

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

LLNL-JRNL-795525

ROUNDING ERROR ANALYSIS OF MIXED PRECISION BLOCK HOUSEHOLDER QR ALGORITHMS

L. M. Yang, A. Fox, G. Sanders

October 28, 2019

SIAM Journal on Scientific Computing

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

ROUNDING ERROR ANALYSIS OF MIXED PRECISION BLOCK HOUSEHOLDER QR ALGORITHMS

L. MINAH YANG, ALYSON FOX, AND GEOFFREY SANDERS

Abstract. Although mixed precision arithmetic has recently garnered interest for training dense neural networks, many other applications could benefit from the speed-ups and lower storage if applied appropriately. The growing interest in employing mixed precision computations motivates the need for rounding error analysis that properly handles behavior from mixed precision arithmetic. We develop mixed precision variants of existing Householder QR algorithms and show error analyses supported by numerical experiments.

1. Introduction. The accuracy of a numerical algorithm depends on several factors, including numerical stability and well-conditionedness of the problem, both of which may be sensitive to rounding errors, the difference between exact and finite-precision arithmetic. Low precision floats use fewer bits than high precision floats to represent the real numbers and naturally incur larger rounding errors. Therefore, error attributed to round-off may have a larger influence over the total error and some standard algorithms may yield insufficient accuracy when using low precision storage and arithmetic. However, many applications exist that would benefit from the use of low precision arithmetic and storage that are less sensitive to floating-point round off error, such as clustering or ranking graph algorithms [24] or training dense neural networks [20].

Many computing applications today require solutions quickly and often under low size, weight, and power constraints, such as in sensor formation, where low precision computation offers the ability to solve many problems with improvement in all four parameters. Utilizing mixed precision, one can achieve similar quality of computation as high-precision and still achieve speed, size, weight, and power constraint improvements. There have been several recent demonstrations of computing using IEEE half precision (fp16) achieving around half an order to an order of magnitude improvement of these categories in comparison to single and double precision (fp32, fp64). Trivially, the size and weight of memory required for a specific problem is $4\times$. Additionally, there exist demonstrations that the power consumption improvement is similar [10]. Modern accelerators (e.g., GPUs, Knights Landing, or Xeon Phi) are able to achieve this factor or better speedup improvements. Several examples include: (i) $2\text{-}4\times$ speedup in solving dense large linear equations [12, 13], (ii) $12\times$ speedup in training dense neural networks, and (iii) $1.2\text{-}10\times$ speedup in small batched dense matrix multiplication [1] (up to $26\times$ for batches of tiny matrices). Training deep artificial neural networks by employing lower precision arithmetic to various tasks such as multiplication [6] and storage [7] can easily be implemented on GPUs and are a common practice in some data science applications.

33 The low precision computing environments that we consider are *mixed precision* settings, which
 34 are designed to imitate those of new GPUs that employ multiple precision types for certain tasks.
 35 For example, Tesla V100’s TensorCores perform block Fused Multiply Add operations (bFMAs),
 36 where matrix products of fp16 input data can be computed up to 16 \times than that of fp64. The
 37 existing rounding error analyses are built within what we call a *uniform precision* setting, which
 38 is the assumption that all arithmetic operations and storage are performed via the same precision.
 39 In this work, we develop mixed precision variants of existing Householder (HH) QR factorization
 40 algorithms and perform mixed precision error analysis.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and was supported by the LLNL-LDRD Program under Project No. 17-SI-004, LLNL-JRNL-795525.

41 This work focuses on analyzing a few algorithms that use fp16/fp32 as the low/high precision
 42 types, but the error analysis can be easily modified for different floating point types (such as
 43 bfloat16 in [23]). The standard HH QR algorithm and its block variants that partition the columns
 44 (level-3 BLAS variant, see [11, 14]) and those that partition the columns (communication-avoiding
 45 algorithms of [9]) are presented in [section 3](#), then modified to support bFMA and an ad hoc mixed
 46 precision setting that mimics NVIDIA TensorCores in [section 4](#). Our key findings are that mixed
 47 precision error analyses produce tighter error bounds as supported by experiments in [section 5](#),
 48 algorithms that utilize level-3 BLAS operations can easily be modified to incorporate TensorCore
 49 bFMA, and a row partition block algorithm operates more robustly in mixed precision than non-
 50 block techniques in certain regimes.

51 **2. Background: Build up to rounding error analysis for inner products.** In this
 52 section, we introduce the basic motivations and tools for mixed precision rounding error analysis
 53 needed for the *QR factorization*. A matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ for $m \geq n$ can be written as

$$54 \quad \mathbf{A} = \mathbf{QR} = [\mathbf{Q}_1 \quad \mathbf{Q}_2] \begin{bmatrix} \mathbf{R}_1 \\ \mathbf{0}_{m-n \times n} \end{bmatrix} = \mathbf{Q}_1 \mathbf{R}_1,$$

55 where an orthogonal $\mathbf{Q} \in \mathbb{R}^{m \times m}$ and an upper trapezoidal \mathbf{R} form a *full* QR factorization, and
 56 $\mathbf{Q}_1 \in \mathbb{R}^{m \times n}$, $\mathbf{R}_1 \in \mathbb{R}^{n \times n}$ form a *thin* QR factorization. If \mathbf{A} is full rank then the columns of \mathbf{Q}_1 are
 57 orthonormal and \mathbf{R}_1 is upper triangular. In many applications, computing the *thin* decomposition
 58 requires less computation and is sufficient in performance. While important definitions are stated
 59 explicitly in the text, [Table 1](#) serves to establish basic notation.

Symbol	Definition	Section
$\mathbf{x}, \mathbf{A}, \mathbf{x} , \mathbf{A} $	Vector, matrix, and absolute value of each component	2
$\ \mathbf{x}\ _p, \ \mathbf{A}\ _p$	Vector, operator p -norms for $p = 2$, and Frobenius norm when $p = F$.	2
$\mathbf{x}[i], \mathbf{A}[i, j], :$	i^{th} element of \mathbf{x} , i^{th} row and j^{th} column element of \mathbf{A} , all indices	2
$\mathbf{X}_{m \times n}, \mathbf{X}_n$	m -by- n or n -by- n matrices for \mathbf{X} in $\{\mathbf{0}, \mathbf{I}\}$, $\mathbf{I}_{m \times n} = [\mathbf{I}_n \quad \mathbf{0}_{n \times (m-n)}]^\top$	1
$\hat{\mathbf{e}}_i$	i^{th} cardinal vector	1
\mathbf{Q}, \mathbf{R}	Factors resulting from Householder (HH) QR factorization algorithms	2
$\mathbf{P}_v, \mathbf{P}_i$	HH transformation corresponding to \mathbf{v} , i^{th} HH transformation in HQR	3
$\mathbf{X}, \mathbf{W}, \mathbf{Y}$	WY representation of successive HH transformations, $\mathbf{X} = \mathbf{I} - \mathbf{WY}^\top$	
$\text{fl}(\mathbf{x}), \hat{\mathbf{x}}$	Quantity \mathbf{x} calculated from floating point operations	2
μ, η	mantissa, exponent bits of a floating point number	2
$b_q, t_q, u^{(q)}$	base, precision, unit round-off for precision q , $u^{(q)} := \frac{1}{2}b_q^{1-t_q}$	2
$\delta^{(q)}$	Quantity bounded by: $ \delta^{(q)} < u^{(q)}$	2
$\gamma_k^{(q)}, \theta_k^{(q)}$	$\frac{ku^{(q)}}{1-ku^{(q)}}$, Quantity bounded by: $ \tilde{\theta}_k^{(q)} \leq \tilde{\gamma}_k^{(q)}$	2
$\tilde{\gamma}_k^{(q)}, \tilde{\theta}_k^{(q)}$	$\frac{cku^{(q)}}{1-cku^{(q)}}$ for small integer $c > 0$, Quantity bounded by: $ \theta_k^{(q)} \leq \gamma_k^{(q)}$	2

TABLE 1
Basic definitions and where they first appear.

60 **2.1. Basic rounding error analysis of floating point operations.** We use and analyze
 61 the IEEE 754 Standard floating point number systems, shown in [Table 2](#). Let $\mathbb{F} \subset \mathbb{R}$ denote the
 62 space of some floating point number system with base $b \in \mathbb{N}$, precision $t \in \mathbb{N}$, significand $\mu \in \mathbb{N}$,
 63 and exponent range $[\eta_{\min}, \eta_{\max}] \subset \mathbb{Z}$. Then every element y in \mathbb{F} can be written as

$$64 \quad (2.1) \quad y = \pm\mu \times b^{\eta-t},$$

65 where μ is any integer in $[0, b^t - 1]$ and η is an integer in $[\eta_{\min}, \eta_{\max}]$. Although operations we use
66 on \mathbb{R} cannot be replicated exactly due to the finite cardinality of \mathbb{F} , we can still approximate the
67 accuracy of analogous floating point operations (FLOPs). We adopt the rounding error analysis
68 tools described in [14], which allow a relatively simple framework for formulating error bounds for
69 complex linear algebra operations. An analysis of FLOPs (see Theorem 2.2 [14]) shows that the
70 relative error is controlled by the unit round-off, $u := \frac{1}{2}b^{1-t}$ in uniform precision settings. In mixed
71 precision settings we denote the higher precision unit round-off with $u^{(h)}$ (h for high) and the lower
72 precision unit round-off with $u^{(l)}$ (l for low).

Name	b	t	# of exponent bits	η_{\min}	η_{\max}	unit round-off u
fp16 (IEEE754 half)	2	11	5	-15	16	4.883e-04
fp32 (IEEE754 single)	2	24	8	-127	128	5.960e-08
fp64 (IEEE754 double)	2	53	11	-1023	1024	1.110e-16

TABLE 2
IEEE754 formats and their primary attributes.

73 Let ‘op’ be any basic operation from the set $\text{OP} = \{+, -, \times, \div\}$ and let $x, y \in \mathbb{R}$. The true value
74 $(x \text{ op } y)$ lies in \mathbb{R} , and it is rounded using some conversion to a floating point number, $\text{fl}(x \text{ op } y)$,
75 admitting a rounding error. The IEEE 754 Standard requires *correct rounding*, which rounds the
76 exact solution $(x \text{ op } y)$ to the closest floating point number and, in case of a tie, to the floating point
77 number that has a mantissa ending in an even number. *Correct rounding* gives us an assumption
78 for the error model where a single basic floating point operation yields a relative error, δ , bounded
79 in the following sense:

80 (2.2)
$$\text{fl}(x \text{ op } y) = (1 + \delta)(x \text{ op } y), \quad |\delta| \leq u, \quad \text{op} \in \{+, -, \times, \div\}.$$

81 We use (2.2) as a building block in accumulating errors from successive FLOPs. Successive opera-
82 tions introduce multiple rounding error terms, and keeping track of all errors is challenging. Lemma
83 2.1 introduces a convenient and elegant bound that simplifies accumulation of rounding error.

84 LEMMA 2.1 (Lemma 3.1 [14]). *Let $|\delta_i| < u$, $\rho_i = \pm 1$ for $i = 1 : k$, and $ku < 1$. Then,*

85 (2.3)
$$\prod_{i=1}^k (1 + \delta_i)^{\rho_i} = 1 + \theta_k, \quad \text{where } |\theta_k| \leq \frac{ku}{1 - ku} =: \gamma_k.$$

86 Additionally, we define $\tilde{\theta}_k$ that satisfies $|\tilde{\theta}_k| \leq \tilde{\gamma}_k$, where $\tilde{\gamma}_k = \frac{cku}{1 - cku}$ for a small integer, $c > 0$.

87 In other words, θ_k represents the accumulation of rounding errors from k successive operations,
88 and it is bounded by γ_k . In more complicated routines shown in later sections, we use the tilde
89 notation ($\tilde{\gamma}_k$) to permit only keeping track of the leading order error terms. Applying this lemma
to the computation of $x + y + z$, where $x, y, z \in \mathbb{R}$, results in

90 (2.4)
$$\text{fl}(x + y + z) = (1 + \delta')((1 + \delta)(x + y) + z) = (1 + \theta_2)(x + y) + (1 + \theta_1)z,$$

91 where $|\delta|, |\delta'| < u$. Since $|\theta_1| \leq \gamma_1 < \gamma_2$, we can further simplify (2.4) to

92 (2.5)
$$\text{fl}(x + y + z) = (1 + \theta'_2)(x + y + z), \quad \text{where } |\theta'_2| \leq \gamma_2,$$

93 at the cost of a slightly larger upper bound. Note that both $|\theta_2|, |\theta'_2|$ are bounded above by γ_2 .
94 Typically, error bounds formed in the fashion of (2.5) are converted to relative errors in order to

95 put the error magnitudes in perspective. The relative error bound for our example is

$$96 \quad |(x + y + z) - \text{fl}(x + y + z)| \leq \gamma_2 |x + y + z|, \quad x + y + z \neq 0.$$

97 Although Lemma 2.1 requires $ku < 1$, we actually need $ku < \frac{1}{2}$ to maintain a meaningful
98 relative error bound as this assumption implies $\gamma_k < 1$ and guarantees a relative error below
99 100%. Since higher precision types have smaller unit round-offs, they can tolerate more successive
100 FLOPs than lower precision floating types before reaching $\gamma_m = 1$. For example, the IEEE types
101 introduced in Table 2 meet this requirement at $1/2 = 2^{10}u^{(\text{fp16})} = 2^{23}u^{(\text{fp32})} = 2^{52}u^{(\text{fp64})}$. Thus,
102 accumulated rounding errors in lower precision types can lead to an instability with fewer operations
103 in comparison to higher precision types and prompts us to evaluate whether existing algorithms
104 can be naively adapted for mixed precision arithmetic.

105 **2.2. Rounding Error Example for the Inner Product.** We now consider computing the
106 inner product of two vectors to clearly illustrate how this situation restricts rounding error analysis
107 in fp16. An error bound for an inner product of m -length vectors is

$$108 \quad (2.6) \quad |\mathbf{x}^\top \mathbf{y} - \text{fl}(\mathbf{x}^\top \mathbf{y})| \leq \gamma_m |\mathbf{x}|^\top |\mathbf{y}|, \quad \mathbf{x}, \mathbf{y} \in \mathbb{R}^m$$

109 as shown in [14]. Since vectors of length m accumulate rounding errors that are bounded by γ_m ,
110 dot products of vectors computed in fp16 already face a 100% relative error bound when $m = 1024$.

111 A simple numerical experiment shows that the standard deterministic error bound is too pes-
112 simistic and cannot be practically used to approximate rounding error for half-precision arithmetic.
113 In this experiment, we generated 2 million random fp16 vectors of length 1024 from two random
114 distributions: the standard normal distribution, $N(0, 1)$, and the uniform distribution over $(0, 1)$.
115 Half precision arithmetic was simulated by calling alg. 1, which was proven to be a faithful simu-
116 lation in [16], for every FLOP (multiplication and addition for the dot product). The relative error
117 in this experiment is formulated as the LHS in Equation 2.6 divided by $|\mathbf{x}|^\top |\mathbf{y}|$ and all operations
118 outside of calculating $\text{fl}(\mathbf{x}^\top \mathbf{y})$ are executed by casting up to fp64 and using fp64 arithmetic. Table
3 shows some statistics from computing the relative error for simulated fp16 dot products.

Random Distribution	Average	Stan. Dev.	Maximum
Standard normal	1.621e-04	1.635e-04	3.204e-03
Uniform (0, 1)	6.904e-03	3.265e-03	2.447e-02

TABLE 3

Forward error statistics from experiment of dot products computed in simulated half precision.

