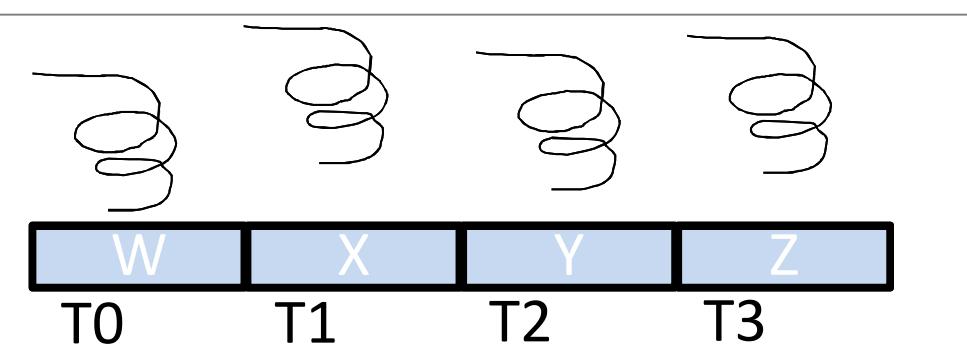


Exascale Computing Project (ECP) is a multi-disciplinary scientific computing project that aims to develop the next generation of scientific computing tools and technologies for exascale computing.

Enhancing Qthreads for ECP Science and Energy Impact

Ron Brightwell, PI and Stephen Olivier, Technical Lead

What is Qthreads? Qthreads is a library that provides lightweight multithreading for nimble locality-aware **on-node task parallelism**, exposing this capability through high-level programming models such as the **Kokkos** C++ performance portability library and Cray's **Chapel** language, and via tech transfer to standards like **OpenMP**.


Qthreads at a Glance

Development	2007 - Present
License	Three-clause BSD
Repository	http://github.com/Qthreads

What enhancements are proposed and what is the impact? The project's objective is to develop techniques that improve **network concurrency** for applications that use multithreading coupled with communication, e.g., **MPI+X**. The impact is more efficient use of network and node resources to deliver better **performance** for ECP applications.

What has the work in year one of the project contributed toward these goals?

- **Understanding use cases** for applications to benefit from better network concurrency, revisiting earlier work on **task parallel over-decomposition** [1,2].
- **Evaluating the performance gap** due to serialization of threads' network accesses to analyze **requirements** for better network concurrency support.
- **Developing Qthreads instrumentation** capabilities to observe related metrics.

Under the proposed design, asynchronous tasks executed by the Qthreads runtime will contribute to a FinePoints partitioned buffer as their computations complete.

What are the “next steps” for the project, and what is the current technical approach that is being pursued?

- **Design, implement, evaluate, and refine** enhanced network concurrency support in the Qthreads runtime.
- **Leverage FinePoints** [3], a recent technology developed under the “Open MPI for Exascale” ECP-ST project that provides a low-overhead mechanism for multithreaded MPI using a novel partitioned communication scheme.

[1] Barrett et al. “Toward an Evolutionary Task Parallel Integrated MPI+X Programming Model.” *6th Intl. Workshop on Programming Models and Applications for Multicores and Manycores (PMAM 2015)*.

[2] Stark et al. “Early Experiences Co-Scheduling Work and Communication Tasks for Hybrid MPI+X Applications.” *Proc. of 2014 Workshop on Exascale MPI (ExamMPI 2014) at Supercomputing 2014 (SC14)*

[3] Grant et al. “Lightweight threading with MPI using Persistent Communications Semantics”. SAND2015-8650C. Sandia National Laboratories, Albuquerque, NM, 2015.