

High-Temperature Particle Heat Exchanger for sCO₂ Power Cycles

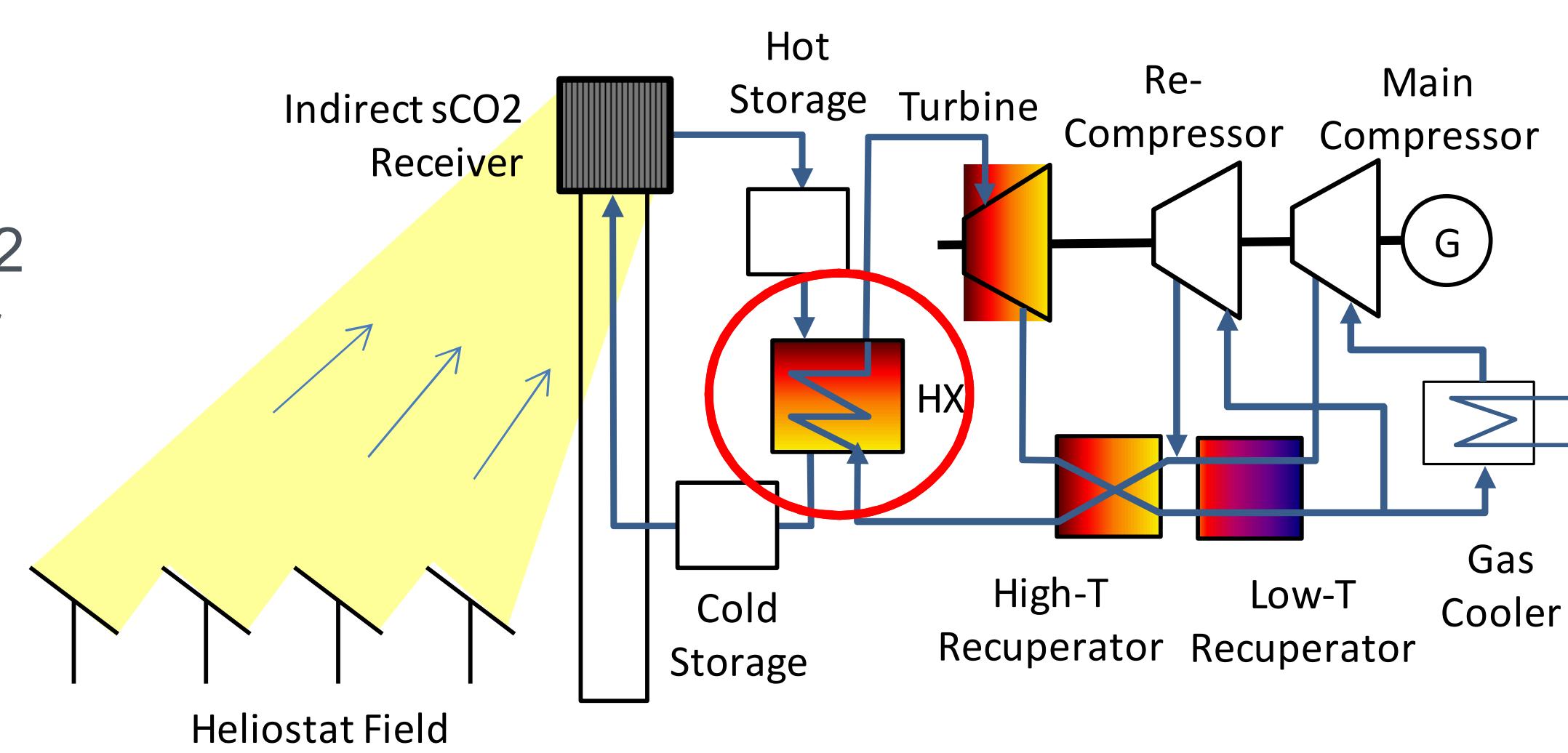
CONCENTRATING SOLAR POWER

PROBLEM STATEMENT

Next-generation solar-driven supercritical CO₂ (sCO₂) Brayton cycles are being pursued to enable SunShot targets for concentrating solar power (CSP). New high-temperature heat-transfer media are being explored, including solid particles that can be efficiently and directly heated by concentrated sunlight. A particle-to-sCO₂ heat exchanger is necessary to heat the sCO₂ from the hot particles. However, a particle-to-sCO₂ heat exchanger has not yet been developed.