119
120 We see that the inner products of vectors sampled from the standard normal distribution have
121 backward relative errors that do not deviate much from the unit round-off ($\mathcal{O}(1e-4)$), whereas
122 the vectors sampled from the uniform distribution tend to accumulate larger errors on average
123 ($\mathcal{O}(1e-3)$). Even so, the theoretical upper error bound of 100% is far too pessimistic as the
124 maximum relative error does not even meet 2% in this experiment. Recent work in developing
125 probabilistic bounds on rounding errors of floating point operations (see [15, 18]) have shown that
126 the inner product relative backward error for the conditions used for this experiment is bounded
127 by 5.466e-2 with probability 0.99.

128 Most importantly, we need error analysis that allows flexibility in precision in order to better
129 our understanding of the impact of rounding errors on computations done on emerging hardware

Algorithm 1: $\mathbf{z}^{(\text{fp16})} = \text{simHalf}(f, \mathbf{x}^{(\text{fp16})}, \mathbf{y}^{(\text{fp16})})$. Given fp16 input variables \mathbf{x}, \mathbf{y} , perform function $f \in \text{OP} \cup \{\text{dot_product}\}$ in simulated fp16 arithmetic.

Input: $\mathbf{x}^{(\text{fp16})}, \mathbf{y}^{(\text{fp16})}, f$ 1 $[\mathbf{x}^{(\text{fp32})}, \mathbf{y}^{(\text{fp32})}] \leftarrow \text{castup}([\mathbf{x}^{(\text{fp16})}, \mathbf{y}^{(\text{fp16})}])$ 2 $\mathbf{z}^{(\text{fp32})} \leftarrow \text{fl}(f(\mathbf{x}^{(\text{fp32})}, \mathbf{y}^{(\text{fp32})}))$ 3 $\mathbf{z}^{(\text{fp16})} \leftarrow \text{castdown}(\mathbf{z}^{(\text{fp32})})$ 4 return $\mathbf{z}^{(\text{fp16})}$	Output: $\mathbf{z}^{(\text{fp16})} = \text{fl}_{\text{fp16}}(f(\mathbf{x}^{(\text{fp16})}, \mathbf{y}^{(\text{fp16})}))$ // Convert input vars to fp32. // Perform fp32 arithmetic. // Convert result to fp16.
---	---

130 (i.e. GPUs) that support mixed precision. We start by introducing some additional rules from
131 [14] that build on [Lemma 2.1](#) in [Lemma 2.2](#). These rules summarize how to accumulate errors
132 represented by θ 's and γ 's in a *uniform precision* setting.

133 [LEMMA 2.2.](#) *For any positive integer k , let θ_k denote a quantity bounded according to $|\theta_k| \leq$
134 $\frac{ku}{1-ku} =: \gamma_k$. The following relations hold for positive integers j, n and nonnegative integer k .
135 Arithmetic operations between bounded terms, θ_k 's, are:*

136 (2.7)
$$(1 + \theta_k)(1 + \theta_j) = (1 + \theta_{k+j}) \quad \text{and} \quad \frac{1 + \theta_k}{1 + \theta_j} = \begin{cases} 1 + \theta_{k+j}, & j \leq k \\ 1 + \theta_{k+2j}, & j > k \end{cases}.$$

137 If $\max_{(j,k)} u \leq \frac{1}{2}$ and $n \leq \frac{1}{uk}$, the operations on the bounds, γ 's, are:

138
$$\gamma_k \gamma_j \leq \gamma_{\min(k,j)}, \quad n \gamma_k \leq \gamma_{nk},$$

139
$$\gamma_k + u \leq \gamma_{k+1}, \quad \gamma_k + \gamma_j + \gamma_k \gamma_j \leq \gamma_{k+j}.$$

141 Note that all the rules hold when replaced by $\tilde{\gamma}$'s, but result in looser bounds.

142 We define two mixed precision settings that we use in [section 4](#). In [subsection 4.1](#), we present
143 the block Fused Multiply-Add (bFMA) of NVIDIA's TensorCore (TC) technology, which computes
144 matrix-matrix multiply and accumulate for 4-by-4 blocks, and incorporate it into [algs. 5 and 6](#). Here,
145 we introduce an ad hoc mixed precision setting (MP Setting) which we use in [subsection 4.2](#). This
146 is explicitly defined in [MP Setting 2.3](#) and is a level-2 BLAS variant of the TC bFMA. Both mixed
147 precision settings define how inner products are computed although the bFMA is only applicable to
148 inner products within matrix products and uses fp16 and fp32 whereas our ad hoc mixed precision
149 setting is applicable to all inner products with any two precision types.

150 Although our analysis concerns accuracy and stability and leaves out timing results of various
151 hardwares, we add a general timing statement to [MP Setting 2.3](#) that is analogous to that of TC:
152 the mixed precision FMA inner product performs at least 2 times faster than the inner product in
153 the higher precision. Note that TCs perform matrix-matrix multiply and accumulate up to 8 times
154 faster than fp32, and up to 16 times faster than fp64 (see [19]), and our ad hoc timing assumption
155 is in conservative in comparison. Nonetheless, this gives a vague insight into the trade-offs between
156 speediness and accuracy from some mixed precision computations.

157 The full precision multiplication in [Assumption 2.3](#) is exact when the low precision type is fp16
158 and the high precision type of fp32 due to their precisions and exponent ranges. As a quick proof,
159 consider $x^{(\text{fp16})} = \pm \mu_x 2^{\eta_x - 11}$, $y^{(\text{fp16})} = \pm \mu_y 2^{\eta_y - 11}$ where $\mu_x, \mu_y \in [0, 2^{11} - 1]$ and $\eta_x, \eta_y \in [-15, 16]$,
160 and note that the significand and exponent ranges for fp32 are $[0, 2^{24} - 1]$ and $[-127, 128]$. Then

161 the product in full precision is

$$162 \quad x^{(\text{fp16})} y^{(\text{fp16})} = \pm \mu_x \mu_y 2^{\eta_x + \eta_y + 2 - 24},$$

163 where $\mu_x \mu_y \in [0, (2^{11} - 1)^2] \subseteq [0, 2^{24} - 1]$ and $\eta_x + \eta_y + 2 \in [-28, 34] \subseteq [-127, 128]$, and therefore
164 is exact. Thus, the summation and the final cast down operations are the only sources of rounding
165 error in this inner product scheme.

166 MP SETTING 2.3. Let l and h each denote low and high precision types with unit round-off
167 values $u^{(l)}$ and $u^{(h)}$, where $1 \gg u^{(l)} \gg u^{(h)} > 0$. Consider an FMA operation for inner products
168 that take vectors stored in precision l , compute products in full precision, and sum the products in
169 precision h . Finally, the result is then cast back down to precision l . Furthermore, we expect this
170 procedure to be approximately twice as fast as if it were done entirely in the higher precision, and
171 about the same as if it were done entirely in the lower precision.

172 We now analyze the rounding error for the inner product scheme described in MP Setting 2.3 and
173 hypothesize that the guaranteed accuracy for this mixed precision inner product should be better
174 than that of the low precision inner product and worse than that of the high precision inner product.
175 Let $\mathbf{x}^{(l)}, \mathbf{y}^{(l)}$ be m -length vectors stored in a low precision type (\mathbb{F}_l^m) , s_k be the exact k^{th} partial
176 sum, and \hat{s}_k be s_k computed with FLOPs. Then the first three partial sums are,

$$177 \quad \hat{s}_1 = \text{fl}(\mathbf{x}[1]\mathbf{y}[1]) = \mathbf{x}[1]\mathbf{y}[1], \quad \hat{s}_2 = \text{fl}(\hat{s}_1 + \mathbf{x}[2]\mathbf{y}[2]) = (\mathbf{x}[1]\mathbf{y}[1] + \mathbf{x}[2]\mathbf{y}[2])(1 + \delta_1^{(h)}),$$

$$178 \quad \hat{s}_3 = \text{fl}(\hat{s}_2 + \mathbf{x}[3]\mathbf{y}[3]) = \left[(\mathbf{x}[1]\mathbf{y}[1] + \mathbf{x}[2]\mathbf{y}[2])(1 + \delta_1^{(h)}) + \mathbf{x}[3]\mathbf{y}[3] \right] (1 + \delta_2^{(h)}).$$

180 We see a pattern emerging. The error for an m -length vector dot product is then

$$181 \quad (2.8) \quad \hat{s}_m = (\mathbf{x}[1]\mathbf{y}[1] + \mathbf{x}[2]\mathbf{y}[2]) \prod_{k=1}^{m-1} (1 + \delta_k^{(h)}) + \sum_{i=3}^m \mathbf{x}[i]\mathbf{y}[i] \left(\prod_{k=i-1}^{m-1} (1 + \delta_k^{(h)}) \right).$$

182 Using Lemma 2.1, we further simplify and form componentwise backward errors with

$$183 \quad (2.9) \quad \text{fl}(\mathbf{x}^\top \mathbf{y}) = (\mathbf{x} + \Delta \mathbf{x})^\top \mathbf{y} = \mathbf{x}^\top (\mathbf{y} + \Delta \mathbf{y}) \quad \text{for } |\Delta \mathbf{x}| \leq \gamma_{m-1}^{(h)} |\mathbf{x}|, \quad |\Delta \mathbf{y}| \leq \gamma_{m-1}^{(h)} |\mathbf{y}|.$$

184 Casting down to \mathbb{F}_l without underflow or overflow results in backward errors,

$$185 \quad (2.10) \quad \text{castdown}(\text{fl}(\mathbf{x}^\top \mathbf{y})) = (\mathbf{x} + \Delta \mathbf{x} + \tilde{\Delta} \mathbf{x})^\top \mathbf{y} = \mathbf{x}^\top (\mathbf{y} + \Delta \mathbf{y} + \tilde{\Delta} \mathbf{y}),$$

186 where $|\Delta \mathbf{x} + \tilde{\Delta} \mathbf{x}| \leq ((1 + u^{(l)})(1 + \gamma_{m-1}^{(h)}) - 1)|\mathbf{x}|$ and $|\Delta \mathbf{y} + \tilde{\Delta} \mathbf{y}| \leq ((1 + u^{(l)})(1 + \gamma_{m-1}^{(h)}) - 1)|\mathbf{y}|$.
187 Our hypothesis is indeed true since,

$$188 \quad \gamma_m^{(h)} < u^{(l)} + \gamma_{m-1}^{(h)} + u^{(l)} \gamma_{m-1}^{(h)} < \gamma_m^{(l)},$$

189 where the lower and upper bounds are derived from the uniform precision error bound in (2.6).
190 Equation (2.10) shows us that the two larger error terms are from the higher precision summation,
191 $\gamma_{m-1}^{(h)}$, and the cast down operation, $u^{(l)}$. We can measure the impact of the cast down step relative
192 to the length of the vector, m , and the disparity in the two precisions, $M_{l,h} := u^{(l)}/u^{(h)}$, since these
193 two factors determine which one of $u^{(l)}$ and $mu^{(h)}$ is the leading order term. We consider 3 cases.
194 **Case 1:** ($m \ll M_{l,h}$) The leading order term is $u^{(l)}$. The mixed precision inner product has a
195 smaller worst case error bound than the bound of the low precision inner product ($mu^{(l)}$) with no

196 apparent improvements in speed. On the other hand, $u^{(l)}$ is a larger upper bound than that of the
 197 high precision inner product ($mu^{(h)} = \frac{m}{M_{l,h}}u^{(l)}$), although it was computed approximately twice as
 198 fast. It is likely that this factor of $M_{l,h}/m$ increase in the worst case error bound is unwanted even
 199 when considering the speed-up.

200 **Case 2:** ($m = M_{l,h}$) Both terms are now leading order. This is still an improvement in comparison
 201 to the lower precision arithmetic as the error bound is reduced from $mu^{(l)}$ to $2u^{(l)}$. Comparing this
 202 to the high precision inner product shows that the error bound has doubled from $mu^{(h)}$ to $2mu^{(h)}$,
 203 but gained a factor of 2 in speed instead. One can argue that the loss in accuracy guarantee and
 204 the improvement in speed cancel each other out especially if $2mu^{(h)} \ll 1$ or if the speed-up greatly
 205 exceeds a factor of 2.

206 **Case 3:** ($m \gg M_{l,h}$) Now $\gamma_{m-1}^{(h)}$ is the leading order term. As in the above two cases, this is an
 207 improvement in the context of the low precision accuracy since the error has been reduced from $\gamma_m^{(l)}$
 208 to $\gamma_{m/M_{l,h}}^{(l)} \equiv \gamma_m^{(h)}$. Since $u^{(l)} = M_{l,h}u^{(h)} \ll mu^{(h)}$, the mixed precision error bound has the same
 209 *order* as the error bound from carrying the computation out in the higher precision. Therefore, we
 210 can expect about the same level of accuracy but a factor of 2 or greater reduction in speed when
 211 compared to the higher precision.

212 While the above cases establish 3 regimes of trade-offs between accuracy and speed in mixed
 213 precision computing, the remainder of this paper focuses only on accuracy and does not consider the
 214 impact of mixed precision computations on speed. Finally, we present alternative representations
 215 of the error bound in (2.10),

$$(1 + u^{(l)})(1 + \gamma_{m-1}^{(h)}) - 1 \leq \gamma_{M_{l,h}+m-1}^{(h)} = \gamma_{1+(m-1)/M_{l,h}}^{(l)}, \quad M_{l,h} = u^{(l)}/u^{(h)},$$

$$(1 + u^{(l)})(1 + \gamma_{m-1}^{(h)}) - 1 \leq u^{(l)} + \gamma_{m-1}^{(h)} + \min\{u^{(l)}, \gamma_{m-1}^{(h)}\}, \quad \gamma_{m-1}^{(h)} < 1,$$

216 where the rules from Lemma 2.2 were directly applied. Both alternative bounds are only slightly
 217 larger than the original bound shown on the LHS and remain in the same order. The first is useful
 218 when comparing against the low or the high precision, whereas the second keeps track of the error
 219 bounds in both precisions. We summarize these ways of combining γ terms of different precisions
 220 in Lemma 2.4,

221 **LEMMA 2.4.** *For any nonnegative integers k_l, k_h and some precision q defined with respect to
 222 the unit round-off, $u^{(q)}$, define $\gamma_k^{(q)} := \frac{ku^{(q)}}{1-ku^{(q)}}$. Consider a low precision and a high precision where
 223 $1 \gg u^{(l)} \gg u^{(h)} > 0$, and k_l, k_h that satisfy $\max\{\gamma_{k_h}^{(h)}, \gamma_{k_l}^{(l)}\} < 1/2$. Then the following rules help
 224 us accumulate γ 's of different precisions,*

$$(2.11) \quad \gamma_{k_h}^{(h)} \gamma_{k_l}^{(l)} \leq \min\{\gamma_{k_h}^{(h)}, \gamma_{k_l}^{(l)}\},$$

$$(2.12) \quad (1 + \tilde{\gamma}_{k_l}^{(l)})(1 + \tilde{\gamma}_{k_h}^{(h)}) - 1 = \tilde{\gamma}_{k_l}^{(l)} + \tilde{\gamma}_{k_h}^{(h)}.$$

225 Note that (2.12) drops the term $\tilde{\gamma}_{k_l}^{(l)}\tilde{\gamma}_{k_h}^{(h)}$ since both $\tilde{\gamma}_{k_l}^{(l)}$ and $\tilde{\gamma}_{k_h}^{(h)}$ are larger than their product and
 226 this product can be swept under the small integer $c > 0$ assumption implicitly included in the tilde
 227 notation. Equations (2.9) and (2.10) are crucial for our analysis in section 4 since the two mixed
 228 precision settings add castdown operations at different parts of the HQR algorithms we consider.
 229 In general, error bounds in the fashion of (2.9) can be used before the cast down operations and
 230 the action of the cast down is best represented by error bounds similar to (2.10).

