!

Nonlinear model reduction Kevin Carlberg
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Are the two approaches ever equivalent?

m Galerkin: o7 (0x") =0
m LSPG: W"(x")Tr" (bx™) =0

Does W"(x") = ® ever?

Yes.

V(%) = ATAZ:( (bx)= A'A <a0/ = Atﬂog—i((b)?, t”)) o

The two approaches are equivalent (W"(x) = ®)
in the limit of At — 0 with A =1/,/aql,
if the scheme is explicit (6o = 0) with A =1/,/aql, or
if 9 is positive definite with [22]71 = AT A.
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m Runge—Kutta

or}

W%y, ..., %) =A] A; ox)

(X1, ..., Xs)

f s
:AiTA; <I5U — Ata;jg—x(xn_l + At® Z aiXk, 1 + C;At)) [0}
k=1

Corollary

Galerkin projection is discrete-optimal (i.e., W"(X) = ®) for
Runge—Kutta schemes with A; = I in the limit of At — 0.

Nonlinear model reduction Kevin Carlberg



Discrete-time error bound

If the following conditions hold:

f(-, t) is Lipschitz continuous with Lipschitz constant k, and

At is such that 0 < h := |ag| — |Bo|kAL,
then

k
At -
18X < 5= D7 1811 = V) F (x0 + 085
=0

k
1 e n—4¢
)45 3 (vt ¢ o i
At & Ly
Xzl < S5 D18l (1 = PP (xo + @R77%) [l S (1Belwre + fauel) 6~
=0

=1

with
m Ox% = x] — OXL.

V=0T

m Ox] = x" — KT m PP = o (W)To) (w7

Nonlinear model reduction
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LSPG ROM vyields a smaller error bound
Theorem (Backward Euler)

If conditions (1) and (2) hold then

n—1

lloxg|l < AtY -V f (xo + w'{f) I
E”*f
llox7]l < Ari I (1-Pi) F (%0 + oz ) |
5241.

Il

k= ||loxk — Atf (xo + o&g) oxk1|
-

k= o tf (xo 4 Of(’[) — 0%{ 1| = min [ ®y — Atf (xo + ®y) oxk1|
Corollary (LSPG smaller error bound)

Ak 1_ ok—1 _k
If x =X theneL<
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LSPG ROM has an interesting time-step dependence

Corollary (Backward Euler)

Define
NN
n AxJL = xj,_ — xJL -
m AX/: full-space solution increment from X -1
Then, the LSPG error can also be bounded as

||5XLHSAt(1+ﬂAt)Z(hy+1llf(xJ +Ax" )|
Jj=0

with 1 = |®AK] — A% /|| A%I].

Effect of decreasing At:
+ The terms At(1 + kAt) and 1/(hY*! decrease
- The number of total time instances n increases

? The term 11"~/ may increase or decrease, depending on the
spectral content of the basis ®

Nonlinear model reduction Kevin Carlberg
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Galerkin and LSPG responses for basis dimension p = 204

—FOM, At|= 0.0015
—Af=0.
28 :§§i°° %
—4=
—Ai
260 —ar=
==
24 )
(2]
0
Vs,
o
2
18
1.4 1.4
0 1 2 3 4 5 6 0 2 4 6 8 10 12
time time
(a) Galerkin (b) LSPG

- Galerkin ROMs unstable for long time intervals
+ LSPG ROMs accurate and stable (most time steps)

Nonlinear model reduction Kevin Carlberg
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LSPG ROM: superior performance

£10 - £10 - £10 -
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v" LSPG ROM vyields a smaller error for all time intervals and
time steps.
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LSPG performance (t < 12.5 sec)
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V" An intermediate At produces the lowest error and better speedup.

p = 564 case:

m At = 1.875 x 10~ sec: relative error = 1.40%, time = 289 hrs

m At =15 x 1073 sec: relative error = 0.095%, time = 35.8 hrs

Nonlinear model reduction
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Summary: Improve projection technique

m Discrete optimality (LSPG) outperforms continuous optimality
(Galerkin) in practice
m Equivalence conditions
Limit of At — 0
Explicit schemes
Positive definite residual Jacobians
m Discrete-time error bounds
m LSPG ROM yields smaller error bound than Galerkin
m Ambiguous role of time step At
m Numerical experiments
m LSPG ROM yields a smaller error than Galerkin
m Equivalent as At — 0
m Error minimized for intermediate At
m Reference: C., Barone, and Antil. Galerkin v. least-squares
Petrov—Galerkin projection in nonlinear model reduction.
arXiv e-print, (1504.03749), 2015.

Nonlinear model reduction Kevin Carlberg
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Our research goal

Nonlinear model-reduction methods that are
accurate, low cost, certified, and reliable.

+ Accuracy

m Improve projection technique
m Preserve problem structure

+ Low cost

m Sample-mesh approach [C. et al., 2011b, C. et al., 2013]
m Leverage time-domain data

+ Certification

m Error bounds
m Statistical error modeling

+ Reliability

m A posteriori h-refinement

Collaborators: C. Farhat, J. Cortial (Stanford)

Nonlinear model reduction Kevin Carlberg
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LSPG performance (t < 2.5 sec)

[
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-+ Always sub-3% errors
- More expensive than the FOM
m FOM simulation: 1 hour, 48 CPU

1073 1072

m LSPG ROM simulation (fastest): 1.3 hours, 48 CPU

Nonlinear model reduction

Kevin Carlberg
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Hyper-reduction via Gappy POD (ewerson and Sirovich, 1005]
" — arg min || Ar" (®2) ||3.
ZeRP

Can we select A to make this inexpensive?