PROJECT OVERVIEW

- ❑ Total Project Funding:
 - \$4.6M (DOE)
 - \$72K (cost share)
- ❑ Duration:
 - 3 years (10/1/2015 – 9/30/2018)
- ❑ Participants:
 - Sandia National Laboratories, National Renewable Energy Laboratory, Georgia Institute of Technology, Babcock & Wilcox, Solex Thermal Science, Vacuum Process Engineering



PROJECT OBJECTIVE

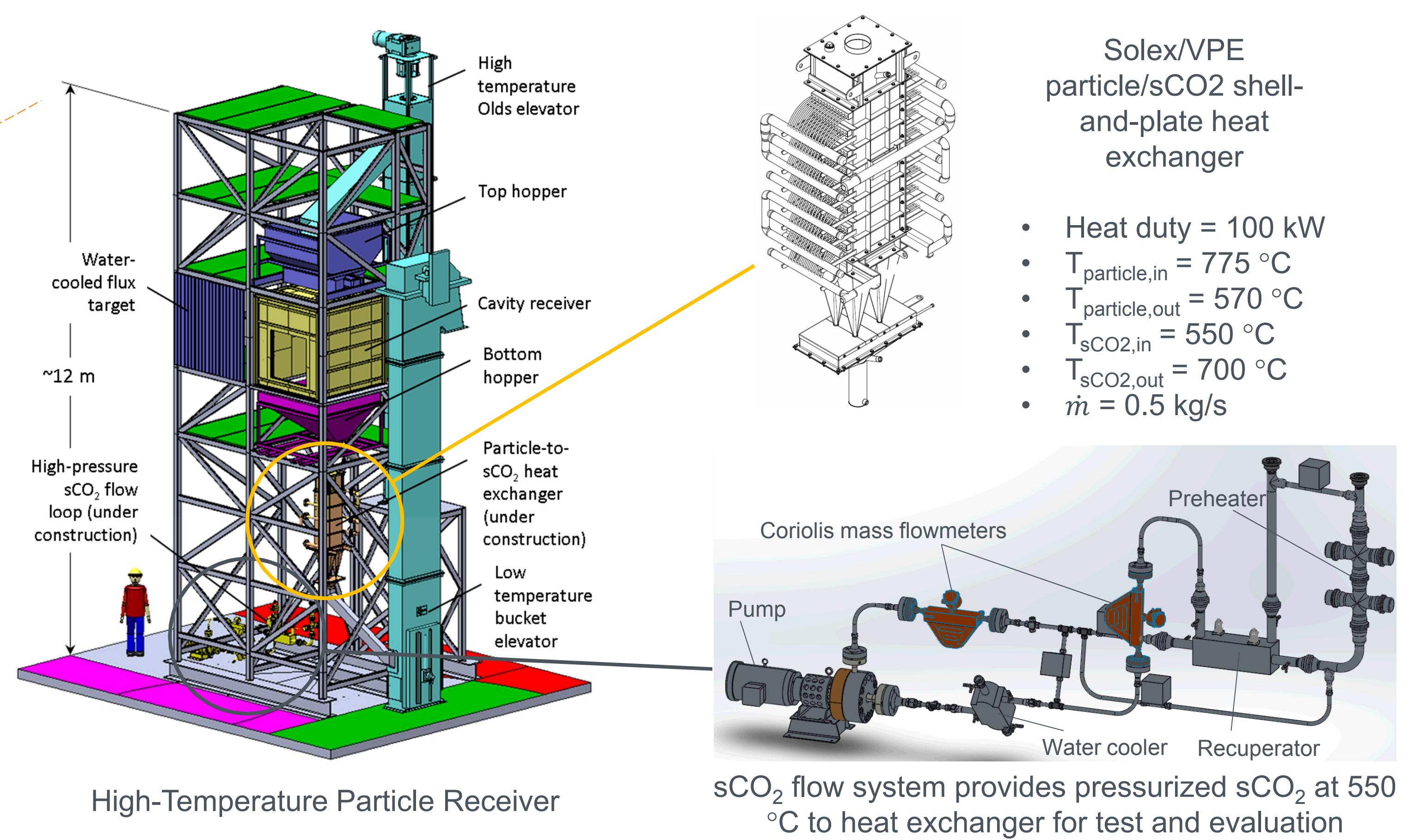
The goal of this work is to design, develop, and test a first-of-a-kind particle/sCO₂ heat exchanger operating at sCO₂ temperatures of ≥ 700 °C and pressures ≥ 20 MPa that will enable high-efficiency sCO₂ power cycles. Moving packed-bed (shell-and-tube, shell-and-plate) and fluidized-bed heat exchanger designs will be investigated. The particle/sCO₂ heat exchanger will be integrated with Sandia's falling particle receiver system for on-sun testing.

