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= Understanding emission from high-temperature air
in shock tube
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Radiation from Sooting Flames )

Canonical sooting flame
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Radiation from Sooting Flames e

Application of CARS and LIl for simultaneous measurements
of temperature and soot volume fraction
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Radiation from Sooting Flames ) i,

Application of CARS and LIl for simultaneous measurements
of temperature and soot volume fraction
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Radiation from Sooting Flames
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Carbon Monoxide Visualization )

Carbon Monoxide (CO): State-of-the-Art for
* Toxic

CO Visualization:

* Pollutant e Two-photon CO (P)LIF
* Indicator of incomplete * Nd-YAG ns laser systems
combustion * 10 Hz measurements
* Key species in combustion e Significant photolytic
chemistry interferences
CO-LIF B

* wheel
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Carbon Monoxide Visualization ) B
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Carbon Monoxide Visualization ) B

\
Laser System: 1 am Haumman, Opt. Lett.
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Carbon Monoxide Visualization ) B

Jet Flame Data:

* Steady methane jet flame

* 10% CO, in coflow

* Average and o from 10 sets of
200 single-laser-shot images

* Moving average of 10 applied to

profiles
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Carbon Monoxide Visualization )

Driven jet flame:

* Nozzle ID = 2.2 mm

* Average jet (methane)
velocity = 7.6 m/s

* Average air coflow velocity =
0.33m/s

* Reynolds number ~ 1000

* Driven at 60 Hz using a
piston device in fuel line

* Single-laser-shot images
acquired at 1 kHz
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Carbon Monoxide Visualization ) B

CO TP-PLIF Signal (counts * 107)

Driven jet flame:

* Nozzle ID = 2.2 mm

cORTBSImethane)
velocity = 7.6 m/s
e Reduced or eliminated

" BHeIRR R Rrelosity -
.33 m/s

* Reynolds number ~ 1000

e 1 kHz CO visualizations
* Driven at 60 Hz using a

piston device in fuel line

* Single-laser-shot images
acquired at 1 kHz




Mixture Fraction Measurements ) e,

K r P LI F ° Krypton fluorescence Rayleigh
[ ] .
Measured Kr PLIF | Simulated Kr PLIF 2 mm q _‘ ‘

* Scalar Imaglng in: Mixture fraction Temperature
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Mixture Fraction Measurements ) e,

Excitation Scan:
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* Excitation scan performed in gas cell with 5% Kr + 95% Ar at 1 bar
* Excitation with 212.56 nm leads to 7x improvement in signal

* Not attempted previously due to difficulty of scanning UV ns laser

systems
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Sandia

Mixture Fraction Measurements =

Flow conditions:

* Flow from axisymmetric jet
* 20% Krin N,

* Re, = 1200

* Flow perturbed using valve

Mixture fraction: the portion of
the flow originating from the jet

¢E(x,t) = mjet/mtot
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Mixture Fraction Measurements =

Flow conditions:
* Axisymmetric jet
* 20% Krin N,

* Re, =7750

Scalar dissipation rate: the
rate at which variations in ¢ are
destroyed due to molecular
mixing

X = 2D(V§- V§)

. X _
Richardson, et al.,

X = Opt. Lett. 42, 3498 (2017
D((§)/Ap)? -
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Mixture Fraction Measurements

Richardson, et al.,
Opt. Lett. 42, 3498 (2017)

Mixing statistics comparison
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Post-Detonation Fireballs =

Commercial and custom Case strain Fireball temperatures and Soot structure and 3D fragment tracking
devices for known guantified at 5 MHz major species concentration concentration and sizing using 20 kHz
boundary conditions using DIC (0,, N,) using10 kHz CARS using 50-100 kHz LII DIH
and PLIF and in-situ sampling

Detailed measurements at all stages in laboratory-scale explosions




Post-Detonation Fireballs =

The combustion community has ?
many advanced, in-situ diagnostics oo , "am},_k--'
/R - ‘
= Laser Induced Incandescence (LIl)  // gi P IR % SR 0 Tolere

=  Coherent Anti-Stokes Raman
Scattering (CARS)

= Planar Laser Induced
Fluorescence (PLIF)

LIl signal

This work will focus on applying
kHz-rate diagnostics to in the post-
detonation fireball region



Post-Detonation Fireballs )
Digital In-Line Holography:

Laser

spatial filter collimating optics particle field CCD
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Yeager, et al., J. Appl. Phys. 122, 035901 (2017)

Provides particle position, size, and velocity
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Propellant Flames )

http://www.cbsnews.com/news/rocket-crash-no-immediate-threat-to-station-but-cause-is-unknown/ Color video of burning propellant

Problem:

= Rocket failures can lead to propellant fires
= Aluminum agglomeration at the surface yields large reacting drops with high
damage potential
= Threat prediction requires knowledge of flame characteristics
Goals:
=  Measure particle size and temperature from real propellant burns
= Characterize gas-phase temperature and composition in plume
= Study scaling effects on propellant fires 23



Propellant Flames

Digital in-line holography and two-color pyrometry:

Pyrometry
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Propellant Flames -7
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Shock Tube Diagnostics )

A free-piston shock tube is being constructed which will have the capability to reach
extreme temperatures and pressures

Operational principle: Secondary reservoir drives free-piston to compress helium to
burst pressure, which simultaneously heats the helium, further boosting driver
performance.
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Shock Tube Diagnostics )

HST Free-Piston Shock Tube components:

o Compression Tube 1) Reservoir - Provides driving
pressure for the piston

2) Compression Tube — Contains
volume of gas (helium) to be

compressed

Shock tube — Contains the

test gas and test article.

Reservoir

Shock Tube

The High-Temperature Shock Tube (HST) will be used to study:
Ignition of particles in a shocked flow
Optical emission from high-temperature and high-pressure gasses




Shock Tube Diagnostics )

Measurement Diagnostics
= Begin with proven diagnostics:
= Schlieren / Imaging
= Pressure Sensors
= Emissions spectroscopy
= Digital In-Line Holography (DIH)
for particle morphology

3200

3000

Surface

2800
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temperature
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= Gas phase temperature
measurements

= Emissions Spectroscopy

= Absorption Spectroscopy e

= Laser Induced Fluorescence (LIF) fs-laser probe '

2400

Spectrometer for fs-NO

= Raman Spectroscopy UV Absorption

= Coherent Anti-Stokes Raman
Scattering (CARS)

ICCD Cam for fs-NO(A-X) LIF -
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Resulis: Temperature Measurements
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Power Dependence:

e Steady methane—-air Hencken flame

e Equivalence ratio=1.3

¢ CO concentration =4.0%

e Adiabatic temperature = 1810 K

e Reflected ND filters to reduce energy

e Average and o from 10 sets of 200
single-laser-shot images

(a)
Steady Hencken
HEINE

_ < 1000k - E
CO fs TP PLIF images from Steady £ F f(x)=1.72x1:84 .|..|z{‘|-
Hencken flame 2 R? =0.991 A
3200 & " Pri
w2100} A -
o, § ol
1600§ q(ﬂ L ,’%’
. o 10F 7 3
400 U é #’
pixel 3 10 30
Laser Energy (uJ)
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Spectral Dependence: )

. Laser spectra recorded with fiber-coupled spectrometer
. Central excitation wavelength changed using OPA, harmonic generators and
mixing crystal
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Mixture Fraction Measurements )

Proposed improvements Measurements performed in:

t

e Excitation at 212.7nm s 788 hGaslce]I L
e 1000 Hz imaging
e Mixture fraction

e Scalar dissipation rate
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