1. r(x) =~ " P'(x) = arg mm |P®rF — Pri(x)l

d)Rr E
| | I —argmln I .
2

X" = arg min |7 (®2) |3 = arg min [|® " (®2) |3 = arg min [P (®2) [|3

=arg min || (POz)" Pr" (® Z) I3
2€RP T e —
A
+ GNAT: A= (P®%)" P leads to low-cost

m Offline: Construct ®; (POD) and P (greedy method)

Nonlinear model reduction Kevin Carlberg
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Sample mesh: HPC implementation

%" = arg min || (P®R)"T Pr" (®2) |3
ZeRp

m Key: GNAT samples only a few entries of the residual Pr”

m /dea: Extract minimal subset of the mesh

m Related: subgrid [Haasdonk et al., 2008], reduced integration domain
[Ryckelynck, 2005]

m Sample mesh: 4.1% nodes, 3.0% cells
-+ Small problem size: can run on many fewer cores

Nonlinear model reduction Kevin Carlberg



GNAT performance (t < 12.5 sec)

vorticity field pressure field

GNAT
ROM

FOM

+ < 1% error in time-averaged drag
-+ 229x CPU-hour savings

m FOM: 5 hour x 48 CPU
m GNAT ROM: 32 min x 2 CPU

Nonlinear model reduction Kevin Carlberg 36



Our research goal

Nonlinear model-reduction methods that are
accurate, low cost, certified, and reliable.

+ Accuracy
m Improve projection technique
m Preserve problem structure
+ Low cost
m Sample-mesh approach
m Leverage time-domain data [C. et al., 2015b]
+ Certification
m Error bounds
m Statistical error modeling
+ Reliability

m A posteriori h-refinement

Collaborators: L. Brencher, B. Haasdonk, A. Barth (U Stuttgart)

Nonlinear model reduction Kevin Carlberg
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Our research goal

Nonlinear model-reduction methods that are
accurate, low cost, certified, and reliable.

+ Accuracy

m Improve projection technique
m Preserve problem structure

+ Low cost

m Sample-mesh approach
m Leverage time-domain data

+ Certification

m Error bounds
m Statistical error modeling

+ Reliability
m A posteriori h-refinement [C., 2015]

Nonlinear model reduction Kevin Carlberg
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GNAT performance (t < 12.5 sec)

vorticity field pressure field

GNAT
ROM

FOM

+ < 1% error in time-averaged drag
+ 229x CPU-hour savings

m FOM: 5 hour x 48 CPU
m GNAT ROM: 32 min x 2 CPU

- However, ROMs are not guaranteed to be accurate.

ROM accuracy is limited by the information in ®.

Nonlinear model reduction Kevin Carlberg
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Example: inviscid Burgers equation [rewienski, 2003]

ou(x,7) 10 (v (x, 7)) 0.02x
o + 5 Ee = 0.02e

u(0,7)=3, V7 >0
u(x,0) =1, Vx € [0, 100],

Discretization: Godunov's scheme

Simulate 7 € [0, 50]

FOM: 250 degrees of freedom

ROM: 150 degrees of freedom

® constructed via POD using snapshots in Tirain € [0, 2.5]

Nonlinear model reduction Kevin Carlberg
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ROM accuracy limited by relevance of training data

5.5

—FOM
---ROM
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- ROM inaccurate when outside predictive domain of ®
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Existing ROM adaptation methods

m A priori adaptation: unique ROM for separate regions of the

] input Space [Amsallem and Farhat, 2008, Amsallem et al., 2009,
Eftang et al., 2010, Eftang et al., 2011, Haasdonk et al., 2011,
Drohmann et al., 2011, Peherstorfer et al., 2014]

m time domain [Drohmann et al., 2011, Dihlmann et al., 2011]

m state space
[Amsallem et al., 2012, Washabaugh et al., 2012, Peherstorfer et al., 2014].

+ Reduces the dimension of the ROM

- No mechanism to improve the ROM a posteriori

m A posteriori adaptation

m Revert to the FOM, solve it, and add solution to the basis
[Eldred et al., 2009, Arian et al., 2000, Ryckelynck, 2005]

+ Improves the ROM a posteriori

- Incurs large-scale operations

Goal: Cheap, a posteriori improvement of the ROM

Nonlinear model reduction Kevin Carlberg
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Main idea

ROM analog to mesh-adaptive h-refinement
m ‘Split’ basis vectors
PANVS AN I

finite element h-refinement ROM h-refinement
m Generate hierarchical subspaces

range I C range g

m ROM converges to the FOM

||
quq".ﬁ_ l__
H

Nonlinear model reduction Kevin Carlberg
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h-refinement ingredients

Adaptive algorithm

B Refinement

AN\

finite element h-refinement ROM h-refinement

Error indicators

i

dual solve prolongation dual solve prolongation

finite element h-refinement ROM h-refinement

Nonlinear model reduction Kevin Carlberg



Ingredient 1: Adaptive algorithm

Adaptive algorithm

B Refinement

AN\

finite element h-refinement ROM h-refinement

Error indicators

g gt

dual solve prolongation dual solve prolongation

finite element h-refinement ROM h-refinement

Nonlinear model reduction Kevin Carlberg
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Adaptive algorithm