VALUE PROPOSITION

This work will develop the world's first particle-to-sCO₂ heat exchanger for solarized sCO₂ Brayton cycles to achieve \$0.06/kWh

TECHNOLOGY OVERVIEW

Three particle heat-exchanger designs will be evaluated: (1) fluidized-bed, (2) shell-and-tube, and (3) shell-and-plate. The design that best meets the design criteria for cost and performance will be constructed and integrated with Sandia's falling particle receiver system.


Design Options	Pros	Cons	Risk Mitigation
B&W Fluidized Bed HX	<ul style="list-style-type: none"> • High heat transfer coefficient, low heat transfer area • Parasitic power requirements and heat loss from fluidizing gas • Vast industry experience 		Minimization of fluidizing velocity to reduce power requirements and heat loss through CFD modeling
Solex – Shell-and-Tube Moving Packed Bed HX	<ul style="list-style-type: none"> • Gravity-driven flow • Tubes can handle high-pressure sCO₂ • Lower pressure drop of sCO₂ in tubes relative to plates • Larger heat transfer area on top of tube and shadow area beneath tube may impede heat transfer 		
VPE/Solex – Shell-and-Plate Moving Packed Bed HX	<ul style="list-style-type: none"> • Gravity-driven flow • High pressure area for particle contact • Higher heat transfer coefficient than shell-and-tube due to narrow channels and large surface area • Thermal gradients and warping of plates, numerous nozzles, potential for non-uniform particle flow 	<ul style="list-style-type: none"> • Thermal gradients and warping of plates, numerous nozzles, potential for non-uniform particle flow 	Use of multiple plate baffle to minimize thermal gradient, proper spacing of plates, and adequate thermal insulation around nozzles

RESULTS

- Designed fluidized-bed and moving packed-bed particle/sCO₂ heat exchangers with industry
- Measured particle/wall heat transfer coefficient at ~ 200 W/m²·K for shell-and-plate design
- Performed particle flowability tests at 600 °C
- Designed and procured components for 100 kW_t sCO₂ flow system

Particle receiver testing at the National Solar Thermal Test Facility at Sandia National Laboratories, Albuquerque, NM

Publications

- Ho, C.K., M. Carlson, P. Garg, and P. Kumar, 2016, Technoeconomic Analysis of Alternative Solarized s-CO₂ Brayton Cycle Configurations, *J. Solar Energy Engineering*, 138, p. 051008-1
- Carlson, M.D. et al., 2017, Techno-Economic Comparison of Solar-Driven sCO₂ Brayton Cycles Using Component Cost Models Baseline with Vendor Data and Estimates, *Proceedings of the ASME 11th International Conference on Energy Sustainability*, 2017
- Albrecht, K.J. and C.K. Ho, 2017, Heat Transfer Models of Moving Packed-Bed Particle-to-sCO₂ Heat Exchangers, *Proceedings of the ASME 11th International Conference on Energy Sustainability*, 2017
- Albrecht, K.J. and C.K. Ho, 2017, High-Temperature Flow Testing and Heat Transfer for a Moving Packed-Bed Particle/sCO₂ Heat Exchanger, in *SolarPACES 2017*, Santiago, Chile, September 26 - 29, 2017
- Ho, C.K. et al., 2018, Evaluation of Alternative Designs for a High Temperature Particle-to-sCO₂ Heat Exchanger, in *Proceedings of the ASME 2018 Power and Energy Conference, PowerEnergy2018*, Lake Buena Vista, FL, June 24 - 28, 2018

MILESTONES

- ❑ Phase 1
 - Work with industry to design fluidized-bed and moving packed-bed particle/sCO₂ heat exchanger designs
 - Use analytical hierarchy process to downselect design
- ❑ Phase 2
 - Procure heat exchanger and sCO₂ flow system and commission subsystem components
 - Develop models and tests to examine heat transfer and flowability
- ❑ Phase 3
 - Integrate heat exchanger and sCO₂ flow system with particle receiver and perform on-sun tests

INDUSTRY IMPACT

- ❑ Teamed with leading industries to design particle/sCO₂ heat exchanger: B&W, Solex Thermal Science, VPE
- ❑ Partnered with Solex Thermal Science and VPE to construct 100 kW_t particle/sCO₂ heat exchanger
- ❑ Worked with industry vendors to procure components for novel sCO₂ flow system
- ❑ Teaming with industry on new proposals for next-generation (Gen 3) particle technologies for CSP

