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Simultaneous 
Measurements 

Required!

C. Shaddix, Sandia Report, 2010

J. Zhang, R. Sci. Instrum., 2011

Canonical sooting flame 

 Developed by Dr. Chris Shaddix

 Soot processes

 Turbulent

 Radiation models

 Relatively simple fuel (C2H4/air)

http://blogs.mcclatchydc.com/china/2007/08/the-serious-woe.htmlhttp://blogs.mcclatchydc.com/china/2007/08/the-serious-woe.htmlhttp://blogs.mcclatchydc.com/china/2007/08/the-serious-woe.html
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Radiation from Sooting Flames



A. Bohlin, J. Chem. Phys., 2013
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Radiation from Sooting Flames
Application of CARS and LII for simultaneous measurements 

of temperature and soot volume fraction
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Radiation from Sooting Flames
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Application of CARS and LII for simultaneous measurements 
of temperature and soot volume fraction
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Radiation from Sooting Flames

Joint statistics of soot, T:
 Conditional averages 
 Comparison to 0D RCARS 

data from SNL pool fires
 Temperature-filtered PDF of 

soot

2-m pool fire; Sean Kearny (SNL)
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Mann, Combust. Flame 
161, 2371 (2014)

Richardson, Combust. 
Flame 168, 270 (2016)

Barlow, Proc. Combust. 
Inst. 32, 945 (2009)

State-of-the-Art for
CO Visualization:
• Two-photon CO (P)LIF
• Nd-YAG ns laser systems
• 10 Hz measurements
• Significant photolytic 

interferences

Carbon Monoxide (CO):
• Toxic
• Pollutant
• Indicator of incomplete 

combustion
• Key species in combustion 

chemistry
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Carbon Monoxide Visualization



Frank, Appl. Opt. 43, 2588 (2004)

CO

C2ns

ps

Brackmann, Proc. Combust. 
Inst. 34, 3541 (2013)

Nefedov, Appl. 
Opt. 37, 7729 

(1998)

Photolytic Interferences:
Perturbations to the flow or signal caused by the laser
(e.g. photodissociation, photoionization, stimulated emission)

Proposed improvements:
• Amplified fs laser systems
• 1000 Hz measurements
• Reduced photolytic interferences
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Carbon Monoxide Visualization



Haumman, Opt. Lett. 
11, 775 (1986)

Steady 
Hencken
flame

Driven 
jet 
flame

Laser System:
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Carbon Monoxide Visualization



Jet Flame Data:

• Steady methane jet flame

• 10% CO2 in coflow
• Average and σ from 10 sets of 

200 single-laser-shot images

• Moving average of 10 applied to 
profiles
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Carbon Monoxide Visualization
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Carbon Monoxide Visualization

Richardson, et al., Opt. Lett. 42, 875 (2017)
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Carbon Monoxide Visualization

Driven jet flame:

• Nozzle ID = 2.2 mm

• Average jet (methane) 
velocity = 7.6 m/s

• Average air coflow velocity = 
0.33 m/s

• Reynolds number ~ 1000

• Driven at 60 Hz using a 
piston device in fuel line

• Single-laser-shot images 
acquired at 1 kHz



CO fs TP-PLIF:

• Reduced or eliminated 
photolytic interferences

• 1 kHz CO visualizations

Driven jet flame:

• Nozzle ID = 2.2 mm

• Average jet (methane) 
velocity = 7.6 m/s

• Average air coflow velocity = 
0.33 m/s

• Reynolds number ~ 1000

• Driven at 60 Hz using a 
piston device in fuel line

• Single-laser-shot images 
acquired at 1 kHz
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Carbon Monoxide Visualization



Wang, et al., 
Opt. Lett. 42, 

711 (2017)

Zahradka, et al., Exp. 
Fluids 57, 62 (2016)

Hsu, et al., PCI 33, 759 (2011)

Narayanaswamy, 
et al., Opt. Lett. 
36, 4185 (2011)

Kr PLIF:
• Scalar imaging in: 
 supersonic flows
combustion

• Chemically inert
• Easy to seed
• Kr tagging velocimetry

State-of-the-Art 
Kr PLIF:

ns laser systems 
• 10 Hz measurements
• 214.7 nm excitation

fs laser systems 
• 1 kHz measurements
• 204.1 nm excitation
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Mixture Fraction Measurements
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Mixture Fraction Measurements

• Excitation scan performed in gas cell with 5% Kr + 95% Ar at 1 bar

• Excitation with 212.56 nm leads to 7x improvement in signal

• Not attempted previously due to difficulty of scanning UV ns laser 
systems

Excitation Scan:
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Mixture Fraction Measurements

Flow conditions:

• Flow from axisymmetric jet

• 20% Kr in N2

• ReD = 1200

• Flow perturbed using valve

Mixture fraction: the portion of 
the flow originating from the jet

�(�, �) = ����/����
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Mixture Fraction Measurements

Scalar dissipation rate: the 

rate at which variations in ξ are 
destroyed due to molecular 
mixing

χ = 2� �ξ � �ξ

χ∗ =
χ

� ξ λ�⁄ �

Flow conditions:

• Axisymmetric jet

• 20% Kr in N2

• ReD = 7750

Richardson, et al., 
Opt. Lett. 42, 3498 (2017)
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Mixture Fraction Measurements
Mixing statistics comparison

• Compare Kr fs TALIF to 
Rayleigh imaging in free jet

• Similar probability density 
functions (p.d.f.)