Algorithm 1 Outer loop

Input: timestep n, current basis ®

Output: updated basis @, generalized state X"

. Solve @ r"(®%"; u) = 0 for current ROM solution X"

if estimate of output error ds is ‘too large’ then
Refine basis: ® « Refine (®, X").
Return to Step 1.

end if

if mod (n, Neset) = 0 then

Reset basis: ® « &,
end if

O OO b e

Nonlinear model reduction Kevin Carlberg
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Adaptive algorithm

Algorithm 2 Refine

Input: initial basis ®, reduced solution X
Output refined basis ®
: Compute prolongation operator I and fine basis ®" (Ingredient 2)
Solve: Compute coarse adjoint sqution (Ingredient 3)
Estimate: Compute fine error indicators (Ingredient 3)
Mark: Identify basis vectors to refine /
for i € | do
Refine: Split ¢; into child vectors
end for
Compute QR factorization with column pivoting ® = QR, Rl = QR
Ensure full-rank matrix ® < ® [7y -+ 7,]

© e N oo B o

Nonlinear model reduction Kevin Carlberg
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Ingredient 2: Refinement

Adaptive algorithm

B Refinement

AN\

finite element h-refinement ROM h-refinement

Error indicators

g gt

dual solve prolongation dual solve prolongation

finite element h-refinement ROM h-refinement

Nonlinear model reduction Kevin Carlberg
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Tree data structure

m Tree data structure with m nodes

m child function C : N(m) — P (N(m))
m element function E : N(m) — P (N(N))
m Requirements
Root node includes all elements E (1)
Each element has a single leaf node
Disjoint support of children E (j) N E (k) =0, Vj # k € C(i)
Ujec() EG) = E(7)
+ 1-2 ensure the ROM converges to the FOM
+ 4 ensures hierarchical refined subspaces

Nonlinear model reduction Kevin Carlberg
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Tree example: N =6

Nonlinear model reduction

d = d = 10

c(9) = c(10) = 0
E(9) = {5} E(10) = {6}

0 0 0 |

0

@ o0 o

0 0 0

0O 0 0

0
0 ¢ o
0 0 oY

Kevin Carlberg



Tree construction

State variables that are strongly correlated or
anticorrelated should reside in the same tree node.

Normalize state-variable observation history
If first observation is negative, flip over origin
Recursively apply k-means clustering

35 4
. 4 e 0- *
30 0.3
25 0.2
™20 1o ~
= =0.1
£15 £
£10 b : 0
2 20.1
253 2
0 6 —-0.2
-5 —0.3

® o

- 2 o —04
=55 =20 pado 5 0 5 10 0.15 0.16 0.17 0.18 0.19 0.2 021 0.22
observation obsel'vamon 1

(j) before modification (k) after modification

State-variable observation history (variable index labeled).

Nonlinear model reduction Kevin Carlberg
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Refinement machinery

=o'

1%

coarse basis ® € RN*pP

fine basis ®" € RVN*9 with g =

prolongation operator 11, € {0, 1}9%P

prolongated generalized coordinates X

restriction operator 15 = (I',l,)

Nonlinear model reduction

ch
XH =

= |

P 1C(d)]

Kevin Carlberg
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Ingredient 3: Error indicators

Adaptive algorithm

Refinement

AN AN

finite element h-refinement ROM h-refinement

Error indicators: a) dual solve (coarse), b) prolongation (fine)

i

dual solve prolongation dual solve prolongation

finite element h-refinement ROM h-refinement

Nonlinear model reduction Kevin Carlberg
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Dual-weighted residual error indicators

m Goal-oriented: reduce the error in output g(x)

m Analogous to duality-based error control for

m differential equations [Estep, 1995, Pierce and Giles, 2000]

m finite elements [Babugka and Miller, 1984, Becker and Rannacher, 1996,
Rannacher, 1999, Bangerth and Rannacher, 1999, Becker and Rannacher, 2001,
Bangerth and Rannacher, 2003],

m finite volumes [Venditti and Darmofal, 2000, Venditti and Darmofal, 2002,
Park, 2004, Nemec and Aftosmis, 2007]

m discontinuous Galerkin methods [Lu, 2005, Fidkowski, 2007]

Nonlinear model reduction Kevin Carlberg



Dual-weighted residual error indicators

m Approximate fine output:
g(05") ~ g(®18) + 25 (@HgMOh(s" — 118") (1)

m Approximate the fine residual:

ror

0= (d"Tr(@"z") =~ (¢")Tr(®"5")+ (0" =

(@"x"yeh(x" — 1hz")
m Solve for the error:

(j‘(h _ IIIZI&H) A _[(q)h)T%(¢H§(H)¢h]—1(¢h)Tr(¢H5\(H) (2)

m Substitute (2) in (1):

g(®"2") — g(®"%") ~ —(3")T(®") T r(@"5") |

with the fine adjoint solution y” € RY satisfying

or, . N 0 ’
Ta_x(q,HxH)Tq)hyh _ (¢h)T_g(¢HXH)T |

(®") o

Nonlinear model reduction Kevin Carlberg



Dual-weighted residual error indicators

£(0"2") —g(@"2") ~ — (") (@")7Tr(O" | (3)
(¢h)Tgr(¢H H)T¢h ~h (¢h)ng(¢H H) (4)

m We want to avoid fine solve (4), so approximate yh as
JA/Z = Ii;-lva
where y, is the coarse adjoint solution to
or Jg
H\T HEMToHy,, H\T Y8 (@ H o H\T
(@) ST (@" 5T oMy, = (0)TCE (@M3H)T
m Substituting j/,_, for " in (3) yields cheaply computable
hoh HoH MT . (yHoH
g(®"%") — g(®"2") ~ —(y)) T (") T r(®"3").