231 We have demonstrated a need for rounding error analysis that is accurate for mixed precision
 232 procedures and analyzed the inner product in an ad hoc mixed precision inner product that mimics

239 the TensorCore bFMA. We will use this to analyze various Householder (HH) QR factorization
 240 algorithms. Algorithms and the general framework for the standard rounding error analysis for
 241 these algorithms are introduced in [section 3](#), and both are modified to meet different mixed precision
 242 assumptions in [section 4](#).

243 **3. Algorithms and existing round-off error analyses.** We introduce the Householder
 244 QR factorization algorithm (HQR) in [subsection 3.1](#) and two block variants that use HQR within
 245 the block in [subsections 3.2](#) and [3.3](#). The blocked HQR (BQR) in [subsection 3.2](#) partitions the
 246 columns of the target matrix and is a well-known algorithm that uses the WY representation of
 247 [\[4\]](#) that utilizes mainly level-3 BLAS operations. In contrast, the Tall-and-Skinny QR (TSQR) in
 248 [subsection 3.3](#) partitions the rows and takes a communication-avoiding divide-and-conquer approach
 249 that can be easily parallelized (see [\[8\]](#)). We present the standard rounding error analysis of these
 250 algorithms (see [\[14, 21\]](#)) which will be tweaked for various mixed precision assumptions in [section 4](#).

251 **3.1. Householder QR (HQR).** The HQR algorithm uses HH transformations to zero out
 252 elements below the diagonal of a matrix (see [\[17\]](#)). We present this as zeroing out all but the first
 253 element of some vector, $\mathbf{x} \in \mathbb{R}^m$.

254 **LEMMA 3.1.** *Given vector $\mathbf{x} \in \mathbb{R}^m$, there exist a HH vector, \mathbf{v} , and a HH constant, β , that
 255 define the HH transformation matrix, $\mathbf{P}_v := \mathbf{I}_m - \beta \mathbf{v} \mathbf{v}^\top$, such that \mathbf{P}_v zeros out \mathbf{x} below the first
 256 element. The HH vector and constant are defined via*

257 (3.1)
$$\sigma = -\text{sign}(\mathbf{x}[1])\|\mathbf{x}\|_2, \quad \mathbf{v} = \mathbf{x} - \sigma \hat{\mathbf{e}}_1, \quad \text{and } \beta = \frac{2}{\mathbf{v}^\top \mathbf{v}} = -\frac{1}{\sigma \mathbf{v}[1]}.$$

258 The transformed vector, $\mathbf{P}_v \mathbf{x} = \sigma \hat{\mathbf{e}}_1$, has the same 2-norm as \mathbf{x} since $\mathbf{P}_v = \mathbf{P}_v^\top = \mathbf{P}_v^{-1}$.

259 **3.1.1. HQR: Algorithm.** Given $\mathbf{A} \in \mathbb{R}^{m \times n}$ and [Lemma 3.1](#), HQR is done by repeating the
 260 following processes until only an upper triangle matrix remains. For $i = 1, 2, \dots, n$,
 261 Step 1) Compute \mathbf{v} and β that zeros out the i^{th} column of \mathbf{A} beneath a_{ii} (see [alg. 2](#)), and
 262 Step 2) Apply \mathbf{P}_v to the bottom right partition, $\mathbf{A}[i : m, i : n]$ (lines 4-6 of [alg. 3](#)).

263 Consider the following 4-by-3 matrix example adapted from [\[14\]](#). Let \mathbf{P}_i represent the i^{th} HH
 264 transformation of this algorithm.

265
$$\mathbf{A} = \begin{bmatrix} \times & \times & \times \\ \times & \times & \times \\ \times & \times & \times \\ \times & \times & \times \end{bmatrix} \xrightarrow{\mathbf{P}_1 \mathbf{A}} \begin{bmatrix} \times & \times & \times \\ 0 & \times & \times \\ 0 & \times & \times \\ 0 & \times & \times \end{bmatrix} \xrightarrow{\mathbf{P}_2 \mathbf{P}_1 \mathbf{A}} \begin{bmatrix} \times & \times & \times \\ 0 & \times & \times \\ 0 & 0 & \times \\ 0 & 0 & \times \end{bmatrix} \xrightarrow{\mathbf{P}_3 \mathbf{P}_2 \mathbf{P}_1 \mathbf{A}} \begin{bmatrix} \times & \times & \times \\ 0 & \times & \times \\ 0 & 0 & \times \\ 0 & 0 & 0 \end{bmatrix}$$

266 The resulting matrix is the \mathbf{R} factor, $\mathbf{R} := \mathbf{P}_3 \mathbf{P}_2 \mathbf{P}_1 \mathbf{A}$, and the \mathbf{Q} factor for a full QR factorization
 267 is $\mathbf{Q} := \mathbf{P}_1 \mathbf{P}_2 \mathbf{P}_3$ since \mathbf{P}_i 's are symmetric. The thin factors for a general matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ are

268 (3.2)
$$\mathbf{Q}_{\text{thin}} = \mathbf{P}_1 \cdots \mathbf{P}_n \mathbf{I}_{m \times n} \quad \text{and} \quad \mathbf{R}_{\text{thin}} = \mathbf{I}_{m \times n}^\top \mathbf{P}_n \cdots \mathbf{P}_1 \mathbf{A}.$$

Algorithm 2: $\beta, \mathbf{v}, \sigma = \text{hhvec}(\mathbf{x})$. Given a vector $\mathbf{x} \in \mathbb{R}^m$, return $\mathbf{v} \in \mathbb{R}^m$ and $\beta, \sigma \in \mathbb{R}$
 that satisfy $(I - \beta \mathbf{v} \mathbf{v}^\top) \mathbf{x} = \sigma \hat{\mathbf{e}}_1$ and $\mathbf{v}[1] = 1$ (see [\[2, 14\]](#)).

<p>Input: \mathbf{x}</p> <p>1 $\mathbf{v} \leftarrow \text{copy}(\mathbf{x})$ 2 $\sigma \leftarrow -\text{sign}(\mathbf{x}[1])\ \mathbf{x}\ _2$ 3 $\mathbf{v}[1] \leftarrow \mathbf{x}[1] - \sigma$ 4 $\beta \leftarrow -\frac{\mathbf{v}[1]}{\sigma}$ 5 $\mathbf{v} \leftarrow \mathbf{v} / \mathbf{v}[1]$ 6 return $\beta, \mathbf{v}, \sigma$</p>	<p>Output: \mathbf{v}, σ, and β</p>
--	---

Algorithm 3: $\mathbf{V}, \boldsymbol{\beta}, \mathbf{R} = \text{HQR2}(\mathbf{A})$. A Level-2 BLAS implementation of HQR. Given a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ where $m \geq n$, return matrix $\mathbf{V} \in \mathbb{R}^{m \times n}$, vector $\boldsymbol{\beta} \in \mathbb{R}^n$, and upper triangular matrix \mathbf{R} . The orthogonal factor \mathbf{Q} can be generated from \mathbf{V} and $\boldsymbol{\beta}$.

Input: \mathbf{A}

Output: $\mathbf{V}, \boldsymbol{\beta}, \mathbf{R}$

```

1 Initialize  $\mathbf{V} \leftarrow \mathbf{0}_{m \times n}$ ,  $\boldsymbol{\beta} \leftarrow \mathbf{0}_m$ 
2 for  $i = 1 : n$  do
3    $\mathbf{v}, \beta, \sigma \leftarrow \text{hhvec}(\mathbf{A}[i : \text{end}, i])$  /* Algorithm 2 */
4    $\mathbf{V}[i : \text{end}, i], \beta_i, \mathbf{A}[i, i] \leftarrow \mathbf{v}, \beta, \sigma$ 
5    $\mathbf{A}[i + 1 : \text{end}, i] \leftarrow \text{zeros}(m - i)$ 
6    $\mathbf{A}[i : \text{end}, i + 1 : \text{end}] \leftarrow \mathbf{A}[i : \text{end}, i + 1 : \text{end}] - \beta \mathbf{v} \mathbf{v}^\top \mathbf{A}[i : \text{end}, i + 1 : \text{end}]$ 
7 return  $\mathbf{V}, \boldsymbol{\beta}, \mathbf{A}[1 : n, 1 : n]$ 

```

270 **3.1.2. HQR: Rounding Error Analysis.** Now we present an error analysis for [alg. 3](#) by
271 keeping track of the different operations of [alg. 2](#) and [alg. 3](#). We follow the analysis of [14] and
272 modify it for the variant where $\mathbf{v}[1]$ is set to 1. The goal of this section is to present the basic
273 steps of the standard error analysis for HQR so that we modify them easily in [section 4](#) for different
274 mixed precision settings.

275 *Calculating the i^{th} HH vector and constant.* In [alg. 3](#), we compute the HH vector and constant
276 by using [alg. 2](#) to $\mathbf{A}[i : m, i]$. For now, consider zeroing out any vector $\mathbf{x} \in \mathbb{R}^m$ below its first
277 component with a HH transformation. We first calculate σ as is implemented in line 2 of [alg. 2](#).

278 (3.3) $\text{fl}(\sigma) = \hat{\sigma} = \text{fl}(-\text{sign}(\mathbf{x}[1])\|\mathbf{x}\|_2) = \sigma + \Delta\sigma, \quad |\Delta\sigma| \leq \gamma_{m+1}|\sigma|.$

279 Note that the backward error incurred here accounts for an inner product of a vector in \mathbb{R}^m with
280 itself and a square root operation to get the 2-norm. Let $\mathbf{v}'[1] \equiv \mathbf{x}[i] - \sigma$, the penultimate value
281 $\mathbf{v}[1]$ held. The subtraction adds a single additional rounding error via

282 (3.4) $\text{fl}(\mathbf{v}'[1]) = \mathbf{v}'[1] + \Delta\mathbf{v}'[1] = (1 + \delta)(\mathbf{x}[i] - \sigma - \Delta\sigma) = (1 + \theta_{m+2})\mathbf{v}'[1]$

283 where the last equality is granted because the sign of σ is chosen to prevent cancellation. Since
284 [alg. 2](#) normalizes the HH vector so that its first component is 1, the remaining components of \mathbf{v}
285 are divided by $\text{fl}(\tilde{\mathbf{v}}_1)$ incurring another single rounding error. As a result, the components of \mathbf{v}
286 computed with FLOPs have error $\text{fl}(\mathbf{v}[j]) = \mathbf{v}[j] + \Delta\mathbf{v}[j]$ where

287 (3.5) $|\Delta\mathbf{v}[j]| \leq \gamma_{1+2(m+2)}|\mathbf{v}[j]| = \tilde{\gamma}_m|\mathbf{v}[j]| \quad j = 2 : m - i + 1,$

288 and $|\Delta\mathbf{v}[1]| = 0$. Since $1 + 2(m + 2) + = \mathcal{O}(m)$, we have swept that minor difference between
289 under our use of the $\tilde{\gamma}$ notation defined in [Lemma 2.1](#). Next, we consider the HH constant, β , as is
290 computed in line 4 of [alg. 2](#).

291 (3.6) $\hat{\beta} = \text{fl}(-\mathbf{v}'[1]/\hat{\sigma}) = -(1 + \delta) \frac{\mathbf{v}'[1] + \Delta\mathbf{v}'[1]}{\sigma + \Delta\sigma} = \frac{(1 + \delta)(1 + \theta_{m+2})}{(1 + \theta_{m+1})} \beta$

292 (3.7) $= (1 + \theta_{3m+5})\beta = \beta + \Delta\beta, \quad \text{where } |\Delta\beta| \leq \tilde{\gamma}_m\beta.$

293 We have shown (3.6) to keep our analysis simple in [section 4](#) and (3.7) show that the error incurred
294 from calculating of $\|\mathbf{x}\|_2$ accounts for the vast majority of the rounding error so far. At iteration
295 i , we replace \mathbf{x} with $\mathbf{A}[i : m, i] \in \mathbb{R}^{m-i+1}$ and the i^{th} HH constant and vector $(\hat{\beta}_i, \mathbf{v}_i)$ both have
296 errors bounded by $\tilde{\gamma}_{m-i+1}$.

298 *Applying a Single HH Transformation.* Now we consider lines 4-6 of [alg. 3](#). At iteration i ,
 299 we set $\mathbf{A}[i+1:m,:]$ to zero and replace $\mathbf{A}[i,i]$ with σ computed from [alg. 2](#). Therefore, we
 300 now need to calculate the errors for applying a HH transformation to the remaining columns,
 301 $\mathbf{A}[i:m,i+1:n]$ with the computed HH vector and constant. This is the most crucial building
 302 block of the rounding error analysis for any variant of HQR because the \mathbf{R} factor is formed by
 303 applying the HH transformations to \mathbf{A} and the \mathbf{Q} factor is formed by applying them in reverse
 304 order to the identity. Both of the blocked versions in [subsection 3.2](#) and [subsection 3.3](#) also require
 305 slightly different but efficient implementations of this step. For example, BQR in [alg. 5](#) uses level-3
 306 BLAS operations to apply multiple HH transformations at once whereas the variant of HQR in
 307 [alg. 3](#) can only use level-2 BLAS operations to apply HH transformations.

308 A HH transformation is applied through a series of inner and outer products, since HH matrices
 309 are rank-1 updates of the identity. That is, computing $\mathbf{P}_v\mathbf{x}$ for any $\mathbf{x} \in \mathbb{R}^m$ is as simple as computing

$$310 \quad (3.8) \quad \mathbf{y} := \mathbf{P}_v\mathbf{x} = \mathbf{x} - (\beta\mathbf{v}^\top\mathbf{x})\mathbf{v}.$$

311 Let us assume that \mathbf{x} is an exact vector and there were errors incurred in forming \mathbf{v} and β . The
 312 errors incurred from computing \mathbf{v} and β need to be included in addition to the new rounding
 313 errors accumulating from the action of applying \mathbf{P}_v to a column. In practice, \mathbf{x} is any column in
 314 $\mathbf{A}^{(i-1)}[i+1:m,i+1:n]$, where the superscript $(i-1)$ indicates that this submatrix of \mathbf{A} has
 315 already been transformed by $i-1$ HH transformations that zeroed out components below $\mathbf{A}[j,j]$
 316 for $j = 1:i-1$. We show the error for forming $\hat{\mathbf{w}}$ where $\mathbf{w} := \beta\mathbf{v}^\top\mathbf{x}\mathbf{v}$ and $\mathbf{v}, \mathbf{x} \in \mathbb{R}^m$,

$$317 \quad \hat{\mathbf{w}} = \text{fl}(\hat{\beta} \text{ fl}(\hat{\mathbf{v}}^\top\mathbf{x})\hat{v}) = (1 + \theta_m)(1 + \delta)(1 + \delta')(\beta + \Delta\beta)(\mathbf{v} + \Delta\mathbf{v})^\top\mathbf{x}(\mathbf{v} + \Delta\mathbf{v}),$$

318 where θ_m is from computing the inner product $\hat{\mathbf{v}}^\top\mathbf{x}$, and δ and δ' are from multiplying β , $\text{fl}(\hat{\mathbf{v}}^\top\mathbf{x})$,
 319 and $\hat{\mathbf{v}}$. The forward error is $\hat{\mathbf{w}} = \mathbf{w} + \Delta\mathbf{w}$, where $|\Delta\mathbf{w}| \leq \tilde{\gamma}_m|\beta||\mathbf{v}^\top\mathbf{x}||\mathbf{v}|$. Subtracting $\hat{\mathbf{w}}$ from \mathbf{x}
 320 yields the HH transformation with forward error,

$$321 \quad (3.9) \quad \text{fl}(\hat{\mathbf{P}}_v\mathbf{x}) = \text{fl}(\mathbf{x} - \hat{\mathbf{w}}) = (1 + \delta)(\mathbf{x} - \mathbf{w} - \Delta\mathbf{w}) = \mathbf{y} + \Delta\mathbf{y} = (\mathbf{P}_v + \Delta\mathbf{P}_v)\mathbf{x},$$

322 where $|\Delta\mathbf{y}| \leq u|\mathbf{x}| + \tilde{\gamma}_m|\beta||\mathbf{v}||\mathbf{v}^\top\mathbf{x}|$. Using $\sqrt{2/\beta} = \|\mathbf{v}\|_2$, we form a normwise bound,

$$323 \quad (3.10) \quad \|\Delta\mathbf{y}\|_2 \leq \tilde{\gamma}_m\|\mathbf{x}\|_2.$$

324 Since $\Delta\mathbf{P}_v[i,j] = \frac{1}{\|\mathbf{x}\|_2^2}\Delta\mathbf{y}[i]\mathbf{x}[j]$, we can compute its Frobenius norm,

$$325 \quad (3.11) \quad \|\Delta\mathbf{P}_v\|_F = \left(\sum_{i=1}^m \sum_{j=1}^m \left(\frac{1}{\|\mathbf{x}\|_2^2} \Delta\mathbf{y}[i]\mathbf{x}[j] \right)^2 \right)^{1/2} = \frac{\|\Delta\mathbf{y}\|_2}{\|\mathbf{x}\|_2} \leq \tilde{\gamma}_m,$$

326 where the last inequality is a direct application of [\(3.10\)](#).

