

Co-optimizing Power Grid Reliability and Resiliency

Emma Johnson, Shabbir Ahmed,
Bryan Arguello, Brian Pierre, Jean-Paul Watson

The U.S. Electric Grid

- Aging: 70% of transmission lines and transformers are over 25 years old [1].
- Vulnerable to
 - **Weather**
 - Equipment failure
 - Overgrown vegetation
 - Wildlife [2]
- American Recovery and Reinvestment Act (2009) allocated \$4.5 billion to improve reliability and resiliency of power grid.

Impact of Weather

- From 2003-2012, weather events caused 679 power outages, each affecting at least 50,000 customers [1, 2].
- Outages caused by severe weather estimated to cost the U.S. between \$18 and \$33 billion per year [1].

Utilities' Motives

- Resiliency: ability to recover from low-probability, high-frequency disruptions:
 - Hurricanes
 - Floods
 - Ice storms
 - Cyber attack
- Reliability: ability to recover from high-probability, low-impact disruptions
 - Squirrels
 - Birds
 - Tree falls on distribution line

Example Investments

Reliability

- Squirrel guards
- Bird spikes
- Burying distribution line
- Add additional fuses [3]

Resiliency

- Bury transmission line
- Upgrade poles
- Add redundancy into system
- Elevate substation above flood level
- Move facility out of flood zone [4]

SAIDI and SAIFI Metrics

- System Average Interruption Duration Index (SAIDI):
 - Measures duration of outages:

$$SAIDI = \frac{\sum_{outages} (\text{num customers effected})(\text{outage duration})}{\text{total num customers}}$$

- System Average Interruption Frequency Index (SAIFI):
 - Measures frequency of outages:

$$SAIFI = \frac{\sum_{outages} (\text{num customers effected})}{\text{total num customers}}$$

Justifying Investments

Reliability

- Measured by SAIDI and SAIFI
- Less-expensive investments
- Evidence of immediate customer benefit

Resiliency

- Not captured by SAIDI and SAIFI
- Expensive investments
- Uncertain return on investment [5]

The Problem

- Utilities need to invest in both resiliency and reliability and be able to justify these investments to regulatory commissions
- We plan to co-optimize a model for choosing reliability investments and a model for choosing resiliency investments
 - Two models coupled by budget constraint
- Challenges:
 - Distributions of both reliability disruptions and resiliency disruptions uncertain
 - Choosing investments in either is a combinatorial problem
 - Is the budget constraint the only link between the two?
 - Want to scale to realistically sized power grids

Current Model: Reliability

minimize $\frac{SAIDI_{\text{up}}}{SAIDI_{\text{syn}}} + \frac{SAIFI_{\text{up}}}{SAIFI_{\text{syn}}}$ (1)

subject to $\sum_{i,d,u \in U_{i,d}} c_u y_{i,d,u} \leq B$ (2)

$$SAIDI_{\text{up}} = \frac{1}{N} \sum_{o \in O} CO_o TO_o \quad (3)$$

$$SAIFI_{\text{up}} = \frac{1}{N} \sum_{o \in O} CO_o \quad (4)$$

$$CO_o = \min_{u \in U_o} \{C_{o,u} y_{i_o, d_o, u} + C_o (1 - y_{i_o, d_o, u})\} \quad \forall o \in O \quad (5)$$

$$TO_o = \min_{u \in V_o} \{T_{o,u} y_{i_o, d_o, u} + T_o (1 - y_{i_o, d_o, u})\} \quad \forall o \in O \quad (6)$$

Current Model: Resiliency

$$\text{minimize} \quad \sum_{b \in \mathcal{B}} p_b^0 + \sum_{\omega \in \Omega} P_\omega \sum_{b \in \mathcal{B}} p_b^\omega \quad (1)$$

$$\text{subject to} \quad \sum_{b \in \mathcal{B}} C_b i_b + \sum_{l \in \mathcal{L}} C_l i_l + \sum_{g \in \mathcal{G}} C_g i_g \leq T \quad (2)$$

$$\sum_{g \in \mathcal{G}_b} p_g^0 + \sum_{l \in \mathcal{L}_b^{\text{to}}} p_l^0 - \sum_{l \in \mathcal{L}_b^{\text{from}}} p_l^0 = D_b - p_b^0 \quad \forall b \in \mathcal{B} \quad (3)$$

$$\sum_{g \in \mathcal{G}_b} p_g^\omega + \sum_{l \in \mathcal{L}_b^{\text{to}}} p_l^\omega - \sum_{l \in \mathcal{L}_b^{\text{from}}} p_l^\omega = D_b - p_b^\omega \quad \forall b \in \mathcal{B}, \forall \omega \in \Omega \quad (4)$$