m The RHS can be bounded by cheaply computable error
indicators

| (ﬁl)r(q;h)Tr(d)H,}HN < zq:(sf’, oh = |[)7mi (¢?)Tr (¢H)A(H) .
i=1

Nonlinear model reduction Kevin Carlberg
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Previous example
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x

m Generated by ® € R?50%1%0 ysing 7 ..n € [0,2.5]

m Now try h-adaptivity with o0 ¢ R250x10 o . [0,2.5].
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Previous example with h-adaptivity

9.5
5L
4.5¢
4
3.5¢
3
2.5¢
2l
1.5¢
1

3

0 50 100 150 200 250
s dim®©@ =10
m mean,(dim &) =443

h-adaptation allows the ROM to capture phenomena not
present in the training data!
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h-adaptivity enables error

control

50 100 ” 150 200 250 0

(a) tolerance e =0.35  (b) tolerance € = 0.05

50 100 150 200
T

50 100 - 150 200 250

(c) tolerance e = 0.01

€e=035]e€=0.05|e=0.01
average basis dimension
per Newton iteration 5.6 .25 aB.0
relative error (%) 12:2 0.51 0.078
online time (seconds) 461 4.63 7.64
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Summary: a posteriori h-refinement

m Adaptive h-refinement via splitting
+ Incrementally improves ROM
+ Does not require large-scale operations
+ Enables error control
+ Extends utility of ROMs to hyperbolic PDEs
m Reference: C., Adaptive h-refinement for reduced-order
models. International Journal for Numerical Methods in
Engineering, 102(5):1192-1210, 2015.
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Our research goal

Nonlinear model-reduction methods that are
accurate, low cost, certified, and reliable.

+ Accuracy

m Improve projection technique
m Preserve problem structure

+ Low cost

m Sample-mesh approach
m Leverage time-domain data

+ Certification

m Error bounds
m Statistical error modeling [Drohmann and C., 2015]

+ Reliability
m A posteriori h-refinement

Collaborator: M. Drohmann (Sandia)
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Strategies for ROM error quantification

Rigorous error bounds

+ independent of input-space dimension

- high effectivity (overestimation), especially for nonlinear, time
depedent problems

- improving effectivity incurs high costs
[Huynh et al., 2010, Wirtz et al., 2012] or intrusive reformulation of
discretization [Yano et al., 2012]

- not amenable to statistics

Multifidelity correction [Eldred et al., 2004]

inputs f
m model low-fidelity error as a function of inputs
m ‘correct’ low-fidelity outputs with model
+ amenable to statistics
- curse of dimensionality
- ROM errors highly oscillatory in the input space
[Ng and Eldred, 2012]
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Data-driven observation

= w0t o E
5] ]
B | € | =
o | R ® —4
&5 g
5= : 5 L
88 ool o (illsull) | 5= 105
2 30 = (AL 18 | EE .
Lol L 1l L il é 10~ " 05
1075 1074 10~ 10-5 «°
Residual r/error bound Residuaj r Qﬁ@‘
m ROMs generate error indicators that correlate with the error
m Main idea: map error indicators to a distribution over the
true error using Gaussian process regression
+ independent of input-space dimension
Reduced-order model error surrogates
Kevin Carlberg 63
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ROMES

tranformed error
d(9)

error indicator p N
m Approximate deterministic p +— d(J) by stochastic p(p) — d
m d: invertible transformation function
m d: random variable for transformed error.
m § := d~1(d): random variable for the error
m ROMES ingredients:
error indicators p
transformation function d
statistical model: Gaussian process
m Desired conditions
indicators p(pt) are low dimensional and cheaply computable
distribution of random variable & has low variance
statistical model is validated
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Normed errors: d(p) = ||x(p) — ®X ()]

m ROMs often equipped with bounds A(u) > d(p) >0
_ Aw)

m Bound effectivity n(p) := ey = 1 often lies in a small range:

m<n(p)<m, Vp
log A(p) — logn1 > log d(p) > log A(p) — logmz, Vi

m Ingredient 1: indicator p = log A
m Also consider cheaper p = log ||r(®x(p); pt)||2 because

_ Llr(®Xx(p); )2

()= ORI () - 0200
Aty i= ILEEEE R » 1) — (1),

and ay () is costly to compute.

m Ingredient 2: transformation function d = log
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General errors: d(p) = g(x(p)) — g(Px(p))
m Recall from before that dual-weighted residuals lead to
g(x) — g(®%) ~ —y r(®3).
with the adjoint solution satisfying

o (@s)Ty = %8

dx

8x( 6x( )

m To avoid this costly solve, we approximate it as y ~ Yy with
vy 0x)Tvy = v T8 (@3)

ox ox

such that

g(x) —g(®%) ~ -y Y r(®x)|.