327 *Applying many successive HH transformations.* Consider applying a sequence of transformations in the set $\{\mathbf{P}_i\}_{i=1}^r \subset \mathbb{R}^{m \times m}$ to $\mathbf{x} \in \mathbb{R}^m$, where \mathbf{P}_i 's are all HH transformations computed with
 328 $\tilde{\mathbf{v}}_i$'s and $\hat{\beta}_i$'s. This is directly applicable to HQR as $\mathbf{Q} = \mathbf{P}_1 \cdots \mathbf{P}_n \mathbf{I}$ and $\mathbf{R} = \mathbf{Q}^\top \mathbf{A} = \mathbf{P}_n \cdots \mathbf{P}_1 \mathbf{A}$.
 329 [Lemma 3.2](#) is very useful for any sequence of transformations, where each transformation has a
 330 known bound. We will invoke this lemma to prove [Lemma 3.3](#), and use it in future sections for
 331 other consecutive transformations.

LEMMA 3.2. If $\mathbf{X}_j + \Delta\mathbf{X}_j \in \mathbb{R}^{m \times m}$ satisfies $\|\Delta\mathbf{X}_j\|_F \leq \delta_j \|\mathbf{X}_j\|_2$ for all j , then

$$\left\| \prod_{j=1}^n (\mathbf{X}_j + \Delta\mathbf{X}_j) - \prod_{j=1}^n \mathbf{X}_j \right\|_F \leq \left(-1 + \prod_{j=1}^n (1 + \delta_j) \right) \prod_{j=1}^n \|\mathbf{X}_j\|_2.$$

LEMMA 3.3. Consider applying a sequence of transformations $\mathbf{Q} = \mathbf{P}_r \cdots \mathbf{P}_2 \mathbf{P}_1$ onto vector $\mathbf{x} \in \mathbb{R}^m$ to form $\hat{\mathbf{y}} = \text{fl}(\hat{\mathbf{P}}_r \cdots \hat{\mathbf{P}}_2 \hat{\mathbf{P}}_1 \mathbf{x})$, where $\hat{\mathbf{P}}_k$'s are HH transformations constructed from $\hat{\beta}_k$ and $\hat{\mathbf{v}}_k$. These HH vectors and constants are computed via [alg. 2](#) and the rounding errors are bounded by [\(3.5\)](#) and [\(3.7\)](#). If each transformation is computed via [\(3.8\)](#), then

$$(3.12) \quad \hat{\mathbf{y}} = \mathbf{Q}(\mathbf{x} + \Delta\mathbf{x}) = (\mathbf{Q} + \Delta\mathbf{Q})\mathbf{x} = \hat{\mathbf{Q}}\mathbf{x},$$

$$(3.13) \quad \|\Delta\mathbf{y}\|_2 \leq r\tilde{\gamma}_m \|\mathbf{x}\|_2, \quad \|\Delta\mathbf{Q}\|_F \leq r\tilde{\gamma}_m.$$

Proof. Applying [Lemma 3.2](#) directly to \mathbf{Q} yields

$$(3.14) \quad \|\Delta\mathbf{Q}\|_F = \left\| \prod_{j=1}^r (\mathbf{P}_j + \Delta\mathbf{P}_j) - \prod_{j=1}^r \mathbf{P}_j \right\|_F \leq \left(-1 + \prod_{j=1}^r (1 + \tilde{\gamma}_{m-j+1})^r \right) \prod_{j=1}^r \|\mathbf{P}_j\|_2 \leq -1 + (1 + \tilde{\gamma}_m)^r,$$

since \mathbf{P}_j 's are orthogonal and have 2-norm, 1, and $m-j+1 \leq m$. While we omit the details here, we can show that $(1 + \tilde{\gamma}_m)^r - 1 \leq r\tilde{\gamma}_m$ using the argument from [Lemma 2.1](#) if $r\tilde{\gamma}_m \leq 1/2$. \square

In this error analysis, the prevailing bound for errors at various stages of forming and applying a HH transformation is $\tilde{\gamma}_m$ where m corresponds to the dimension of the transformed vectors.

In [Lemma 3.3](#), a factor of r is introduced for applying r HH transformations to form the term $r\tilde{\gamma}_m \approx rmu$. Therefore, we can expect that the columnwise norm error for a thin QR factorization should be $\mathcal{O}(mnu)$ for a full rank matrix. In [Theorem 3.4](#), we formalize this by applying [Lemma 3.3](#) directly and also show a conversion of columnwise bounds to a matrix norm bound,

$$(3.15) \quad \|\Delta\mathbf{R}\|_F = \left(\sum_{i=1}^n \|\Delta\mathbf{R}[:, i]\|_2^2 \right)^{1/2} \leq \left(\sum_{i=1}^n n^2 \tilde{\gamma}_m^2 \|\mathbf{A}[:, i]\|_2^2 \right)^{1/2} = n\tilde{\gamma}_m \|\mathbf{A}\|_F.$$

We gather these results into [Theorem 3.4](#).

THEOREM 3.4. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ with $m \geq n$ have full rank, n . Let $\hat{\mathbf{Q}} \in \mathbb{R}^{m \times n}$ and $\hat{\mathbf{R}} \in \mathbb{R}^{n \times n}$ be the thin QR factors of \mathbf{A} obtained via [alg. 3](#). Then,

$$\hat{\mathbf{R}} = \mathbf{R} + \Delta\mathbf{R} = \text{fl}(\hat{\mathbf{P}}_n \cdots \hat{\mathbf{P}}_1 \mathbf{A}), \quad \|\Delta\mathbf{R}[:, j]\|_2 \leq n\tilde{\gamma}_m \|\mathbf{A}[:, j]\|_2, \quad \|\Delta\mathbf{R}\|_F \leq n\tilde{\gamma}_m \|\mathbf{A}\|_F$$

$$\hat{\mathbf{Q}} = \mathbf{Q} + \Delta\mathbf{Q} = \text{fl}(\hat{\mathbf{P}}_1 \cdots \hat{\mathbf{P}}_n \mathbf{I}), \quad \|\Delta\mathbf{Q}[:, j]\|_2 \leq n\tilde{\gamma}_m, \quad \|\Delta\mathbf{Q}\|_F \leq n^{3/2} \tilde{\gamma}_m.$$

In future sections, we show the forward error columnwise bounds for each factor which can be easily converted to matrix norm bounds. The numerical experiments in [section 5](#) measure backward errors with $\|\hat{\mathbf{Q}}\hat{\mathbf{R}} - \mathbf{A}\|_F$ and the orthogonality of the \mathbf{Q} factor with $\|\hat{\mathbf{Q}}^\top \hat{\mathbf{Q}} - \mathbf{I}\|_2$.

The content of this section shows the standard rounding error analysis in [\[14\]](#) where some important stages are summarized in [\(3.5\)](#), [\(3.7\)](#), and [\(3.13\)](#), which we will modify to different mixed precision settings in [section 4](#). These quantities account for various forward and backward errors formed in computing essential components of HQR, namely the HH constant and vector, as well as normwise errors of the action of applying HH transformations. In the next sections, we present blocked variants of HQR that use [alg. 3](#).

366 **3.2. Block HQR with partitioned columns (BQR).** We refer to the blocked variant
 367 of HQR where the columns are partitioned as BQR. Note that this section relies on the WY
 368 representation described in [4] instead of the storage-efficient version of [22], even though both are
 369 known to be just as numerically stable as HQR.

370 **3.2.1. The WY Representation.** A convenient matrix representation that accumulates r
 371 HH reflectors is known as the WY representation (see [4, 11]). Lemma 3.5 shows how to update
 372 a rank- j update of the identity, $\mathbf{Q}^{(j)}$, with a HH transformation, \mathbf{P} , to produce a rank- $(j+1)$
 373 update of the identity, $\mathbf{Q}^{(j+1)}$. With the correct initialization of \mathbf{W} and \mathbf{Y} , we can build the WY
 374 representation of successive HH transformations as shown in Algorithm 4. This algorithm assumes
 375 that the HH vectors, \mathbf{V} , and constants, β , have already been computed. Since the \mathbf{Y} factor is
 376 exactly \mathbf{V} , we only need to compute the \mathbf{W} factor.

LEMMA 3.5. Suppose $\mathbf{X}^{(j)} = \mathbf{I} - \mathbf{W}^{(j)}\mathbf{Y}^{(j)\top} \in \mathbb{R}^{m \times m}$ is an orthogonal matrix with $\mathbf{W}^{(j)}, \mathbf{Y}^{(j)} \in \mathbb{R}^{m \times j}$. Let us define $\mathbf{P} = \mathbf{I} - \beta \mathbf{v} \mathbf{v}^\top$ for some $\mathbf{v} \in \mathbb{R}^m$ and let $\mathbf{z}^{(j+1)} = \beta \mathbf{X}^{(j)} \mathbf{v}$. Then,

$$379 \quad \mathbf{X}^{(j+1)} = \mathbf{X}^{(j)} \mathbf{P} = \mathbf{I} - \mathbf{W}^{(j+1)} \mathbf{Y}^{(j+1)\top},$$

380 where $\mathbf{W}^{(j+1)} = [\mathbf{W}^{(j)} | \mathbf{z}]$ and $\mathbf{Y}^{(j+1)} = [\mathbf{Y}^{(j)} | \mathbf{v}]$ are each m -by- $(j+1)$.

Algorithm 4: $\mathbf{W}, \mathbf{Y} \leftarrow \text{buildWY}(V, \beta)$: Given a set of householder vectors $\{\mathbf{V}[:, i]\}_{i=1}^r$ and their corresponding constants $\{\beta_i\}_{i=1}^r$, form the final \mathbf{W} and \mathbf{Y} factors of the WY representation of $\mathbf{P}_1 \cdots \mathbf{P}_r$, where $\mathbf{P}_i := \mathbf{I}_m - \beta_i \mathbf{v}_i \mathbf{v}_i^\top$

Input: $\mathbf{V} \in \mathbb{R}^{m \times r}$, $\beta \in \mathbb{R}^r$ where $m > r$.

Output: W

```

1 Initialize:  $\mathbf{W} := \beta_1 \mathbf{V}[:, 1]$ .                                /*  $\mathbf{Y}$  is  $\mathbf{V}$ . */
2 for  $j = 2 : r$  do
3    $\mathbf{z} \leftarrow \beta_j [\mathbf{V}[:, j] - \mathbf{W} (\mathbf{V}[:, 1:j-1]^\top \mathbf{V}[:, j])]$ 
4    $\mathbf{W} \leftarrow [\mathbf{W} \quad \mathbf{z}]$                                 /* Update  $\mathbf{W}$  to an  $m$ -by- $j$  matrix. */
5 return  $\mathbf{W}$ 

```

381 In HQR, \mathbf{A} is transformed into an upper triangular matrix \mathbf{R} by identifying a HH transformation
 382 that zeros out a column below the diagonal, then applying that HH transformation to the bottom
 383 right partition. For example, the k^{th} HH transformation finds an $m - k + 1$ sized HH transformation
 384 that zeros out column k below the diagonal and then applies it to the $(m - k + 1)$ -by- $(n - k)$
 385 partition of the matrix, $\mathbf{A}[k : m, k + 1 : n]$. Since the $k + 1^{st}$ column is transformed by the
 386 k^{th} HH transformation, this algorithm must be executed serially as shown in [alg. 3](#). The highest
 387 computational burden at each iteration falls on [alg. 3](#) line 6, which requires Level-2 BLAS operations
 388 when computed efficiently.

389 In contrast, BQR replaces this step with Level-3 BLAS operations by partitioning \mathbf{A} into blocks
 390 of columns. Let $\mathbf{A} = [\mathbf{C}_1 \cdots \mathbf{C}_N]$ where $\mathbf{C}_1, \dots, \mathbf{C}_{N-1}$ are each m -by- r , and \mathbf{C}_N holds the remaining
 391 columns. The k^{th} block, \mathbf{C}_k , is transformed with HQR (alg. 3), and the WY representation of these
 392 r successive HH transformations is constructed as in alg. 4. We write the WY update as

$$393 \quad (3.14) \quad \mathbf{X}_k = \mathbf{I}_m - \mathbf{W}_k \mathbf{Y}_k^\top = \mathbf{P}_k^{(1)} \cdots \mathbf{P}_k^{(r)}.$$

Thus far, [alg. 3](#) and [4](#) are rich in Level-2 BLAS operations. Next, $\mathbf{I} - \mathbf{Y}_k \mathbf{W}_k^\top$ is applied to $[\mathbf{C}_2 \cdots \mathbf{C}_N]$ with two Level-3 BLAS operations as shown in line 5 of [alg. 5](#). BQR performs approximately $1 - \mathcal{O}(1/N)$ fraction of its FLOPs in Level-3 BLAS operations (see section 5.2.3 of [\[11\]](#)), and can reap the benefits from the accelerated block FMA feature of TensorCore. Note that BQR does require strictly more FLOPs when compared to HQR, but these additional FLOPs are negligible in standard precision and does not impact the numerical stability. A pseudoalgorithm for BQR is shown in [alg. 5](#) where we assume that $n = Nr$ to make our error analysis in [section 3.2.2](#) simple. In practice, an efficient implementation might require r to be a power of two or a product of small prime factors and result a thinner N^{th} block compared to the rest. This discrepancy is easily fixed by padding the matrix with zeros, a standard procedure for standard algorithms like the Fast Fourier Transform (FFT). For any variable x in $\{\mathbf{X}, \mathbf{W}, \mathbf{Y}, \mathbf{z}, \beta, \mathbf{v}, \mathbf{P}\}$, $x_k^{(j)}$ corresponds to the j^{th} update for the k^{th} block.

Algorithm 5: $\mathbf{Q}, \mathbf{R} \leftarrow \text{blockHQR}(\mathbf{A}, r)$: Perform HH QR factorization of matrix \mathbf{A} with column partitions of size r .

Input: $\mathbf{A} \in \mathbb{R}^{m \times n}$, $r \in \mathbb{R}$ where $r < n$.