$$p_l^0 = Y_l^0 S_l(\theta_{B_l^{\text{to}}}^0 - \theta_{B_l^{\text{from}}}^0) \quad \forall l \in \mathcal{L} \quad (5)$$

$$p_l^\omega = y_l^\omega S_l(\theta_{B_l^{\text{to}}}^\omega - \theta_{B_l^{\text{from}}}^\omega) \quad \forall l \in \mathcal{L}, \forall \omega \in \Omega \quad (6)$$

$$p_g^\omega \leq p_g^0 + R U_g Y_g^0 + S U_g (y_g^\omega - Y_g^0) + \bar{P}_g (1 - y_g^\omega) \quad \forall g \in \mathcal{G}, \forall \omega \in \Omega \quad (7)$$

$$p_g^0 \leq \bar{P}_g y_g^\omega + S D_g (Y_g^0 - y_g^\omega) \quad \forall g \in \mathcal{G}, \forall \omega \in \Omega \quad (8)$$

$$p_g^0 - p_g^\omega \leq R D_g y_g^\omega + S D (Y_g^0 - y_g^\omega) + \bar{P}_g (1 - Y_g^0) \quad \forall g \in \mathcal{G}, \forall \omega \in \Omega \quad (9)$$

$$-\frac{\pi}{3} \leq \theta_{B_l^{\text{to}}}^0 - \theta_{B_l^{\text{from}}}^0 \leq \frac{\pi}{3} \quad \forall l \in \mathcal{L} \quad (10)$$

$$-\frac{\pi}{3} \leq \theta_{B_l^{\text{to}}}^\omega - \theta_{B_l^{\text{from}}}^\omega \leq \frac{\pi}{3} \quad \forall l \in \mathcal{L}, \omega \in \Omega \quad (11)$$

Current Model: Resiliency

$$-\bar{P}_l Y_l^0 \leq p_l^0 \leq \bar{P}_l Y_l^0 \quad \forall l \in \mathcal{L} \quad (12)$$

$$-\bar{P}_l y_l^\omega \leq p_l^\omega \leq \bar{P}_l y_l^\omega \quad \forall l \in \mathcal{L}, \omega \in \Omega \quad (13)$$

$$\underline{P}_g Y_g^0 \leq p_g^0 \leq \bar{P}_g Y_g^0 \quad \forall g \in \mathcal{G} \quad (14)$$

$$\underline{P}_g y_g^\omega \leq p_g^\omega \leq \bar{P}_g y_g^\omega \quad \forall g \in \mathcal{G}, \omega \in \Omega \quad (15)$$

$$0 \leq p_b^0 \leq D_b \quad \forall b \in \mathcal{B} \quad (16)$$

$$0 \leq p_b^\omega \leq D_b \quad \forall b \in \mathcal{B}, \forall \omega \in \Omega \quad (17)$$

$$y_l^\omega \leq i_l \quad \forall l \in \mathcal{L}, \forall \omega \in \Omega_l \quad (18)$$

$$y_l^\omega \leq i_{B_l^{\text{from}}} \quad \forall l \in \mathcal{L}, \forall \omega \in \Omega_l \quad (19)$$

$$y_l^\omega \leq i_{B_l^{\text{to}}} \quad \forall l \in \mathcal{L}, \forall \omega \in \Omega_l \quad (20)$$

$$y_g^\omega \leq i_g \quad \forall g \in \mathcal{G}, \forall \omega \in \Omega_g \quad (21)$$