= Ingredient 1: indicator p = §7 Y7 r(®%)
+ Uncertainty control: can add columns to dual basis Y

m Ingredient 2: transformation function d = id
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Ingredient 3: Gaussian process [rasmussen and Williams, 2006]

Definition (Gaussian process)

A Gaussian process is a collection of random variables, any finite
number of which have a joint Gaussian distribution.

d(p) ~ GP(m(p). k(p. 1))

m mean function m(p); covariance function k(p, p')
m given a training set {(d(0;), pi)}, can infer m(p) and k(p, p’)

m Consider kernel regression [Rasmussen and Williams, 2006]

Nonlinear model reduction Kevin Carlberg

67



Kernel I’egreSSion [Rasmussen and Williams, 2006]

2 2
_ 1
= e
H £
3 3
-1
-2
-5 0 5 -5 0 5
input, x input, x
(d) prior (e) posterior

m prior: d(p) ~ N(0,K (p, p) + c2I)
m k(pi,pj) = exp—% is a positive definite kernel

me= [/—)train Bpredict]

m posterior: dN(ppredict) £ N(m(ppredict)v COV(ppredict))
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ROMES Algorithm

Offline

Populate ROMES database {(d(d(w)), p(pt)) | p € D}, where
p denotes candidate indicators.

Identify a few error indicators p C p that lead to a
low-variance GP.

Construct the Gaussian process d(p) ~ GP(m(p), k(p, p')) by
Bayesian inference.

Online (for any pu* € D)
compute the ROM solution
compute error indicators p(p*)
obtain d(p(p*)) ~ N(m(p(p*))), k(p(1*), p(1*))
obtain random variable for the error §(p*) = d—*

correct the ROM solution
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Thermal block

I'n

1

Ac(x; p)u(x; p) =0in Q x(p)=0o0nTp
Ve(p)x(p)-n=0on Ty, Ve(p)x(p)-n=1on Iy

m Inputs p € [0.1,10]° define diffusivity ¢ in subdomains

m ROM constructed via RB—Greedy [Patera and Rozza, 2006]
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Error #1: energy norm of error 6(p) = |||x(p) — %(p)||

")
;S ] — 107!
'H )
8 =
g = = e residuals P
1072 1 S 1072 op
8 .ﬁ. merror bounds | g 2 ~
[e PRI 10-15 J 10 >
1072 10t e 107t o2 O&\b
Residual [[r(Va; p)| Sidual [l (y,. &
/ error bound A, 1)) &

+ Residual norm and error bound correlate with error

g= 107!} 413" E
SIS i aaf E
B= gy»” i
5 g 1072 £ / E
= L :
1073 - N
1072 107!

+ ROMES (p = log||r(®x(p); pt)||2, d = log) promising
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Gaussian

normalized rate
of occurrence

normalized rate
of occurrence

(=T )

1
o )
c‘> S

deviation from GP-mean

N =095

deviation from GP-mean

Nonlinear model reduction

normalized rate
of occurrence

S N ok @ w©

process validated

—-0.2 -

!
N
S
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7
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deviation from GP-mean

Validation frequency wyalidation (w)

predictedw N =10 N=35 N=65 N=95

0.80
0.90
0.95
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0.99

0.49
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Error #2: compliant-output error () = |y () — Yeed(1t)|

(i) Output error v. ROMES indicators (ii) Output error v. system inputs
T
, 1072 1072 &
B & £
g £ i
g 1073 2 1070
- = 5
= g f
g 1071} g 104k
107* 107% 1072 107!
Residual r/error bound Parameters (j1, 12)

+ ROMES: residual and error bound correlate with error

- Multifidelity correction: inputs are poor indicators
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Gaussian-process validation

(i) ROMES (ii) Multifidelity correction

5 099 5 099
» 2 095 o2 095
S 2 o09f =209

] . 5 R
= £ s 5
=3 o8 3 08
GRS GRS
> g > £

5 3

& &

number of training points N number of training points N

]+80%+90%+95%—*—98%—o—99% \

+ ROMES: confidence intervals converge
- Multifidelity correction: confidence intervals do not converge
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Error reduction

expected improvement =

(i) ROMES

|s(12) — Srea(p) — mode(ds(w))|

expected
improvement [(d, p)

© ® 0

10°

,_‘
S
[V

50 100 2

number of training points N

[5(#) = Sred(k)]

(ii) Multifidelity correction

— )
I 4 )
s 10 °§ )
=~
-
q_)d.)
&8 10 1
J
-
=9
g
1072 o

20 40 60 80 100
number of training points N

’—o—mean + std

= median ¢ minimum & maximum |

+ ROMES: reduces error by

roughly an order of magnitude

- Multifidelity correction: often increases the error
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Error #3: error in general output

(i) dual RB size p, = 10 (i) dual RB size p, = 15 (iii) dual RB size=p, = 20
B 102 _ 102 B 10~2 ‘
< 6 T 4 T 1 Gooef T o] <6 o]
8 4r . o B 4 e 1 B 4r o
= L = = L)
E af 5 g} 15 g} |
ERRTI O B
3 —ok® 1+ 1 1072 53 _gl® L1072 8 _gle 11072
-2 -1 0 1 2 -2 0 2 4 6 -2 0 2 4 6
dual weighted residuals dual weighted residuals dual weighted residuals

+ Dual-weighted residuals correlate with error
+ Uncertainty control: less variance as columns added to Y