Output: Q, R

```

1  $N = \frac{n}{r}$ 
// Let  $\mathbf{A} = [\mathbf{C}_1 \cdots \mathbf{C}_N]$  where all blocks except  $\mathbf{C}_N$  are  $m$ -by- $r$  sized.
2 for  $i = 1 : N$  do
3    $\mathbf{V}_i, \beta_i, \mathbf{C}_i \leftarrow \text{hhQR}(\mathbf{C}_i)$  /* Algorithm 3 */
4    $\mathbf{W}_i \leftarrow \text{buildWY}(\mathbf{V}_i, \beta_i)$  /* Algorithm 4 */
5    $[\mathbf{C}_{i+1} \cdots \mathbf{C}_N] := \mathbf{V}_i (\mathbf{W}_i^\top [\mathbf{C}_{i+1} \cdots \mathbf{C}_N])$  /* update the rest: BLAS-3 */
//  $\mathbf{A}$  has been transformed into  $\mathbf{R} = \mathbf{Q}^\top \mathbf{A}$ .
// Now build  $\mathbf{Q}$  using level-3 BLAS operations.
6  $\mathbf{Q} \leftarrow \mathbf{I}$  /*  $\mathbf{I}_m$  if full QR, and  $\mathbf{I}_{m \times n}$  if thin QR. */
7 for  $i = N : -1 : 1$  do
8    $\mathbf{Q}[(i-1)r+1 : m, (i-1)r+1 : n] := \mathbf{W}_i (\mathbf{V}_i^\top \mathbf{Q}[(i-1)r+1 : m, (i-1)r+1 : n])$ 
9 return  $\mathbf{Q}, \mathbf{A}$ 

```

405

3.2.2. BQR: Rounding Error Analysis. We now present the basic structure for the rounding error analysis for [alg. 5](#), which consist of: 1)HQR, 2)building the W factor, and 3) updating the remaining blocks with the WY representation. We have adapted the analysis from [\[14\]](#) to fit this exact variant, and denote $\hat{\mathbf{Q}}_{BQR}, \hat{\mathbf{R}}_{BQR}$ to be the outputs from [alg. 5](#). First, we analyze the error accumulated from updating $\mathbf{X}_k^{(j-1)}$ to $\mathbf{X}_k^{(j)}$, which applies a rank-1 update via the subtraction of the outer product $\hat{\mathbf{z}}_k^{(j)} \hat{\mathbf{v}}_k^{(j)\top}$. Since $\mathbf{z}_k^{(j)} = \beta_k^{(j)} \mathbf{X}_k^{(j-1)} \mathbf{v}_k^{(j)}$, this update requires a single HH transformation on the right side in the same efficient implementation that is discussed in [\(3.8\)](#),

$$413 \quad (3.15) \quad \hat{\mathbf{X}}_k^{(j)} = \hat{\mathbf{X}}_k^{(j-1)} - \text{fl}(\hat{\beta}_k^{(j-1)} \hat{\mathbf{X}}_k^{(j-1)} \hat{\mathbf{v}}_k^{(j-1)}) \hat{\mathbf{v}}_k^{(j)\top} = \hat{\mathbf{X}}_k^{(j-1)} (\mathbf{P}_k^{(j)} + \Delta \mathbf{P}_k^{(j)}),$$

414 where $\|\Delta\mathbf{P}_k^{(j)}\|_F \leq \tilde{\gamma}_{m-(k-1)r}$. Since $\hat{\mathbf{X}}_k^{(1)} = \mathbf{I} - \hat{\beta}_k^{(1)}\hat{\mathbf{v}}_k^{(1)}\hat{\mathbf{v}}_k^{(1)\top} = \mathbf{P}_k^{(1)} + \Delta\mathbf{P}_k^{(1)}$, we can travel up
415 the recursion relation in (3.15) and use Lemma 3.2 to form

$$416 \quad (3.16) \quad \|\Delta \mathbf{X}_k^{(j)}\|_F \leq j \tilde{\gamma}_{m-(k-1)r}.$$

417 *HQR within each block: line 3 of alg. 5.* We apply [Algorithm 3](#) to the k^{th} block, $\hat{\mathbf{X}}_{k-1} \cdots \hat{\mathbf{X}}_1 \mathbf{C}_k$,
 418 which applies r more HH transformations to columns that had been transformed by $(k-1)$ WY
 419 transformations in prior iterations. The upper trapezoidal factor that results from applying HQR
 420 to $\mathbf{C}_k^{((k-1)r)}$ corresponds to the $(k-1)r + 1^{st}$ to kr^{th} columns of $\hat{\mathbf{R}}_{BQR}$, and applying [Lemmas 3.2](#)
 421 and [3.3](#) yields

$$422 \quad \|\hat{\mathbf{R}}_{BQR}[:, j] - \mathbf{R}[:, j]\|_2 \leq r\tilde{\gamma}_m \|\hat{\mathbf{X}}_{k-1} \cdots \hat{\mathbf{X}}_1^\top \mathbf{C}_k[:, j]\|_2, \quad j = (k-1)r + 1 : kr.$$

423 *Build WY at each block: line 4 of alg. 5.* We now calculate the rounding errors incurred from
 424 building the WY representation when given a set of HH vectors and constants as shown in [alg. 4](#).
 425 Since the columns of $\hat{\mathbf{Y}}_k$ are simply $\{\hat{\mathbf{v}}_k^{(j)}\}$ built in [alg. 3](#) the errors for forming these are shown in
 426 [\(3.5\)](#) where m should be replaced by $m - (k-1)r$. The HH constants, $\hat{\beta}_k^{(j)}$ are bounded by [\(3.7\)](#)
 427 modified similarly. Thus, $\mathbf{z}_k^{(j)}$ is the only newly computed quantity. Using [\(3.5\)](#), [\(3.7\)](#), and [\(3.16\)](#),
 428 we find

$$429 \quad \|\Delta \mathbf{z}_k^{(j)}\|_2 = \|\Delta \mathbf{X}_k^{(j-1)} \hat{\beta}_k^{(j)} \hat{\mathbf{v}}_k^{(j)}\|_2 \leq \|\Delta \mathbf{X}_k^{(j-1)}\|_2 \|\hat{\beta}_k^{(j)} \hat{\mathbf{v}}_k^{(j)}\|_2 \leq \|\Delta \mathbf{X}_k^{(j-1)}\|_F \|\hat{\beta}_k^{(j)} \hat{\mathbf{v}}_k^{(j)}\|_2 \\ 430 \quad \leq ((1 + (j-1)\tilde{\gamma}_{m-(k-1)r})(1 + \tilde{\gamma}_{m-(k-1)r}) - 1) \|\hat{\beta}_k^{(j)} \hat{\mathbf{v}}_k^{(j)}\|_2 \leq j\tilde{\gamma}_{m-(k-1)r} \|\mathbf{z}_k^{(j)}\|_2.$$

432 Componentwise bounds follow immediately, and are summarized in [Lemma 3.6](#).

433 LEMMA 3.6. *Consider the construction of the WY representation for the k^{th} partition of matrix
 434 $\mathbf{A} \in \mathbb{R}^{m \times n}$ given a set of HH constants and vectors, $\{\beta_k^{(j)}\}_{j=1}^r$ and $\{\mathbf{v}_k^{(j)}\}$ via [alg. 4](#). Then,*

$$435 \quad (3.17) \quad \hat{\mathbf{z}}_k^{(j)} = \mathbf{z}_k^{(j)} + \Delta \mathbf{z}_k^{(j)}, \quad |\Delta \mathbf{z}_k^{(j)}| \leq j\tilde{\gamma}_{m-(k-1)r} |\mathbf{z}_k^{(j)}|, \quad \|\Delta \mathbf{z}_k^{(j)}\|_2 \leq j\tilde{\gamma}_{m-(k-1)r} \|\mathbf{z}_k^{(j)}\|_2.$$

436 Most importantly, this shows that constructing the WY update is just as numerically stable as
 437 applying successive HH transformations (see Section 19.5 of [\[14\]](#)).

438 *Update blocks to the right: line 5 of alg. 5.* We now consider applying $\mathbf{X}_k := \mathbf{I} - \mathbf{W}_k \mathbf{Y}_k^\top$ to
 439 some matrix, \mathbf{B} . In practice, \mathbf{B} is the bottom right submatrix, $[\mathbf{C}_{k+1} \cdots \mathbf{C}_N][(k-1)r + 1 : m, :]$.
 440 We can apply [\(3.16\)](#) directly to the columns of \mathbf{B} ,

$$441 \quad (3.18) \quad \|\mathbf{f}(\hat{\mathbf{X}}_k \mathbf{B}[:, j])\|_2 = \|\mathbf{f}(\hat{\mathbf{X}}_k^{(r)} \mathbf{B}[:, j])\|_2 \leq r\tilde{\gamma}_{m-(k-1)r} \|\mathbf{B}[:, j]\|_2$$

443 A normwise bound for employing a general matrix-matrix multiplication operation is stated in
 444 section 19.5 of [\[14\]](#).

445 *Multiple WY updates: line 8-9 of alg. 5.* All that remains is to consider the application of
 446 successive WY updates to form the QR factorization computed with BQR denoted as \mathbf{Q}_{BQR} and
 447 \mathbf{R}_{BQR} . We can apply [Lemma 3.2](#) directly by setting $\mathbf{X}_k := \mathbf{I} - \mathbf{W}_k \mathbf{Y}_k^\top$ and consider the backward
 448 errors for applying the sequence to a vector, $\mathbf{x} \in \mathbb{R}^m$, as we did for [Lemma 3.3](#). Since $\mathbf{X}_k =$
 449 $\mathbf{P}_{(k-1)r+1} \cdots \mathbf{P}_{kr}$, is simply a sequence of HH transformations, it is orthogonal, i.e. $\|\mathbf{X}_k\|_2 = 1$. We
 450 only need to replace with \mathbf{x} with $\mathbf{A}[:, i]$'s to form the columnwise bounds for \mathbf{R}_{BQR} , and apply the
 451 transpose to $\hat{\mathbf{e}}_i$'s to form the bounds for \mathbf{Q}_{BQR} . Then,

$$452 \quad (3.19) \quad \left\| \prod_{k=1}^N (\mathbf{X}_k + \Delta \mathbf{X}_k) - \prod_{k=1}^N \mathbf{X}_k \right\|_F \leq \left(-1 + \sum_{k=1}^N (1 + r\tilde{\gamma}_{m-(k-1)r}) \right) \leq rN\tilde{\gamma}_m \equiv n\tilde{\gamma}_m,$$

$$453 \quad (3.20) \quad \|\hat{\mathbf{Q}}_{BQR} - \mathbf{Q}\|_F \leq n^{3/2} \tilde{\gamma}_m.$$

455 We can also form the normwise bound for the j' th column of $\hat{\mathbf{Q}}_{BQR}, \hat{\mathbf{R}}_{BQR}$. If we let $k' = \lceil j'/r \rceil^{th}$,
 456 then the j' th column is the result of applying $k' - 1$ WY updates and an additional HQR. Applying
 457 [Lemma 3.2](#) yields

458 (3.21) $\|\Delta \mathbf{R}_{BQR}[:, j']\|_2 \leq rk' \tilde{\gamma}_m \|\mathbf{A}[:, j']\|_2, \quad \|\Delta \mathbf{R}_{BQR}\|_F \leq n \tilde{\gamma}_m \|\mathbf{A}\|_F$

459 (3.22) $\|\Delta \mathbf{Q}_{BQR}[:, j']\|_2 \leq rk' \tilde{\gamma}_m, \quad \|\Delta \mathbf{Q}_{BQR}\|_F = r \tilde{\gamma}_m \sum_{j=1}^n \lceil j/r \rceil = n^{3/2} \tilde{\gamma}_m.$
 460

461 and near orthogonality of the \mathbf{Q} factor is still achieved.

462 *BQR and HQR error bound comparison.* BQR under exact arithmetic is equivalent to HQR,
 463 and it is often referred to as the level-3 BLAS version of HQR. Furthermore, the error analysis of
 464 this section shows that BQR is as numerically stable as HQR despite requiring more FLOPs. In
 465 fact, many linear algebra libraries such as LAPACK use a variant of BQR as the QR factorization
 466 algorithm (see `dgeqrf` of [2]). The primary goal of the analysis presented in this section is to
 467 provide the basic skeleton for the standard BQR rounding error analysis to make the generalization
 468 to mixed precision settings in [section 4](#) easier. Readers should refer to [11, 14] for full details.

469 **3.3. Block HQR with partitioned rows : Tall-and-Skinny QR (TSQR).** Some im-
 470 portant problems that require QR factorizations of overdetermined systems include least squares
 471 problems, eigenvalue problems, low rank approximations, as well as other matrix decompositions.
 472 Although Tall-and-Skinny QR (TSQR) broadly refers to block QR factorization methods with row
 473 partitions, we will discuss a specific variant of TSQR which is also known as the AllReduce algo-
 474 rithm [21]. In this paper, the TSQR/AllReduce algorithm refers to the most parallel variant of
 475 the block QR factorization algorithms discussed in [9]. A detailed description and rounding error
 476 analysis of this algorithm can be found in [21], and we present a pseudocode for the algorithm in
 477 [alg. 6](#). Our initial interest in this algorithm came from its parallelizable nature, which is particu-
 478 larly suitable to implementation on GPUs. Additionally, our numerical simulations (discussed in
 479 [section 5](#)) show that TSQR can not only increase the speed but also outperform the traditional
 480 HQR factorization in low precisions.

481 **3.3.1. TSQR/AllReduce Algorithm.** [Algorithm 6](#) partitions the rows of a tall-and-skinny
 482 matrix, \mathbf{A} . HQR is performed on each of those blocks and pairs of \mathbf{R} factors are combined to form
 483 the next set of \mathbf{A} matrices to be QR factorized. This process is repeated until only a single \mathbf{R} factor
 484 remains, and the \mathbf{Q} factor is built from all of the HH constants and vectors stored at each level.
 485 The most gains from parallelization can be made in the initial level where the maximum number
 486 of independent HQR factorizations occur. Although more than one configuration of this algorithm
 487 may be available for a given tall-and-skinny matrix, the number of nodes available and the shape of
 488 the matrix eliminate some of those choices. For example, a 1600-by-100 matrix can be partitioned
 489 into 2, 4, 8, or 16 initial row-blocks but may be restricted by a machine with only 4 nodes, and a
 490 1600-by-700 matrix can only be partitioned into 2 initial blocks. Our numerical experiments show
 491 that the choice in the initial partition, which directly relates to the recursion depth of TSQR, has
 492 an impact in the accuracy of the QR factorization.

493 We refer to *level* as the number of recursions in a particular TSQR implementation. An
 494 L -level TSQR algorithm partitions the original matrix into $2^{(l)}$ submatrices in the initial or 0^{th}
 495 level of the algorithm, and 2^{L-i} QR factorizations are performed in level i for $i = 1, \dots, L$. The
 496 set of matrices that are QR factorized at each level i are called $\mathbf{A}_j^{(i)}$ for $j = 1, \dots, 2^{L-i}$, where
 497 superscript (i) corresponds to the level and the subscript j indexes the row-blocks within level

498 *i.* In the following sections, [alg. 6](#) (tsqr) will find a TSQR factorization of a matrix $A \in \mathbb{R}^{m \times n}$
 499 where $m \gg n$. The inline function `qr` refers to [alg. 3](#) and we use [alg. 2](#) as a subroutine of `qr`.

Algorithm 6: $\mathbf{Q}, \mathbf{R} = \text{tsqr}(\mathbf{A}, L)$. Finds a QR factorization of a tall, skinny matrix, \mathbf{A} .

