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High resolution neutron imaging is a valuable capability for nuclear non-proliferation and international sateguards. A potential application in treaty verification

is measuring the extent of a warhead. One of the challenges facing high-resolution neutron imaging is the size, weight, and complexity of the imaging
systems. Fast-neutron time-encoded imaging utilizes a single non-position sensitive detector at the center ot a rotating, HDPE mask to image tfast neutron
sources. In this work, we test offsetting the detector from the rotational axis hence 1maging with an asymmetric mask. Along the imaging axis, the mask to
detector distance increases leading to better angular resolution for the same mask, or conversely, one can achieve the same angular resolution in a limited tield
of view with a smaller, lighter mask. Here are some preliminary experimental results for fast-neutron time-encoded imaging with an asymmetric mask.

Two sets of experimental data were collected: Due to the thickness of the mask, an asymmetric TEI has a limited field of
A. 1 inch Stilbene detector placed at the view. The point spread function worsens towards the edges ot the FOV.
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10 M Ct Cf_ZSZ SOHI‘CGS. were p lac.ed m diameter mask. The mask is randomly
from the rotational axis. The azimuthal .,ded with 4 inches of HDPE.
angle is defined from the rotational axis. Elements are 2.09 cm by 1.81 cm.
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Challenges to generating the system response for an asymmetric mask:
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A. Scatter from the mask 1s shift variant, not DC — ray tracing is inaccurate

B. Limited rotational symmetry — need response from every mask rotation
angle and source position.
Solution: Multigroup, adjoint option in MCNP — 1000 times faster!

o : T Two 10 uCt Ct-252 sources at 1m were measured at various separations to
A. Particle is born in the detector from the detector response distribution

estimate angular resolution. The asymmetric TEI can resolve:
two sources 2.91° apart in 0.5 hours (2987 neutron counts), and
two sources 1.45% apart in 16 hours (98098 neutron counts).
Comparisons against a symmetric TEI system are underway.

B. Particle 1s transported through geometry and gains energy during scatter
C. Particle weight is multiplied by the source emission probability and tallied
Variance reduction methods were also implemented.
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A stopping point of 4x107* was chosen based on the mean squared error
(MSE) of the background and the signal to noise ratio (SNR) of the image.
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Compare symmetric vs asymmetric TEI system - continuing this work
Explore the benefit of moving the same detector within a mask.
Design an adaptive imaging protocol to leverage the advantages of a
moving detector within the TEI mask.
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