(i) dual RB size p, = 10 (ii) dual RB size p, = 15 (iii) dual RB size p, = 20
) :
< g LosnanssssSSi
~ B 10° 100 | - 10° | @amssmmmssmmmasaesssamamananas
g3 T
[ RIS
=i o T
o =
5= 1072 1072 | N 1072 —————5
= =
e L L
El 20 40 60 80 20 40 60 80 20 40 60 80

number of training points N number of training points N number of training points N
+ Uncertainty control: error reduces as columns added to Y
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Summary: statistical error modeling

m ROMES

+ Uses cheap error indicators to statistical quantify ROM error
+ Outperforms multifidelity correction (inputs = poor indicators)
+ Uncertainty control for general errors

m Related follow-on work
m Reduction error models (REM) [Manzoni et al., 2016]

Our current work

m Apply to nonlinear, time-dependent problems

m Collaborators: Trehan, Durlofsky (Stanford)
Reference: Drohmann, C. The ROMES method for statistical
modeling of reduced-order-model error. SIAM/ASA Journal
on Uncertainty Quantification, 3(1):116-145, 2015.
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Questions?

tranformed error -
d(9) . 4

error indicator p

NI

Nonlinear model reduction Kevin Carlberg



Acknowledgments

m This research was supported in part by an appointment to the
Sandia National Laboratories Truman Fellowship in National
Security Science and Engineering, sponsored by Sandia
Corporation (a wholly owned subsidiary of Lockheed Martin
Corporation) as Operator of Sandia National Laboratories
under its U.S. Department of Energy Contract No.
DE-AC04-94AL85000.

Nonlinear model reduction Kevin Carlberg

79



W Amsallem, D., Cortial, J., C., K., and Farhat, C. (2009).

A method for interpolating on manifolds structural dynamics
reduced-order models.
International Journal for Numerical Methods in Engineering,

80(9):1241-1258.

Amsallem, D. and Farhat, C. (2008).
An interpolation method for adapting reduced-order models

and application to aeroelasticity.
AIAA Journal, 46(7):1803-1813.

Amsallem, D., Zahr, M. J., and Farhat, C. (2012).
Nonlinear model order reduction based on local reduced-order
bases.

International Journal for Numerical Methods in Engineering,
92(10):891-916.

Antoulas, A. C. (2005).
Approximation of Large-Scale Dynamical Systems.

Nonlinear model reduction Kevin Carlberg

79



Society for Industrial and Applied Mathematics, Philadelphia,
PA.

Arian, E., Fahl, M., and Sachs, E. W. (2000).

Trust-region proper orthogonal decomposition for flow control.

Technical Report 25, ICASE.

Babugka, I. and Miller, A. (1984).

The post-processing approach in the finite element
method—part 1: Calculation of displacements, stresses and
other higher derivatives of the displacements.

International Journal for numerical methods in engineering,

20(6):1085-1109.

Bai, Z. (2002).

Krylov subspace techniques for reduced-order modeling of
large-scale dynamical systems.

Applied Numerical Mathematics, 43(1):9-44.

[§ Bangerth, W. and Rannacher, R. (1999).

Nonlinear model reduction Kevin Carlberg

79



Finite element approximation of the acoustic wave equation:
Error control and mesh adaptation.
East West Journal of Numerical Mathematics, 7(4):263-282.

[§ Bangerth, W. and Rannacher, R. (2003).
Adaptive finite element methods for differential equations.
Springer.

ﬁ Barrault, M., Maday, Y., Nguyen, N. C., and Patera, A. T.
(2004).
An ‘empirical interpolation’ method: application to efficient
reduced-basis discretization of partial differential equations.
Comptes Rendus Mathématique Académie des Sciences,
339(9):667-672.

[ Baur, U., Beattie, C., Benner, P., and Gugercin, S. (2011).
Interpolatory projection methods for parameterized model
reduction.

SIAM Journal on Scientific Computing, 33(5):2489-2518.

[§ Becker, R. and Rannacher, R. (1996).

Nonlinear model reduction Kevin Carlberg

79



Weighted a posteriori error control in finite element methods,
volume preprint no. 96-1.
Universitat Heidelberg.

Becker, R. and Rannacher, R. (2001).

An optimal control approach to a posteriori error estimation in
finite element methods.

Acta Numerica 2001, 10:1-102.

Benner, P., Gugercin, S., and Willcox, K. (2015).

A survey of projection-based model reduction methods for
parametric dynamical systems.

SIAM Review, 57(4):483-531.

Bui-Thanh, T., Willcox, K., and Ghattas, O. (2008).

Model reduction for large-scale systems with high-dimensional
parametric input space.

SIAM Journal on Scientific Computing, 30(6):3270-3288.

C., K. (2015).
Adaptive h-refinement for reduced-order models.

Nonlinear model reduction Kevin Carlberg

79



International Journal for Numerical Methods in Engineering,

102(5):1192-1210.

C., K., Barone, M., and Antil, H. (2015a).

Galerkin v. discrete-optimal projection in nonlinear model
reduction.

arXiv e-print, (1504.03749).

C., K., Bou-Mosleh, C., and Farhat, C. (2011a).
Efficient non-linear model reduction via a least-squares
Petrov—Galerkin projection and compressive tensor
approximations.

International Journal for Numerical Methods in Engineering,

86(2):155-181.

C., K., Cortial, J., Amsallem, D., Zahr, M., and Farhat, C.
(2011b).