Input: $\mathbf{A} \in \mathbb{R}^{m \times n}$ where $m \gg n$, $L \leq \lfloor \log_2 \left(\frac{m}{n} \right) \rfloor$, and 2^L is the initial number of blocks.
Output: $\mathbf{Q} \in \mathbb{R}^{m \times n}$, $\mathbf{R} \in \mathbb{R}^{n \times n}$ such that $\mathbf{QR} = \mathbf{A}$.

```

1   $h \leftarrow m2^{-L}$  // Number of rows.
2  /* Split  $\mathbf{A}$  into  $2^L$  blocks. Note that level  $(i)$  has  $2^{L-i}$  blocks. */
3  for  $j = 1 : 2^L$  do
4     $\mathbf{A}_j^{(0)} \leftarrow \mathbf{A}[(j-1)h + 1 : jh, :]$ 
5    /* Store HH vectors as columns of matrix  $\mathbf{V}_j^{(i)}$ , HH constants as components of
6     vector  $\beta_j^{(i)}$ , and set up the next level. */
7    for  $i = 0 : L-1$  do
8      /* The inner loop can be parallelized. */
9      for  $j = 1 : 2^{L-i}$  do
10      $\mathbf{V}_{2j-1}^{(i)}, \beta_{2j-1}^{(i)}, \mathbf{R}_{2j-1}^{(i)} \leftarrow \text{qr}(\mathbf{A}_{2j-1}^{(i)})$ 
11      $\mathbf{V}_{2j}^{(i)}, \beta_{2j}^{(i)}, \mathbf{R}_{2j}^{(i)} \leftarrow \text{qr}(\mathbf{A}_{2j}^{(i)})$ 
12      $\mathbf{A}_j^{(i+1)} \leftarrow \begin{bmatrix} \mathbf{R}_{2j-1}^{(i)} \\ \mathbf{R}_{2j}^{(i)} \end{bmatrix}$ 
13    $\mathbf{V}_1^{(L)}, \beta_1^{(L)}, \mathbf{R} \leftarrow \text{qr}(\mathbf{A}_1^{(L)})$  // The final  $\mathbf{R}$  factor is built.
14    $\mathbf{Q}_1^{(L)} \leftarrow \text{hh\_mult}(\mathbf{V}_1^{(L)}, I_{2n \times n})$ 
15   /* Compute  $\mathbf{Q}^{(i)}$  factors by applying  $\mathbf{V}^{(i)}$  to  $\mathbf{Q}^{(i+1)}$  factors. */
16   for  $i = L-1 : -1 : 1$  do
17     for  $j = 1 : 2^{L-i}$  do
18        $\mathbf{Q}_j^{(i)} \leftarrow \text{hh\_mult}\left(\mathbf{V}_j^{(i)}, \begin{bmatrix} \tilde{\mathbf{Q}}_{\alpha(j), \phi(j)}^{(i+1)} \\ \mathbf{0} \end{bmatrix}\right)$ 
19   Q  $\leftarrow []$ ; // Construct the final  $\mathbf{Q}$  factor.
20   for  $j = 1 : 2^L$  do
21      $\mathbf{Q} \leftarrow \begin{bmatrix} \mathbf{Q} \\ \text{hh\_mult}\left(\mathbf{V}_j^{(0)}, \begin{bmatrix} \tilde{\mathbf{Q}}_{\alpha(j), \phi(j)}^{(1)} \\ \mathbf{0} \end{bmatrix}\right) \end{bmatrix}$ 
22 return  $\mathbf{Q}, \mathbf{R}$ 

```

501 *TSQR Notation.* We introduce new notation due to the multi-level nature of the TSQR
 502 algorithm. In the final task of constructing \mathbf{Q} , $\mathbf{Q}_j^{(i)}$ factors are aggregated from each block at each level.
 503 Each $\mathbf{Q}_j^{(i)}$ factor from level i is partitioned such that two corresponding $\mathbf{Q}^{(i-1)}$ factors from level $i-1$
 504 can be applied to them. The partition (approximately) splits $\mathbf{Q}_j^{(i)}$ into two halves, $[\tilde{\mathbf{Q}}_{j,1}^{(i)\top} \tilde{\mathbf{Q}}_{j,2}^{(i)\top}]^\top$.
 505 The functions $\alpha(j)$ and $\phi(j)$ are defined such that $\mathbf{Q}_j^{(i)}$ is applied to the correct blocks from the level
 506 below: $\tilde{\mathbf{Q}}_{\alpha(j), \phi(j)}^{(i+1)}$. For $j = 1, \dots, 2^{L-i}$ at level i , we need $j = 2(\alpha(j)-1) + \phi(j)$, where $\alpha(j) = \lceil \frac{j}{2} \rceil$
 507 and $\phi(j) = 2 + j - 2\alpha(j) \in \{1, 2\}$. [section 3.3.2](#) shows full linear algebra details for a single-level

508 $(L = 1, 2$ initial blocks) example. The reconstruction of \mathbf{Q} can be implemented more efficiently (see
509 [3]), but the reconstruction method in [alg. 6](#) is presented for a clear, straightforward explanation.

510 **3.3.2. Single-level Example.** In the single-level version of this algorithm, we first bisect \mathbf{A}
511 into $\mathbf{A}_1^{(0)}$ and $\mathbf{A}_2^{(0)}$ and compute the QR factorization of each of those submatrices. We combine the
512 resulting upper-triangular matrices (see below) which is QR factorized, and the process is repeated:

$$513 \quad \mathbf{A} = \begin{bmatrix} \mathbf{A}_1^{(0)} \\ \mathbf{A}_2^{(0)} \end{bmatrix} = \begin{bmatrix} \mathbf{Q}_1^{(0)} \mathbf{R}_1^{(0)} \\ \mathbf{Q}_2^{(0)} \mathbf{R}_2^{(0)} \end{bmatrix} = \begin{bmatrix} \mathbf{Q}_1^{(0)} & \mathbf{0} \\ \mathbf{0} & \mathbf{Q}_2^{(0)} \end{bmatrix} \begin{bmatrix} \mathbf{R}_1^{(0)} \\ \mathbf{R}_2^{(0)} \end{bmatrix} = \begin{bmatrix} \mathbf{Q}_1^{(0)} & \mathbf{0} \\ \mathbf{0} & \mathbf{Q}_2^{(0)} \end{bmatrix} \mathbf{A}_1^{(1)} = \begin{bmatrix} \mathbf{Q}_1^{(0)} & \mathbf{0} \\ \mathbf{0} & \mathbf{Q}_2^{(0)} \end{bmatrix} \mathbf{Q}_1^{(1)} \mathbf{R}.$$

514 The \mathbf{R} factor of $\mathbf{A}_1^{(1)}$ is the final \mathbf{R} factor of the QR factorization of the original matrix, \mathbf{A} . However,
515 the final \mathbf{Q} still needs to be constructed. Bisecting $\mathbf{Q}_1^{(1)}$ into two submatrices, i.e. $\tilde{\mathbf{Q}}_{1,1}^{(1)}$ and $\tilde{\mathbf{Q}}_{1,2}^{(1)}$,
516 allows us to write and compute the product more compactly,

$$517 \quad \mathbf{Q} := \begin{bmatrix} \mathbf{Q}_1^{(0)} & \mathbf{0} \\ \mathbf{0} & \mathbf{Q}_2^{(0)} \end{bmatrix} \mathbf{Q}_1^{(1)} = \begin{bmatrix} \mathbf{Q}_1^{(0)} & \mathbf{0} \\ \mathbf{0} & \mathbf{Q}_2^{(0)} \end{bmatrix} \begin{bmatrix} \tilde{\mathbf{Q}}_{1,1}^{(1)} \\ \tilde{\mathbf{Q}}_{1,2}^{(1)} \end{bmatrix} = \begin{bmatrix} \mathbf{Q}_1^{(0)} \tilde{\mathbf{Q}}_{1,1}^{(1)} \\ \mathbf{Q}_2^{(0)} \tilde{\mathbf{Q}}_{1,2}^{(1)} \end{bmatrix}.$$

518 More generally, [alg. 6](#) takes a tall-and-skinny matrix \mathbf{A} and level L and finds a QR factorization
519 by initially partitioning \mathbf{A} into $2^{(l)}$ row-blocks and includes the building of \mathbf{Q} . For simplicity, we
520 assume that m is exactly $h2^{(l)}$ so that the initial partition yields $2^{(l)}$ blocks of equal sizes, h -by- n .
521 Also, note that `hh_mult` refers to the action of applying multiple HH transformations given a set
522 of HH vectors and constants, which can be performed by iterating line 6 of [alg. 3](#). This step can
523 be done in a level-3 BLAS operation via a WY update if [alg. 6](#) was modified to store the WY
524 representation at the QR factorization of each block of each level, $\mathbf{A}_j^{(i)}$.

525 **3.3.3. TSQR: Rounding Error Analysis.** The TSQR algorithm presented in [alg. 6](#) is a
526 divide-and-conquer strategy for the QR factorization that uses the HQR within the subproblems.
527 Divide-and-conquer methods can naturally be implemented in parallel and accumulate less rounding
528 errors. For example, the single-level TSQR decomposition of a tall-and-skinny matrix, \mathbf{A} requires
529 3 total HQRs of matrices of sizes $\lfloor \log_2(\frac{m}{n}) \rfloor$ -by- n , $\lceil \log_2(\frac{m}{n}) \rceil$ -by- n , and $2n$ -by- n . The single-level
530 TSQR strictly uses more FLOPs, but the dot product subroutines may accumulate smaller rounding
531 errors (and certainly have smaller upper bounds) since they are performed on shorter vectors, and
532 lead to a more accurate solution overall. These concepts are elucidated in [21] and we summarize
533 the main results in [Theorem 3.7](#).

534 **THEOREM 3.7.** *Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ with $m \geq n$ have full rank, n , and $\hat{\mathbf{Q}}_{TSQR} \in \mathbb{R}^{m \times n}$ and
535 $\hat{\mathbf{R}}_{TSQR} \in \mathbb{R}^{n \times n}$ be the thin QR factors of \mathbf{A} obtained via [alg. 6](#) with L levels. Let us further
536 assume that m is divisible by 2^L and $n\tilde{\gamma}_{m2^{-L}}, n\tilde{\gamma}_{2n} \ll 1$. Then, 2-norm error bound for the j^{th}
537 column ($j = 1 : n$) of $\hat{\mathbf{R}}_{TSQR}$ and the Frobenius norm error bound for $\hat{\mathbf{Q}}_{TSQR}$ are*

$$538 \quad (3.23) \quad \|\hat{\mathbf{R}}_{TSQR}[:, j] - \mathbf{R}[:, j]\|_2 \leq n(\tilde{\gamma}_{m2^{-L}} + L\tilde{\gamma}_{2n})\|\mathbf{A}[:, j]\|_2,$$

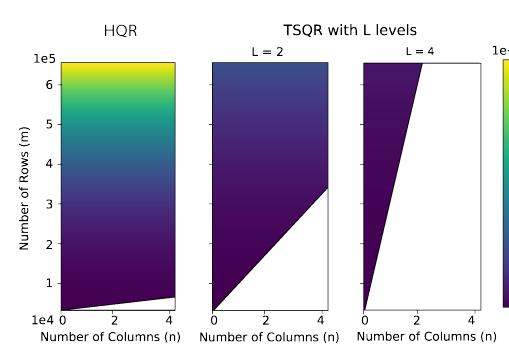
$$539 \quad (3.24) \quad \|\hat{\mathbf{Q}}_{TSQR} - \mathbf{Q}\|_F \leq n^{3/2}(\tilde{\gamma}_{m2^{-L}} + L\tilde{\gamma}_{2n}).$$

541 Note that the $n\tilde{\gamma}_{m2^{-L}}$ and $n\tilde{\gamma}_{2n}$ terms correspond to errors from applying HQR to the blocks
542 in the initial partition and to the blocks in levels 1 through L respectively. We can easily replace
543 these with analogous mixed precision terms and keep the analysis accurate. Both level-2 and level-3
544 BLAS implementations will be considered in [section 4](#).

545 *TSQR and HQR error bound comparison.* We compare the error bounds for HQR and TSQR.
 546 Consider the bounds for $\|\hat{\mathbf{Q}} - \mathbf{Q}\|_F$ in [Theorems 3.4](#) and [3.7](#). TSQR has a lower worst-case error
 547 bound than HQR when integers $m, n > 0$, and $L \geq 0$ satisfy

$$548 \quad 1 \gg n^{3/2} \gamma^{(m)} \gg n^{3/2} (\gamma^{(\frac{m}{2^L})} + L \gamma^{(2n)}).$$

549 Let us consider as an example the case when $\frac{m}{2^L} = 2n$. Then, the HQR bound is $2^L/(L+1)$ larger
 550 than the bound for TSQR with L levels. For example, in single precision, a HQR of a 2^{15} -by- 2^6
 551 matrix results in an upper bound relative backward error ($\|\mathbf{A} - \hat{\mathbf{Q}}\hat{\mathbf{R}}\|_F/\|\mathbf{A}\|_F$) of ≈ 1.002 , but a
 552 TSQR with $L = 8$ is bounded by $\approx 3.516e-02$. This case exemplifies a situation in which stability
 553 is not guaranteed in HQR, but the method is stable when using TSQR, even in the worst-case.
 554 Now consider some 2^{20} -by- 2^{12} matrix and QR factorizations performed with double precision. The
 555 error bound for HQR is $1.686e-7$, whereas the error bound for TSQR with 12 levels is $5.351e-10$.
 556 In general, we can conjecture that values of L that can make $m2^{-L}$ and $2Ln$ much smaller than m ,
 557 should produce a TSQR that outperforms HQR in worst-case scenarios, at least in uniform precision
 558 settings. However, the range of matrix sizes that TSQR can accommodate decreases as L grows
 559 larger. Figure 1 shows the matrix sizes HQR, 2-level TSQR, and 4-level TSQR can accommodate
 560 as well as their respective error bounds.



574 **FIG. 1.** Non-white space indicates allowable
 575 matrix sizes for each scheme, and color map rep-
 576 resents error bounds for $\|\Delta\mathbf{Q}\|_F$ for uniform pre-
 577 cision error analysis when using double precision
 578 arithmetic.