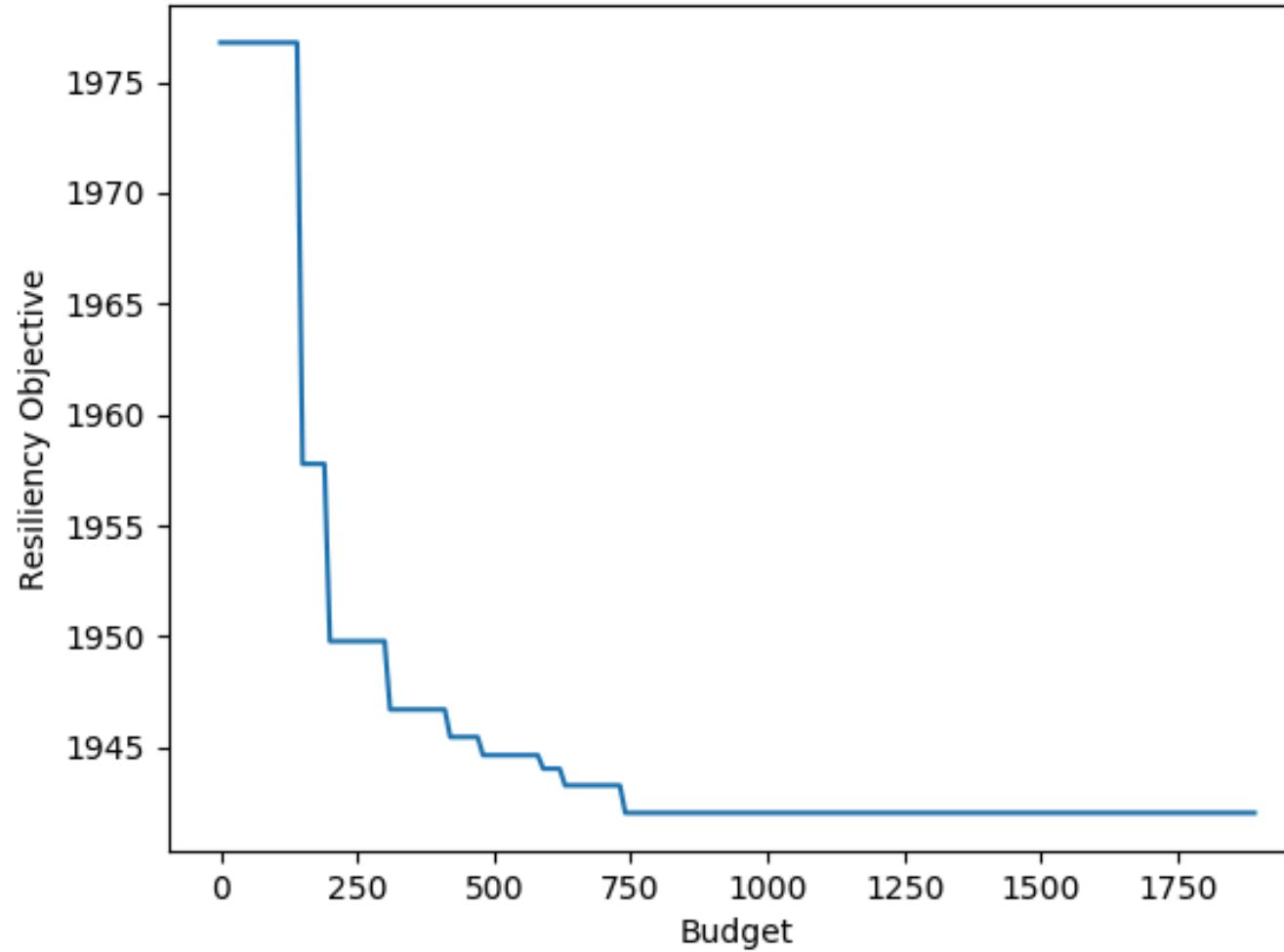
$$y_g^\omega \leq i_{B_g} \quad \forall g \in \mathcal{G}, \forall \omega \in \Omega_g \quad (22)$$