The GNAT nonlinear model reduction method and its
application to fluid dynamics problems.

Nonlinear model reduction Kevin Carlberg

79



AIAA Paper 2011-3112, 6th AIAA Theoretical Fluid Mechanics

Conference, Honolulu, HI.

C., K., Farhat, C., Cortial, J., and Amsallem, D. (2013).
The GNAT method for nonlinear model reduction: effective
implementation and application to computational fluid
dynamics and turbulent flows.

Journal of Computational Physics, 242:623-647.

C., K., Ray, J., and van Bloemen Waanders, B. (2015b).
Decreasing the temporal complexity for nonlinear, implicit
reduced-order models by forecasting.

Computer Methods in Applied Mechanics and Engineering,
289:79-103.

Dihlmann, M., Drohmann, M., and Haasdonk, B. (2011).
Model reduction of parametrized evolution problems using the
reduced basis method with adaptive time partitioning.

@ Drohmann, M. and C., K. (2015).

Nonlinear model reduction Kevin Carlberg

79



The romes method for reduced-order-model uncertainty
quantification.

SIAM/ASA Journal on Uncertainty Quantification,
3(1):116-145.

Drohmann, M., Haasdonk, B., and Ohlberger, M. (2011).
Adaptive reduced basis methods for nonlinear
convection—diffusion equations.

In Finite Volumes for Complex Applications VI Problems &
Perspectives, pages 369-377. Springer.

Eftang, J. L., Knezevic, D. J., and Patera, A. T. (2011).
An hp certified reduced basis method for parametrized
parabolic partial differential equations.

Mathematical and Computer Modelling of Dynamical Systems,

17(4):395-422.
Eftang, J. L. and Patera, A. T. (2013).

Port reduction in parametrized component static condensation:

approximation and a posteriori error estimation.

Nonlinear model reduction Kevin Carlberg

79



International Journal for Numerical Methods in Engineering,

96(5):269-302.

Eftang, J. L., Patera, A. T., and Rgnquist, E. M. (2010).
An ‘hp' certified reduced basis method for parametrized elliptic

partial differential equations.
SIAM Journal on Scientific Computing, 32(6):3170-3200.

Eldred, M. S., Giunta, A. A., Collis, S. S., Alexandrov, N. A.,
and Lewis, R. M. (2004).

Second-order corrections for surrogate-based optimization with
model hierarchies.

In Proceedings of the 10th AIAA/ISSMO Multidisciplinary
Analysis and Optimization Conference, Albany, NY, number
AIAA Paper 2004-4457.

Eldred, M. S., Weickum, G., and Maute, K. (2009).

A multi-point reduced-order modeling approach of transient
structural dynamics with application to robust design
optimization.

Nonlinear model reduction Kevin Carlberg

79



Structural and Multidisciplinary Optimization, 38(6):599-611.

Estep, D. (1995).

A posteriori error bounds and global error control for
approximation of ordinary differential equations.
SIAM Journal on Numerical Analysis, 32(1):1-48.

Everson, R. and Sirovich, L. (1995).
Karhunen—Loéve procedure for gappy data.
Journal of the Optical Society of America A, 12(8):1657-1664.

Farhat, C., Geuzaine, P., and Brown, G. (2003).

Application of a three-field nonlinear fluid-structure
formulation to the prediction of the aeroelastic parameters of
an F-16 fighter.

Computers & Fluids, 32(1):3-29.

Fidkowski, K. J. (2007).

A simplex cut-cell adaptive method for high-order
discretizations of the compressible Navier-Stokes equations.
PhD thesis, Massachusetts Institute of Technology.

Nonlinear model reduction Kevin Carlberg

79



[§ Freund, R. (2003).

Model reduction methods based on Krylov subspaces.
Acta Numerica, 12:267-3109.

Gallivan, K., Vandendorpe, A., and Van Dooren, P. (2004).
Model reduction of mimo systems via tangential interpolation.
SIAM Journal on Matrix Analysis and Applications,
26(2):328-349.

Haasdonk, B., Dihlmann, M., and Ohlberger, M. (2011).
A training set and multiple bases generation approach for
parameterized model reduction based on adaptive grids in
parameter space.

Mathematical and Computer Modelling of Dynamical Systems,

17(4):423-442.

Haasdonk, B., Ohlberger, M., and Rozza, G. (2008).

A reduced basis method for evolution schemes with
parameter-dependent explicit operators.

Electronic Transactions on Numerical Analysis, 32:145-161.

Nonlinear model reduction Kevin Carlberg

79



E Huynh, D. B. P., Knezevic, D. J., Chen, Y., Hesthaven, J. S,

and Patera, A. T. (2010).
A natural-norm successive constraint method for inf-sup lower

bounds.
Comput. Methods Appl. Mech. Engrg., 199:1963-1975.

lonita, A. and Antoulas, A. (2014).
Data-driven parametrized model reduction in the loewner

framework.
SIAM Journal on Scientific Computing, 36(3):A984-A1007.

Lefteriu, S. and Antoulas, A. C. (2010).

A new approach to modeling multiport systems from
frequency-domain data.

Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, 29(1):14-27.

LeGresley, P. A. (2006).
Application of Proper Orthogonal Decomposition (POD) to
Design Decomposition Methods.

Nonlinear model reduction Kevin Carlberg

79



PhD thesis, Stanford University.