579 componentwise forward error is,

$$580 \quad \text{castdown}_l(\mathbf{x}) = \mathbf{x} + \Delta\mathbf{x}, \quad |\Delta\mathbf{x}| < u^{(l)}|\mathbf{x}|.$$

581 We use this to represent the backward error of a casting down a vector with a linear transformation,
 582 $\mathbf{I}^{(l)} := \mathbf{I} + \mathbf{E} \in \mathbb{R}^{m \times m}$, a diagonal perturbation of the identity. We write,

$$583 \quad (4.1) \quad \mathbf{x}^{(l)} := \text{castdown}(\mathbf{x}^{(h)}) = \mathbf{I}^{(l)}\mathbf{x}^{(h)} = (\mathbf{I} + \mathbf{E})\mathbf{x}^{(h)} = \mathbf{x}^{(h)} + \Delta\mathbf{x},$$

584 where $|\Delta\mathbf{x}| \leq u^{(l)}|\mathbf{x}^{(h)}|$ and $\|\Delta\mathbf{x}\|_2 \leq u^{(l)}\|\mathbf{x}^{(h)}\|_2$. Thus, $\mathbf{E} = \Delta\mathbf{x}\mathbf{x}^{(h)\top}/\|\mathbf{x}^{(h)}\|_2^2$ and we can use the same
 585 argument as in (3.11) to form a backward matrix norm bound,

$$586 \quad (4.2) \quad \|\mathbf{E}\|_F \leq u^{(l)}.$$

587 *Casting down after HQR in high precision.* Let us consider the trivial case of carrying out HQR
 588 in high precision and casting down at the very end. This is useful for the analysis of mixed precision
 589 block algorithms as will be shown in [subsection 4.1](#). If the two floating point types \mathbb{F}_l and \mathbb{F}_h satisfy
 590 $\mathbb{F}_l \subseteq \mathbb{F}_h$ and the matrix to be factorized is stored with low precision numbers, $\mathbf{A} \in \mathbb{F}_l^{m \times n}$, then
 591 casting up adds no rounding errors. Therefore, we can directly apply the analysis that culminated
 592 in [Theorem 3.4](#), and we only consider the columnwise forward error in the \mathbf{Q} factor. Then, the
 593 j^{th} column of $\hat{\mathbf{Q}}_{HQR} = \mathbf{Q} + \Delta\mathbf{Q}_{HQR}$ is bounded normwise via $\|\Delta\mathbf{Q}_{HQR}[:, j]\|_2 \leq n\tilde{\gamma}_m^h$, and incurs
 594 an extra rounding error when $\hat{\mathbf{Q}}_{HQR} \in \mathbb{F}_h^{m \times n}$ is cast down to $\mathbb{F}_l^{m \times n}$. Using this in [Lemma 3.2](#) to
 595 analyze the forward norm error for the j^{th} column of the \mathbf{Q} factor computed with [alg. 3](#) yields

596 (4.3) $\|(\text{castdown}(\hat{\mathbf{Q}}_{HQR}) - \mathbf{Q})[:, j]\|_2 = \|(\mathbf{I}^{(l)} \hat{\mathbf{P}}_1 \cdots \hat{\mathbf{P}}_n - \mathbf{P}_1 \cdots \mathbf{P}_n) \hat{\mathbf{e}}_j\|_2 \leq u^{(l)} + n\tilde{\gamma}_m^{(h)} + n u^{(l)} \tilde{\gamma}_m^{(h)}.$

597 The final castdown operation increases the upper bound by $u^{(l)}$ and the size of \mathbf{A} has no impact on
 598 this extra rounding error. Applying this trivial mixed precision setting to BQR and TSQR would
 599 simply increases the error bound by approximately $u^{(l)}$ all the while taking an even longer time
 600 than the high precision implementation due the extra cast down and cast up operations. Therefore,
 601 we do not analyze the rounding error analysis of this mixed precision variant of BQR and TSQR.
 602 However, we will use this mixed precision HQR as a subroutine of the mixed precision BQR and
 603 TSQR in the following section.

604 **4.1. Round down at block-level: level-3 BLAS mixed precision setting.** The mixed
 605 precision setting in this section is designed to meet the below requirements.

- 606 1. Modify [Algorithms 5](#) and [6](#) to maximize level-3 BLAS operations and use TensorCore
 607 bFMAs.
- 608 2. Apply (4.3) to all instances of HQR to the error analyses for BQR and TSQR in [section 3](#).
- 609 3. Cast down quantities at every block/level and the insertion of low precision errors $u^{(l)}$
 610 should be somewhat correlated to the number of blocks and levels.
- 611 4. Both input and output of the various QR factorization algorithms are given in the low
 612 precision.

613 TensorCore's bFMA computes

614 (4.4) $\hat{\mathbf{D}} = \text{fl}_{TC}(\mathbf{C} + \mathbf{A}\mathbf{B}), \quad \mathbf{C}, \mathbf{D} \in \mathbb{F}_{\text{fp16}}^{4 \times 4} \text{ or } \mathbb{F}_{\text{fp32}}^{4 \times 4}, \text{ and } \mathbf{A}, \mathbf{B} \in \mathbb{F}_{\text{fp16}}^{4 \times 4},$

615 and employs *full* precision products and fp32 summation accumulate. Here, the *full* precision
 616 multiplication is exact as explained in [section 2](#). In [5], the authors investigate all four possible
 617 matrix-matrix multiplication routines in TensorCore, which depend on whether \mathbf{C} and \mathbf{D} are com-
 618 puted in fp16 or fp32. They also note that matrices larger than 4-by-4 can still be computed using
 619 this block FMA by accumulating matrix sums with $\mathbf{C} \in \mathbb{F}_{\text{fp32}}^{4 \times 4}$. Suppose that we aim to compute
 620 a fp16 matrix product of two fp16 matrices, $\mathbf{X} \in \mathbb{F}_{(\text{fp16})}^{m \times p}$, $\mathbf{Y} \in \mathbb{F}_{(\text{fp16})}^{p \times n}$, and $\mathbf{Z} = \mathbf{XY} \in \mathbb{F}_{\text{fp16}}^{m \times n}$. We
 621 pad \mathbf{X} , \mathbf{Y} with zeros so that all matrix dimensions are multiples of 4 and the matrix product can
 622 be computed with the TensorCore block FMA. Let $\mathbf{Q}_{[i,j]} := \mathbf{Q}[4(i-1) + 1 : 4i, 4(j-1) + 1 : 4j]$
 623 refer to the $(i, j)^{th}$ 4-by-4 block for any $\mathbf{Q} \in \{\mathbf{X}, \mathbf{Y}, \mathbf{Z}\}$. Then, we compute $\mathbf{Z}_{[i,j]}$ via

624
$$\mathbf{Z}_{[i,j]} = \sum_{k=1}^{\lceil p/4 \rceil} \mathbf{X}_{[i,k]} \mathbf{Y}_{[k,j]},$$

625 where we use (4.4) by initializing with $\mathbf{A}^{(1)} := \mathbf{X}_{[i,1]}$, $\mathbf{B}^{(1)} := \mathbf{Y}_{[1,j]}$, and $\mathbf{C}^{(1)} := \mathbf{0}_{4 \times 4}$ and setting
 626 $\mathbf{A}^{(k)} := \mathbf{X}_{[i,k]}$, $\mathbf{B}^{(k)} := \mathbf{Y}_{[k,j]}$, and $\mathbf{C}^{(k)} := \mathbf{D}^{(k-1)}$ for $k = 2 : \lceil p/4 \rceil$. By setting $\mathbf{C}^{(k)}, \mathbf{D}^{(k)} \in \mathbb{F}_{\text{fp32}}^{4 \times 4}$

627 for $k > 1$ and only casting down at the end via $\mathbf{Z}_{[i,j]} = \text{fp16}(\mathbf{D}^{\lceil (p/4) \rceil})$, we maximize our use of
 628 fp32 arithmetic. This computes the most accurate mixed precision matrix product routine possible
 629 using TensorCore bFMAs whose inputs and output are required to be stored in fp16. For example,
 630 take $p = 8$. Then the $[i, j]^{\text{th}}$ 4-by-4 block of the product is computed via,

$$\mathbf{D}^{(1)} = \text{fl}_{TC}(\mathbf{X}_{[i,1]} \mathbf{Y}_{[1,j]}), \quad \mathbf{D}^{(2)} = \text{fl}_{TC}(\mathbf{X}_{[i,2]} \mathbf{Y}_{[2,j]} + \mathbf{D}^{(1)}) \in \mathbb{F}_{\text{fp32}}^{4 \times 4}$$

$$\mathbf{Z}_{[i,j]} = \text{castdown}(\mathbf{D}^{(2)}) \in \mathbb{F}_{\text{fp16}}^{4 \times 4}.$$

634 Adapting the rounding error analysis in [5] into this specific mixed precision matrix product setting
 635 yields the componentwise forward bound

$$636 \quad (4.5) \quad |\mathbf{Z} - \text{fl}(\mathbf{Z})| \leq \left(u^{(\text{fp16})} + \gamma_{p/4}^{(\text{fp32})} + u^{(\text{fp16})} \gamma_{p/4}^{(\text{fp32})} \right) |\mathbf{X}| |\mathbf{Y}|.$$

637 We denote BQR and TSQR computed via TensorCore bFMA's with `mpBQR3` and `mpTSQR3`,
 638 where the 3 represents the BLAS level-3 nature of this mixed precision setting.

639 **4.1.1. BQR round down at block level:** `mpBQR3`. Consider the input matrix, $\mathbf{A} \in \mathbb{F}_l^{m \times n}$,
 640 partitioned into N blocks of r columns, $\mathbf{A} = [\mathbf{C}_1 \cdots \mathbf{C}_N]$ as in subsection 3.2. Algorithm 7 shows a
 641 mixed precision variant of BQR that maximizes the use of bFMAs but uses high precision arithmetic
 642 for level-1 and 2 BLAS operations which are only a $\mathcal{O}(1/N)$ fraction of the total number of FLOPs.
 643 Each block is casted up to compute a high precision HQR and to form the WY representation.
 644 The WY representation is then casted down to low precision since the bFMAs require low precision
 645 inputs for matrix products, and the \mathbf{R} factor from the high precision HQR can be casted down to
 646 return a low precision \mathbf{R} factor at the very end. Since the cast down operations for the \mathbf{R} factor
 647 and the WY representations occur at every block, we can expect columnwise error bound for alg. 7
 to increase by approximately $Nu^{(l)}$ from the error bound for alg. 5.

Algorithm 7: $\hat{\mathbf{Q}}_{mpBQR3}, \hat{\mathbf{R}}_{mpBQR3} \leftarrow \text{mpBQR3}(\mathbf{A}, r)$: Perform a mixed precision variant of BQR of low precision \mathbf{A} with column partitions of size r . $\hat{\mathbf{Q}}_{mpBQR3}, \hat{\mathbf{R}}_{mpBQR3}$, are returned in low precision. Operations in lines 7 and 10 require low precision inputs.

```

Input:  $\mathbf{A}, r$ 
1  $N = \frac{n}{r}$ 
2 for  $k = 1 : N - 1$  do
3    $\mathbf{V}_k, \beta_k, \mathbf{C}_k \leftarrow \text{hhQR}(\text{castup}(\mathbf{C}_k))$            /* Algorithm 3 in high precision. */
4    $\mathbf{C}_k \leftarrow \text{castdown}(\mathbf{C}_k)$                                 /* Builds  $\mathbf{R}$  factor in low precision. */
5    $\mathbf{W}_k \leftarrow \text{buildWY}(\mathbf{V}_k, \beta_k)$                          /* Algorithm 4 in high precision */
6    $[\mathbf{V}_k, \mathbf{W}_k] \leftarrow \text{castdown}([\mathbf{V}_k, \mathbf{W}_k])$ 
7    $[\mathbf{C}_{k+1} \cdots \mathbf{C}_N] := \mathbf{V}_k (\mathbf{W}_k^\top [\mathbf{C}_{k+1} \cdots \mathbf{C}_N])$  /* returned in low precision */
8  $\mathbf{Q} \leftarrow \mathbf{I}$                                          /* Build  $\mathbf{Q}$ :  $\mathbf{I}_m$  if full QR, and  $\mathbf{I}_{m \times n}$  if thin QR. */
9 for  $k = N : -1 : 1$  do
10  // All updates are returned in low precision.
11   $\mathbf{Q}[(k-1)r+1 : m, (k-1)r+1 : n] := \mathbf{W}_k (\mathbf{V}_k^\top \mathbf{Q}[(k-1)r+1 : m, (k-1)r+1 : n])$ 
return  $\mathbf{Q}, \mathbf{A}$ 

```

649 Since $\hat{\mathbf{W}}_k, \hat{\mathbf{Y}}_k$'s are computed with [alg. 4](#) in high precision then cast down, the new low precision
650 WY update is $\hat{\mathbf{X}}_k^{(l)} = \mathbf{I} - \mathbf{I}^{(l)} \hat{\mathbf{W}}_k \mathbf{I}^{(l)} \hat{\mathbf{Y}}_k^{(\top)}$. Consider applying $\hat{\mathbf{X}}_k^{(l)}$ to some matrix stored in low
651 precision, \mathbf{B} using the TensorCore bFMAs. We analyze a single column $\mathbf{b}_j := \mathbf{B}[:, j] \in \mathbb{F}_l^{m-(k-1)r}$
652 even though this operation is done on \mathbf{B} as a whole. Let $\mathbf{I}^{(l)} \hat{\mathbf{W}}_k = (\mathbf{I} + \mathbf{E}_W) \hat{\mathbf{W}}_k$ and $\mathbf{I}^{(l)} \hat{\mathbf{Y}}_k =$
653 $(\mathbf{I} + \mathbf{E}_Y) \hat{\mathbf{Y}}_k$, where $\mathbf{E}_W, \mathbf{E}_Y$ are diagonal and bounded componentwise by $u^{(l)}$. Then, the Frobenius
654 norm error of forming $\hat{\mathbf{X}}_k^{(l)}$ is,

$$\begin{aligned} 655 \quad \|\hat{\mathbf{X}}_k^{(l)} - \mathbf{X}_k\|_F &= \| -(\mathbf{I} + \mathbf{E}_W + \mathbf{E}_Y + \mathbf{E}_W \mathbf{E}_Y) \hat{\mathbf{W}}_k \hat{\mathbf{Y}}_k^\top + \mathbf{W}_k \mathbf{Y}_k^\top \|_F, \\ 656 \quad &\leq \left((1 + \gamma_2^{(l)} + (u^{(l)})^2) r \tilde{\gamma}_{m-(k-1)r}^{(h)} + \gamma_2^{(l)} + (u^{(l)})^2 \right) \|\mathbf{X}_k\|_F \\ 657 \quad &\leq \tilde{\gamma}_2^{(l)} + r \tilde{\gamma}_{m-(k-1)r}^{(h)} + r \tilde{\gamma}_2^{(l)} \tilde{\gamma}_{m-(k-1)r}^{(h)}. \end{aligned}$$

659 Now, we consider the backward error of applying $\hat{\mathbf{X}}_k^{(l)}$ to \mathbf{b}_j with the bFMA matrix product error
660 bound from [\(4.5\)](#). The multiplication by $(\mathbf{I}^{(l)} \hat{\mathbf{Y}}_k)^\top$ yields backward error bounded by

$$661 \quad \text{fl}_{TC}((\mathbf{I}^{(l)} \hat{\mathbf{Y}}_k)^\top \mathbf{b}_j) = (\hat{\mathbf{Y}}_k + \Delta_{TC} \hat{\mathbf{Y}}_k) \mathbf{b}_j, \quad |\Delta_{TC} \hat{\mathbf{Y}}_k| \leq u^{(l)} + \gamma_{\frac{m-(k-1)}{4}}^{(h)} + u^{(l)} \gamma_{\frac{m-(k-1)}{4}}^{(h)} |\hat{\mathbf{Y}}_k| |\mathbf{b}_j|,$$

662 and the subsequent multiplication by $(\mathbf{I}^{(l)} \hat{\mathbf{W}}_k)$ and subtraction from \mathbf{b}_j result in,

$$\begin{aligned} 663 \quad \text{fl}_{TC}(\hat{\mathbf{X}}_k^{(l)} \mathbf{b}_j) &= (\hat{\mathbf{X}}_k^{(l)} + \Delta^{(l)} \mathbf{X}_k) \mathbf{b}_j, \\ 664 \quad |\Delta^{(l)} \mathbf{X}_k| &\leq \left(\gamma_2^{(l)} + \gamma_{1+\frac{m-(k-2)r}{4}}^{(h)} + \gamma_2^{(l)} \gamma_{1+\frac{m-(k-2)r}{4}}^{(h)} \right) \left(|\mathbf{b}_j| + |\mathbf{I}^{(l)} \hat{\mathbf{W}}_k| |\mathbf{I}^{(l)} \hat{\mathbf{Y}}_k|^\top |\mathbf{b}_j| \right). \end{aligned}$$