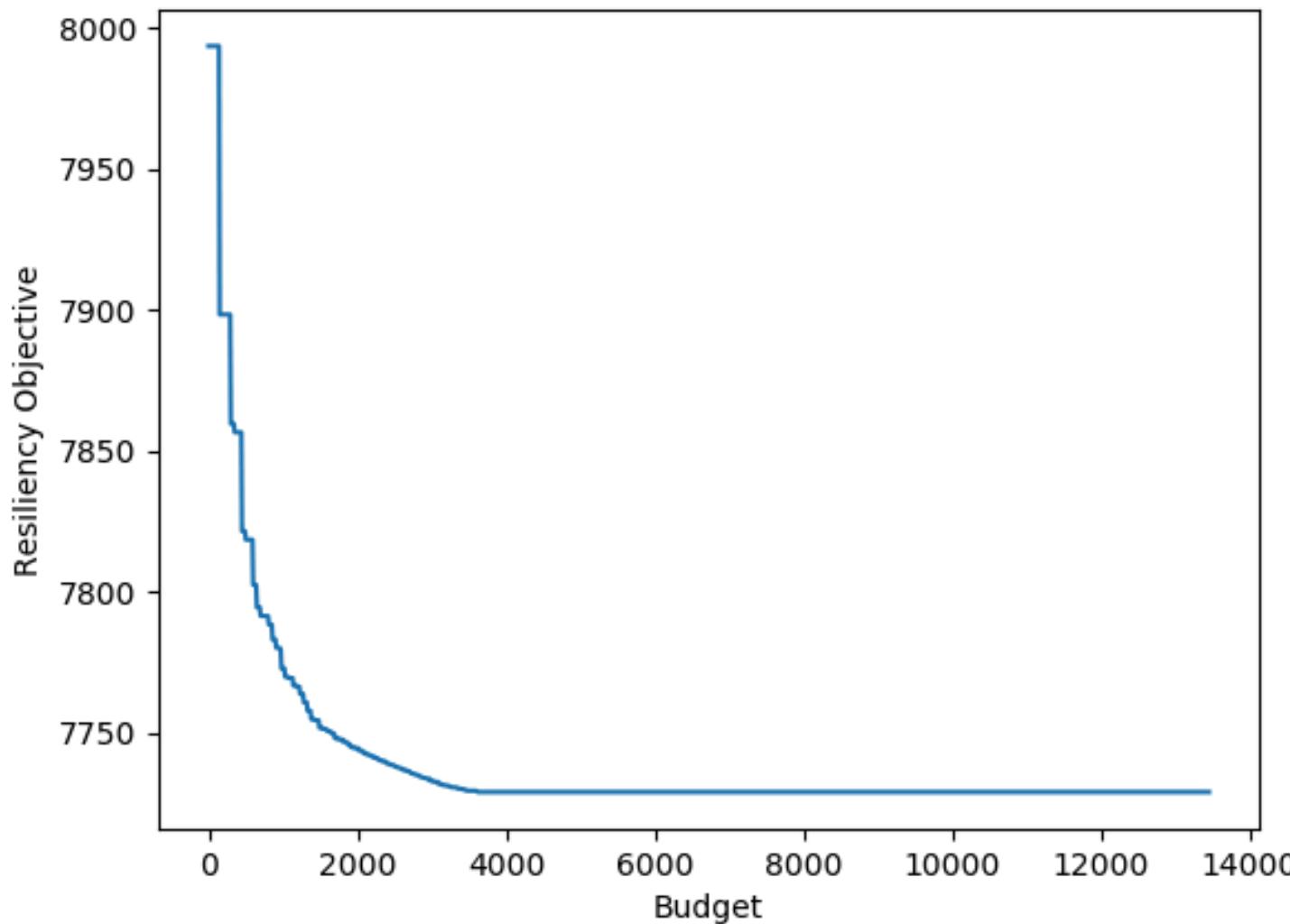
$$y_b^\omega \leq i_b \quad \forall b \in \mathcal{B}, \forall \omega \in \Omega_b \quad (23)$$

$$y_l^\omega \leq y_{B_l^{\text{from}}}^\omega \quad \forall l \in \mathcal{L}, \forall \omega \in \Omega_l \quad (24)$$