• Joints statistical analysis 

Buch and Dahm, 
J. Fluid Mech. 364, 1 (1998)

Richardson, et al., 
Opt. Lett. 42, 3498 (2017)



Post-Detonation Fireballs
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t = 0 s t = 10 s t = 15 s t = 40 s t = 85 s

Case strain 
quantified at 5 MHz 

using DIC

Fireball temperatures and 
major species concentration

(O2, N2) using10 kHz CARS 
and PLIF

Soot structure and 
concentration 

using 50–100 kHz LII 
and in-situ sampling

3D fragment tracking 
and sizing using 20 kHz 

DIH 
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Commercial and custom 
devices for known 

boundary conditions

Detailed measurements at all stages in laboratory-scale explosions



Post-Detonation Fireballs
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The combustion community has 
many advanced, in-situ diagnostics

 Laser Induced Incandescence (LII)

 Coherent Anti-Stokes Raman 
Scattering (CARS)

 Planar Laser Induced 
Fluorescence (PLIF)

This work will focus on applying 
kHz-rate diagnostics to in the post-
detonation fireball region Pool Fire LII at Sandia 

t = 10 s t = 15 s t = 40 st = 0 s



Post-Detonation Fireballs
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Laser

CCDspatial filter

x

z

collimating optics particle field

Digital In-Line Holography:

t = 30.5 s t = 30.7 s

Provides particle position, size, and velocity

Yeager, et al., J. Appl. Phys. 122, 035901 (2017)



Propellant Flames
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http://www.cbsnews.com/news/rocket-crash-no-immediate-threat-to-station-but-cause-is-unknown/ Color video of burning propellant

Problem:

 Rocket failures can lead to propellant fires
 Aluminum agglomeration at the surface yields large reacting drops with high 

damage potential
 Threat prediction requires knowledge of flame characteristics
Goals:
 Measure particle size and temperature from real propellant burns
 Characterize gas-phase temperature and composition in plume
 Study scaling effects on propellant fires
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Digital in-line holography and two-color pyrometry:

Chen, et al., Combust. Flame 
182, 225 (2017)

Propellant Flames

24

Soot Radiation     CO Vis.     Mixture Fraction     Post-det. Fireball     Propellant Flames     Shock Tube Diag.



Propellant Flames

25

Soot Radiation     CO Vis.     Mixture Fraction     Post-det. Fireball     Propellant Flames     Shock Tube Diag.

Previous research efforts:

 fs/ps rotational CARS
 Low (mJ) pulse energies reduces 

dielectric breakdown

 Time-delayed probe eliminates 
background signal
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Kearney and Guildenbecher, Appl. 
Optics, 55, 4958 (2016)

Future measurements

 Vibrational N2 CARS for high 
temperature regions of plume

 H2 CARS for temperature and 
concentration measurements

 1D measurements for gradient 
statistics



Shock Tube Diagnostics
A free-piston shock tube is being constructed which will have the capability to reach 
extreme temperatures and pressures

Operational principle: Secondary reservoir drives free-piston to compress helium to 
burst pressure, which simultaneously heats the helium, further boosting driver 
performance.
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tube.

 T2 > 3000 K
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Shock Tube Diagnostics

The High-Temperature Shock Tube (HST) will be used to study:

 Ignition of particles in a shocked flow

 Optical emission from high-temperature and high-pressure gasses

27
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Shock Tube

Compression Tube

Reservoir

Free-Piston Shock Tube components:
1) Reservoir - Provides driving 

pressure for the piston
2) Compression Tube – Contains 

volume of gas (helium) to be 
compressed

3) Shock tube – Contains the 
test gas and test article.

HST



Shock Tube Diagnostics
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Measurement Diagnostics

 Begin with proven diagnostics:

 Schlieren / Imaging

 Pressure Sensors

 Emissions spectroscopy

 Digital In-Line Holography (DIH) 
for particle morphology

 Imaging pyrometry for particle 
temperature

 Gas phase temperature 
measurements
 Emissions Spectroscopy

 Absorption Spectroscopy

 Laser Induced Fluorescence (LIF)

 Raman Spectroscopy

 Coherent Anti-Stokes Raman 
Scattering (CARS)

ICCD Cam for fs-NO(A-X) LIF

ns-laser spark

fs-laser probe Spectrometer for fs-NO 
UV Absorption

RF plasma jet



Backup Slides
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Power Dependence:

●Steady methane–air Hencken flame
●Equivalence ratio = 1.3
●CO concentration = 4.0%
●Adiabatic temperature = 1810 K
●Reflected ND filters to reduce energy
●Average and σ from 10 sets of 200 

single-laser-shot images

CO fs TP PLIF images from Steady 
Hencken flame

Steady Hencken
flame
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Spectral Dependence:

● Laser spectra recorded with fiber-coupled spectrometer
● Central excitation wavelength changed using OPA, harmonic generators and 

mixing crystal
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Proposed improvements
● Tunable fs laser system
● Excitation at 212.7nm
● 1000 Hz imaging 

● Mixture fraction
● Scalar dissipation rate

Measurements performed in:

Axisymmetric jet

Gas cell

Mixture Fraction Measurements
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