Lu, J. C.-C. (2005).

An a posteriori error control framework for adaptive precision
optimization using discontinuous Galerkin finite element
method.

PhD thesis, Massachusetts Institute of Technology.

Maday, Y. and Rgnquist, E. M. (2002).
A reduced-basis element method.
J. Sci Comput, 17(1-4):447-459.

Manzoni, A., Pagani, S., and Lassila, T. (2016).
Accurate solution of bayesian inverse uncertainty quantification
problems using model and error reduction methods.

Moore, B. (1981).

Principal component analysis in linear systems: Controllability,
observability, and model reduction.

Automatic Control, IEEE Transactions on, 26(1):17-32.

[@ Nemec, M. and Aftosmis, M. (2007).

Nonlinear model reduction Kevin Carlberg

79



Adjoint error estimation and adaptive refinement for
embedded-boundary cartesian meshes.

In 18th AIAA CFD Conference, Miami. Paper
AIAA-2007-4187.

Ng, L. and Eldred, M. S. (2012).

Multifidelity uncertainty quantification using non-intrusive
polynomial chaos and stochastic collocation.

In AIAA 2012-1852.

Park, M. A. (2004).

Adjoint-based, three-dimensional error prediction and grid
adaptation.

AIAA journal, 42(9):1854-1862.

Patera, A. T. and Rozza, G. (2006).
Reduced basis approximation and a posteriori error estimation

for parametrized partial differential equations.
MIT.

Nonlinear model reduction Kevin Carlberg

79



@ Peherstorfer, B., Butnaru, D., Willcox, K., and Bungartz, H.-J.

(2014).
Localized discrete empirical interpolation method.
SIAM Journal on Scientific Computing, 36(1):A168—A192.

Phuong Huynh, D. B., Knezevic, D. J., and Patera, A. T.
(2013).

A static condensation reduced basis element method:
approximation and a posteriori error estimation.

ESAIM: Mathematical Modelling and Numerical Analysis,
47(01):213-251.

Pierce, N. A. and Giles, M. B. (2000).

Adjoint recovery of superconvergent functionals from pde
approximations.

SIAM review, 42(2):247-264.

Prud'Homme, C., Rovas, D. V., Veroy, K., Machiels, L.,
Maday, Y., Patera, A. T., Turinici, G., et al. (2001).

Nonlinear model reduction Kevin Carlberg

79



Reliable real-time solution of parametrized partial differential
equations: Reduced-basis output bound methods.
Journal of Fluids Engineering, 124(1):70-80.

Rannacher, R. (1999).

The dual-weighted-residual method for error control and mesh
adaptation in finite element methods.

MAFELEAP, 99:97-115.

Rasmussen, C. and Williams, C. (2006).
Gaussian Processes for Machine Learning.
MIT Press.

Rewienski, M. J. (2003).
A Trajectory Piecewise-Linear Approach to Model Order Reduction o

PhD thesis, Massachusetts Institute of Technology.

Rowley, C. W. (2005).
Model reduction for fluids, using balanced proper orthogonal
decomposition.

Nonlinear model reduction Kevin Carlberg 79



Int. J. on Bifurcation and Chaos, 15(3):997-1013.

Rozza, G., Huynh, D., and Patera, A. T. (2008).

Reduced basis approximation and a posteriori error estimation
for affinely parametrized elliptic coercive partial differential
equations.

Archives of Computational Methods in Engineering,
15(3):229-275.

Ryckelynck, D. (2005).
A priori hyperreduction method: an adaptive approach.
Journal of Computational Physics, 202(1):346-366.

Venditti, D. and Darmofal, D. (2000).

Adjoint error estimation and grid adaptation for functional
outputs: Application to quasi-one-dimensional flow.
Journal of Computational Physics, 164(1):204-227.

Venditti, D. A. and Darmofal, D. L. (2002).
Grid adaptation for functional outputs: application to
two-dimensional inviscid flows.

Nonlinear model reduction Kevin Carlberg

79



Journal of Computational Physics, 176(1):40-69.

Veroy, K., Prud’homme, C., Rovas, D. V., and Patera, A. T.
(2003).

A posteriori error bounds for reduced-basis approximation of
parametrized noncoercive and nonlinear elliptic partial
differential equations.

AIAA Paper 2003-3847, 16th AIAA Computational Fluid
Dynamics Conference, Orlando, FL.

Washabaugh, K., Amsallem, D., Zahr, M., and Farhat, C.
(2012).

Nonlinear model reduction for cfd problems using local
reduced-order bases.

In 42nd AIAA Fluid Dynamics Conference and Exhibit, Fluid
Dynamics and Co-located Conferences, AIAA Paper, volume
2686.

Willcox, K. and Peraire, J. (2002).

Balanced model reduction via the proper orthogonal
decomposition.

Nonlinear model reduction Kevin Carlberg

79



AIAA Journal, 40(11):2323-2330.

Wirtz, D., Sorensen, D. C., and Haasdonk, B. (2012).
A-posteriori error estimation for DEIM reduced nonlinear
dynamical systems.

Preprint Series, Stuttgart Research Centre for Simulation

Technology.

Yano, M., Patera, A. T., and Urban, K. (2012).
A space-time certified reduced-basis method for Burgers'’

equation.
Math. Mod. Meth. Appl. S., submitted.

Nonlinear model reduction Kevin Carlberg

79



