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Terry Turbine CFD Efforts UL

= Corroborate, complement, and inform the experimental and
system-modeling efforts

= Using 3D, two-phase, turbulent, compressible, Fluent
calculations of key RCIC system components to answer key
qguestions including:
» RCIC steam ring: does water accumulate and flood?
» Governor valve: what are the flow characteristics and what is its C,?

» Nozzles and buckets: obtain bucket inlet and outlet velocities for
lower steam pressures and for air to support RCIC experiments

» Turbine wheel windage: does water accumulate around the wheel and
retard turbine-pump speed?



Steam ring analyses UL

= For arange of pressures and 2-phase conditions (i.e. void fraction),
examine flow regime inside steam ring — between governor valve
and nozzles

= Calculations largely corroborate system-level assumption
concerning flooded nozzles in the lower part of the turbine

o Water appears to quickly accumulate and result in stratified flow —
flooding the lower nozzles — particularly for high liquid content (> 50%
volume frac.)

o Lower liquid content (< 5%) results in a two-phase mixture covering the
lower nozzles

o Often upper nozzle flow is still 2-phase, but predominately steam

= Transient analyses were performed for a representative steam ring
with two inlets and five nozzle

o Additional calculations could make use of expanded geometry information
for the steam ring, particularly the details of its inlets from the governor
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Steam ring results UL
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More steam ring results .

10% avg. liquid volume fraction across inlets

» Lower nozzles flow more water (20-30%
liquid)

» Uppers nozzles flow more steam (only ~5%
liquid)

5% avqg. liquid volume fraction across inlets
» Lower nozzles: 5-20% liquid
» Uppers nozzles are almost fully steam flow
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Governor valve calculations ) 2=,

= Obtain C, information for governor valve
o Leverage CAD/flow modeling using SolidWorks from 2016

= Examine two-phase flow characteristics
o Expanded model may be able to inform analysis of the steam ring
o Need piping details from governor valve to steam ring inlet(s)

= Will enable rigorous benchmarking to Unit 2 strip chart data
before power was lost

o Allows for more calibration of uncertain model inputs (multipliers,
friction coefficients, etc.)

o May increase understanding of Unit 2 avoiding overspeed trip after
loss of power
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Preliminary governor valve results

From 2016 using Solidworks Flow Fluent test calculation using ideal-gas steam to validate mesh and

Streamlines with pressure contour geometry
1100 psig inlet; 300 psig outlet

Velocity magnitude contour for 1100 psig inlet and 300 psig outlet
Valve position at about 70% open
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Nozzle calculations with low
pressure steam

= Inform/support experimental efforts
= Steam pressures from 40 to 70 psia
= Qutlet 15 psia

= Also examine air flow
= 40to 70 psia
= Qutlet 15 psia




Some |low steam pressure nozzle results (@) &,

Such low pressure drop of the Terry nozzle typically results in shock formation near the nozzle exit plane —
supersonic velocities quickly reduce to sonic speed at nozzle exit

40 psia steam inlet
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System-level Modeling ) .

= These are test models and test results
= This work is explorative

= |nvestigating several different explanations and modeling
approaches

= The results are going to change

= The results are qualitative

= They reproduce the general trends of Fukushima Unit 2




Fukushima 2 MELCOR Model ) e
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Quasi-Steady vs Time-Dependent
Fukushima 2 MELCOR Calculations
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RELAP5-3D Modeling UL

Fukushima Il MELCOR and RELAP5-3D Simulations - RPV Pressure
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Similar results — a wide open governor & nozzle size seem critical
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Homologous Pump Curve Result

= Better represents the initial Unit 2 data, but not the later phase
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1) Models for RPV thermal-
hydraulics: simple equations,

MELCOR, or RELAP

Questions

2) Choked flow: two

phase sonic velocity 3) RCIC governing equations

model for water-steam [mmmmmmmeee e e ——————-
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has dynamic Main inputs for RCIC

Pyap equations: pv2 for both phases

Pump liquid flow to RPV via APy

RCIC pump head determined by RCIC governing equations; this determines

the water injection rate into the RPV, which has subsequent effects on RPV

pressure and two-phase mixture properties (resolved by the RPV TH model)
that are delivered to the governor valve and RCIC nozzles. The RCIC pumps

water at either the temperature of the CST or the wetwell.

Simplified representation of physical coupling in MELCOR

test model

Water

Check Valve

p: 7.5e6 Pa
T:563.686 K

Turbine

Outlet

p: 7.5e6 Pa

q

p: given value

Vapor
Qutlet

p: 1.013e5 Pa
T: 305.372 K

RELAP-7 Terry turbine RCIC system test model