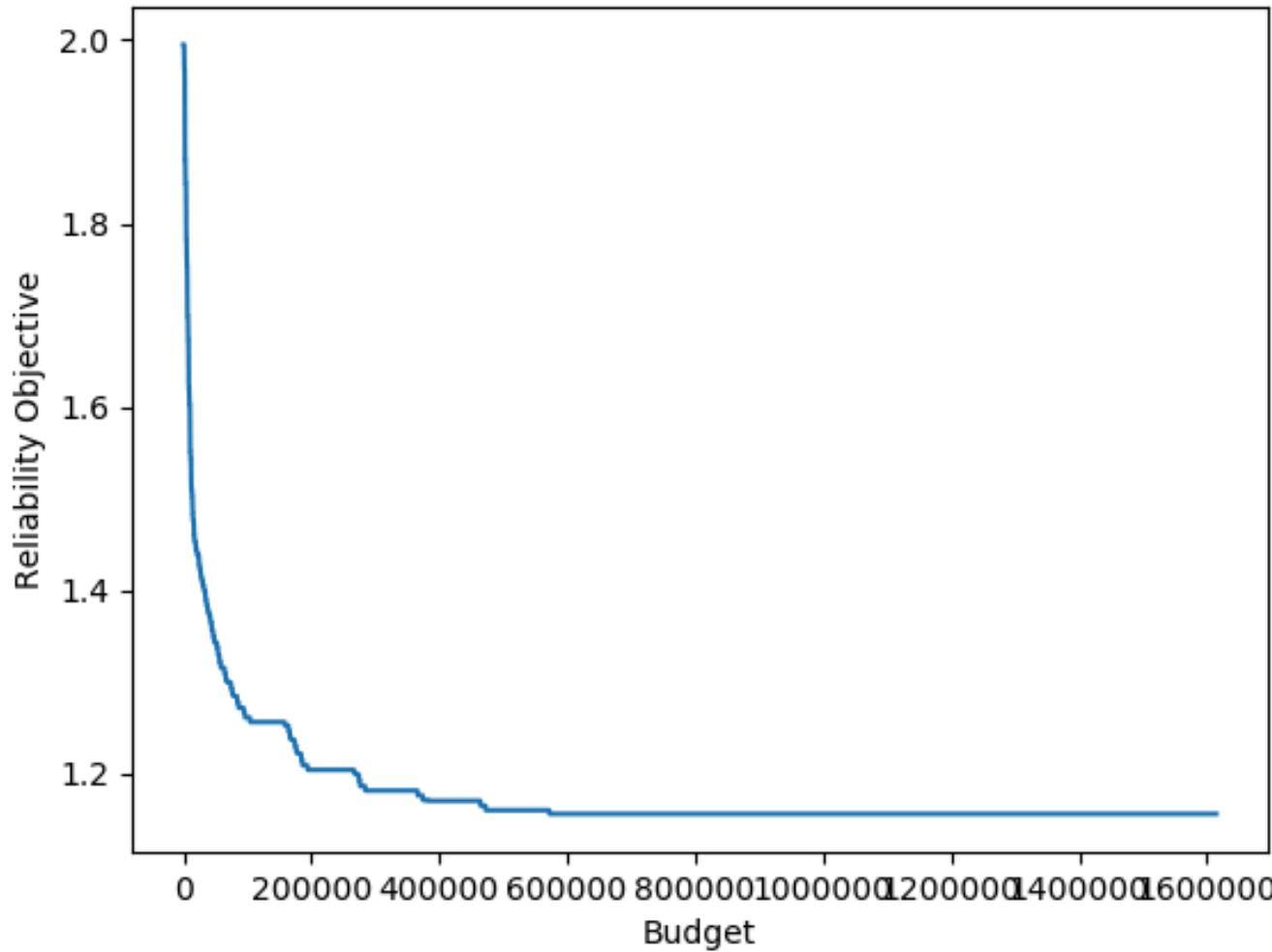
$$y_l^\omega \leq y_{B_l^{\text{to}}}^\omega \quad \forall l \in \mathcal{L}, \forall \omega \in \Omega_l \quad (25)$$

$$y_g^\omega \leq y_{B_g}^\omega \quad \forall g \in \mathcal{G}, \forall \omega \in \Omega_g \quad (26)$$


Reliability and Resiliency Value Functions


1. Solve with budget = 0.
2. Calculate minimum cost of set of investments not chosen in current solution. Call this cost δ .
3. Solve the model with budget = budget + δ .
4. Repeat steps 2 and 3 until budget is equal to cost of choosing all investments

Do this with both reliability and resiliency models, use results to create Pareto frontier.


Resiliency (11 bus Example)

Resiliency (73 bus example)

Reliability

Continuing...

- Both models will be distributionally robust
- Develop parametric stochastic programming techniques for repeated solves of the models
- Depending on performance, also develop different co-optimization strategy.
 - Could expand auction-type algorithms from Ezgi Karabulut's dissertation [6]

References

- [1] President's Council of Economic Advisors, U.S. Department of Energy's Office of Electricity Delivery and Energy Reliability, "Economic Benefit of Increasing Electric Grid Resilience to Weather Outages," August 2013.
- [2] Larsen, Peter H., Kristina H. La Commare, Joseph H. Eto, and James L. Sweeny, "Recent trends in power system reliability and implications for evaluating future investments in resiliency," *Energy* 117 (2016): 29-46.
- [3] Pierre, Brian, "Investment Optimization to Improve Power System Reliability Metrics," Sandia National Labs
- [4] Lin, Yanling, and Zhaohong Bie, "Study on the Resilience of the Integrated Energy System," *Energy Procedia* 103 (2016) 171-176.
- [5] Mukhopadhyay, Sayanti, and Makarand Hastack, "Public Utility Commissions to Foster Resilience Investment in Power Grid Infrastructure," *Procedia – Social and Behavioral Sciences* 218 (2016): 5-12.
- [6] Karabulut, Ezgi, "Distributed Integer Programming," Doctoral dissertation, December 2017.

(title slide photos from https://mississippitoday.org/wp-content/uploads/2016/12/pics.Par_76990.Image_-1.-1.1.jpg, <http://thepost.s3.amazonaws.com/wp-content/uploads/PowerLines.jpg>, http://static-41.sinclairstoryline.com/resources/media/b2bbb85e-7d02-4488-9823-4309ac44b9b2-large16x9_lightning.jpg?1488214751713)