666 Converting to a normwise error bound using the same logic from [\(3.9\)](#) and [\(3.10\)](#), we result in

$$667 \quad (4.6) \quad \|\text{fl}_{TC}(\hat{\mathbf{X}}_k^{(l)} \mathbf{b}_j) - \mathbf{X}_k \mathbf{b}_j\|_2 \leq (\tilde{\gamma}_2^{(l)} + r \tilde{\gamma}_{m-(k-1)r}^{(h)} + r \gamma_2^{(l)} \tilde{\gamma}_{m-(k-1)r}^{(h)}) \|\mathbf{b}_j\|_2,$$

668 since the rounding errors from the bFMAs are small in comparison to the errors from casting down
669 the WY representation built in high precision. The corresponding matrix error bound is

$$670 \quad (4.7) \quad \|\text{fl}_{TC}(\hat{\mathbf{X}}_k^{(l)}) - \mathbf{X}_k\|_F \leq \tilde{\gamma}_2^{(l)} + r \tilde{\gamma}_{m-(k-1)r}^{(h)} + r \tilde{\gamma}_2^{(l)} \tilde{\gamma}_{m-(k-1)r}^{(h)}.$$

671 We can finally compute the forward errors from implementing [alg. 7](#). Consider the j^{th} column
672 of the \mathbf{Q} factor, which we denote with $\mathbf{q}_j := \hat{\mathbf{Q}}_{mpBQR3}[:, j]$, and let $k = \lfloor j/r \rfloor$. Invoking [Lemma 3.2](#)
673 with error bounds for $\text{fl}_{TC}(\hat{\mathbf{X}}_k^{(l)})$'s in [\(4.7\)](#) results in columnwise error,

$$\begin{aligned} 674 \quad (4.8) \quad \|\Delta \mathbf{q}_j\|_2 &\leq -1 + \prod_{k'=1}^k (1 + \tilde{\gamma}_2^{(l)}) (1 + r \tilde{\gamma}_{m-(k'-1)r}^{(h)}) \\ 675 \quad (4.9) \quad &\leq k \tilde{\gamma}_2^{(l)} + k r \tilde{\gamma}_m^{(h)} + k^2 r \tilde{\gamma}_2^{(l)} \tilde{\gamma}_m^{(h)}, \end{aligned}$$

677 where $\Delta \mathbf{q}_j = (\text{fl}_{TC}(\hat{\mathbf{X}}_1^{(l)}) \cdots \text{fl}_{TC}(\hat{\mathbf{X}}_k^{(l)}) - \mathbf{X}_1 \cdots \mathbf{X}_k) \hat{\mathbf{e}}_j$. Summing over the columns to find a matrix
678 norm error bound yields

$$679 \quad (4.10) \quad \|\hat{\mathbf{Q}}_{mpBQR} - \mathbf{Q}\|_F \leq n^{1/2} \left(\tilde{\gamma}_N^{(l)} + n \tilde{\gamma}_m^{(h)} \right),$$

680 where the summation of the third term in (4.9) is swept under the tilde notation in $n^{1/2}\tilde{\gamma}_N^{(l)}$.
681 This bound shows that [alg. 7](#) only adds $n^{1/2}\tilde{\gamma}_N^{(l)}$ order errors to the bounds in (3.22). Using that
682 $u^{(l)} = M_{l,h}u^{(h)}$, this increase corresponds to a multiplicative factor shown below,

$$683 \quad (4.11) \quad n^{1/2}\tilde{\gamma}_N^{(l)} + n^{(3/2)}\tilde{\gamma}_m^{(h)} \approx \left(1 + \frac{M_{l,h}}{rm}\right) n^{(3/2)}\tilde{\gamma}_m^{(h)}.$$

684 Therefore, the loss in accuracy due to mixed precision computing is relatively small when the
685 disparity in precision ($M_{l,h}$) is small in comparison to the block size, mr . However, as r grows
686 large, $N = n/r$ decreases which then reduces the portion of `mpBQR3` performed using level-3 BLAS
687 operations and increases the size of high precision HQR being performed at each block. Whether
688 this loss in accuracy in the worst-case scenario is worth the speed-ups from using mixed precision
689 hardware is an open question that can be tackled in future research. Our analysis shows that the
690 block size r , the dimension of the input matrix m, n , and hardware specificities will be contributing
691 factors.

692 **4.1.2. TSQR round down at block level:** `mpTSQR3`. Unlike BQR which is rich in level-3
693 BLAS operations, the variant of TSQR in [alg. 6](#) uses none. Therefore, we modify [alg. 6](#) by replacing
694 all instances of `hh_mult` with level-3 BLAS operations. We omit presenting the exact algorithm
695 for mixed precision variant of TSQR in this paper, but consider computing the HQR of each block
696 in high precision and build and store the WY representation of the HH transformations in low
697 precision as we did in lines (3-6) of [alg. 7](#). The low precision WY representation is then applied
698 with TensorCore bFMA when building the \mathbf{Q} factor (lines 11-16 of [alg. 6](#)).

699 *Rounding Error analysis.* The analysis in [21] shows that each column of \mathbf{Q} is transformed by
700 n HH transformations of length $2n$ from levels $L : -1 : 1$, and another set of n HH transformations
701 of length $m2^{-L}$ at level 0. Let us represent the WY representation at the j^{th} block of level i and
702 its bFMA counterpart as $\mathbf{X}_j^{(i)}$ and $\text{fl}_{TC}(\hat{\mathbf{X}}_j^{(i)})$. Then, we can use (4.7) to form backward error

$$703 \quad (4.12) \quad \|\text{fl}_{TC}(\hat{\mathbf{X}}_j^{(i)}) - \mathbf{X}_j^{(i)}\|_F \leq \tilde{\gamma}_2^{(l)} + n\tilde{\gamma}_{m'}^{(h)} + n\tilde{\gamma}_2^{(l)}\tilde{\gamma}_{m'}^{(h)}, \quad m' = \begin{cases} m2^{-L}, & i = 0 \\ 2n, & i = 1 : L \end{cases}.$$

704 We can now modify the analysis in [21] by replacing $n\tilde{\gamma}_{m2^{-L}}$ and $n\tilde{\gamma}_{2n}$ with

$$705 \quad (1 + \tilde{\gamma}_2^{(l)})(1 + n\tilde{\gamma}_{m2^{-L}}^{(h)}) - 1, \quad \text{and} \quad (1 + \tilde{\gamma}_2^{(l)})(1 + n\tilde{\gamma}_{2n}^{(h)}) - 1,$$

706 and apply [Lemma 3.2](#). Then, the factors formed by `mpTSQR3` are denoted by $\hat{\mathbf{R}}_{mpTSQR3}, \hat{\mathbf{Q}}_{mpTSQR3}$
707 and the error bounds for the j^{th} column of the triangular factor and the orthogonal factor are

$$708 \quad \|\hat{\mathbf{R}}_{mpTSQR3} - \mathbf{R}\|_2 \leq \tilde{\gamma}_{L+1}^{(l)} + n \left(L\tilde{\gamma}_{2n}^{(h)} + \tilde{\gamma}_{m2^{-L}}^{(h)} \right) \|\mathbf{A}[:,j]\|_2,$$

$$709 \quad \|\hat{\mathbf{Q}}_{mpTSQR3} - \mathbf{Q}\|_F \leq n^{1/2}\tilde{\gamma}_{L+1}^{(l)} + n^{3/2} \left(L\tilde{\gamma}_{2n}^{(h)} + \tilde{\gamma}_{m2^{-L}}^{(h)} \right).$$

711 Converting the low precision rounding errors as a fraction of the TSQR error bound in (3.24) to
712 quantify the impact of modifying [alg. 6](#) to utilize bFMA yields

$$713 \quad (4.13) \quad n^{1/2}\tilde{\gamma}_{L+1}^{(l)} + n^{3/2} \left(L\tilde{\gamma}_{2n}^{(h)} + \tilde{\gamma}_{m2^{-L}}^{(h)} \right) = \left(1 + \frac{M_{l,h}(L+1)}{n(2nL + m2^{-L})} \right) n^{3/2} \left(L\tilde{\gamma}_{2n}^{(h)} + \tilde{\gamma}_{m2^{-L}}^{(h)} \right).$$

714 Like in (4.11), the disparity in the two precisions, $M_{l,h}$ is compared against the original matrix
 715 size m,n and the block size specifications derived from L . Let us consider the shallowest, middle,
 716 and the deepest levels of TSQR that are possible given some matrix in $\mathbb{R}^{m \times n}$. All three cases in
 717 Table 4 show that `mpTSQR3` on sufficiently large matrices may yield errors closer to the high precision
 718 implementation, and the optimal choice for L depends on m,n .

Number of levels, L	1	$\frac{1}{2} \log_2(m/n)$	$-1 + \log_2(m/n)$
$\frac{(L+1)}{n(2nL+m2^{-L})}$	$1/(n^2 + m/4)$	$1/\left(2n^2 + \frac{m^{1/2}n^{3/2}}{\log_2(m/n)}\right)$	$1/(2n^2)$

TABLE 4
 Error bounds for $\|\Delta \mathbf{Q}_{mpTSQR3}\|_F$ for varying L 's.

719 **4.2. Round down at inner product: level-2 BLAS mixed precision setting.** While
 720 the previous section discussed blocked variants of HQR that can be easily adapted for the mixed
 721 precision setting specific to TensorCore bFMA's, we want to provide a more general mixed precision
 722 environment in this section. Recall that HQR, BQR, and TSQR all rely on HH transformations
 723 in one way or another, and implementations of HH transformations are expressed by (3.8). This
 724 implementation capitalizes on the rank-1 update structure of HH transformations where the pre-
 725 dominant share of FLOPs is spent on an inner product, and computing the HH vector and constant
 726 also rely heavily on inner products. Therefore, nearly all of the computational tasks for [algs. 3, 5](#)
 727 and [6](#) are attributed to the inner product, which is important in other linear algebra tools such as
 728 projections, matrix-vector, and matrix-matrix multiply. Consequently, we return to [MP Setting 2.3](#),
 729 where every inner product is cast down to the lower precision as shown in (2.10). We denote HQR,
 730 BQR, and TSQR computed with [MP Setting 2.3](#) with `mpHQR2`, `mpBQR2`, and `mpTSQR2`, where the 2
 731 represents the mixed precision procedure computed at a level-2 BLAS operation.

732 **4.2.1. HQR round down at inner product: `mpHQR2`.** Consider forming a HH transforma-
 733 tion that zeros out $\mathbf{x} \in \mathbb{R}^m$ below the the i^{th} element. We need to compute σ , β , $\tilde{\mathbf{v}}_1$, and \mathbf{v} as
 734 defined in [subsection 3.1](#),

735 (4.14) $\text{fl}(\sigma) = \text{fl}(-\text{sign}(\mathbf{x}[1])\|\mathbf{x}\|_2) = \sigma + \Delta\sigma, \quad |\Delta\sigma| \leq \left(\gamma_2^{(l)} + \gamma_m^{(h)} + \gamma_2^{(l)}\gamma_m^{(h)}\right)|\sigma|,$

736 (4.15) $\text{fl}(\mathbf{v}'[1]) = \mathbf{v}'[1] + \Delta\mathbf{v}'[1] = (1 + \delta^{(l)})(\mathbf{x}[1] - \sigma - \Delta\sigma), \quad |\Delta\mathbf{v}'[1]| \leq (\gamma_3^{(l)} + \tilde{\gamma}_m^{(h)})|\mathbf{v}'[1]|$

737 (4.16) $\text{fl}(\beta) = \beta + \Delta\beta = (1 + \delta^{(l)})(-\mathbf{v}'[1]/\hat{\sigma}), \quad |\Delta\beta| \leq (\gamma_8^{(l)} + \tilde{\gamma}_m^{(h)})|\beta|,$

738 (4.17) $\text{fl}(\mathbf{v}[j]) = \mathbf{v}[j] + \Delta\mathbf{v}[j] \text{ where } |\Delta\mathbf{v}[j]| \leq (\gamma_7^{(l)} + \tilde{\gamma}_m^{(h)})|\mathbf{v}_j|, j = 2 : m - i + 1.$

740 These bounds on $\Delta\sigma$, $\Delta\mathbf{v}'[1]$, $\Delta\beta$, and $\Delta\mathbf{v}[j]$ are computed by using the rules from [Lemma 2.4](#) on
 741 the analysis shown in [subsection 3.1](#). Using these, we can formulate the mixed precision version of
 742 (3.9) where $\hat{\mathbf{y}} = \text{fl}(\mathbf{P}_v \mathbf{x}) \in \mathbb{R}^m$ is implemented via (3.8). Note that the inner product $\hat{\mathbf{v}}^\top \mathbf{x}$ via [MP](#)
 743 [Setting 2.3](#), and all other operations are done in the lower precision. Then, the transformed vector
 744 is bounded by

745 (4.18) $\hat{\mathbf{y}} = \mathbf{y} + \Delta\mathbf{y}, \quad \|\Delta\mathbf{y}\|_2 \leq (\gamma_{25}^{(l)} + \tilde{\gamma}_m^{(h)})\|\mathbf{y}\|_2.$

746 Thus, a backward error can be formed using $\Delta\mathbf{P}_v = \Delta\mathbf{y}\mathbf{x}^\top/\|\mathbf{x}\|_2^2$,

747 (4.19) $\hat{\mathbf{y}} = (\mathbf{P}_v + \Delta\mathbf{P}_v)\mathbf{x}, \quad \|\Delta\mathbf{P}_v\|_F \leq (\gamma_{25}^{(l)} + \tilde{\gamma}_m^{(h)}).$

748 Now, we form the error bounds for applying n HH transformations to \mathbf{x} using [Lemma 3.2](#),

749 (4.20)
$$\hat{\mathbf{z}} = \text{fl}(\mathbf{P}_1 \cdots \mathbf{P}_n \mathbf{x}) = \mathbf{Q}(\mathbf{x} + \Delta \mathbf{x}) = (\mathbf{Q} + \Delta \mathbf{Q})\mathbf{x},$$

750 (4.21)
$$\|\Delta \mathbf{y}\|_2 \leq (\tilde{\gamma}_n^{(l)} + n\tilde{\gamma}_m^{(h)})\|\mathbf{x}\|_2, \quad \|\Delta \mathbf{Q}\|_F \leq (\tilde{\gamma}_n^{(l)} + n\tilde{\gamma}_m^{(h)}).$$

752 Note that we use the $\tilde{\gamma}^{(l)}$ notation, where the small integer c is now required to be $\mathcal{O}(25)$. The
753 analogous mixed precision QR factorization error bounds are shown in [Theorem 4.1](#).

754 **THEOREM 4.1.** *Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ with $m \geq n$ have full rank, n . Let $\hat{\mathbf{Q}}_{mpHQR2} \in \mathbb{R}^{m \times n}$ and
755 $\hat{\mathbf{R}} \in \mathbb{R}_{mpHQR2}^{n \times n}$ be the thin QR factors of \mathbf{A} obtained via [alg. 3](#) with mixed precision FLOPs where
756 inner products are computed in precision h then cast down. All other operations are carried out in
757 precision l . Then,*

758 (4.22)
$$\|\Delta \mathbf{R}_{mpHQR2}[:, j]\|_2 \leq (\tilde{\gamma}_n^{(l)} + n\tilde{\gamma}_m^{(h)})\|\mathbf{A}[:, j]\|_2, \quad \|\Delta \mathbf{R}_{mpHQR2}\|_F \leq (\tilde{\gamma}_n^{(l)} + n\tilde{\gamma}_m^{(h)})\|\mathbf{A}\|_F$$

759 (4.23)
$$\|\Delta \mathbf{Q}[:, j]_{mpHQR2}\|_2 \leq (\tilde{\gamma}_n^{(l)} + n\tilde{\gamma}_m^{(h)}), \quad \|\Delta \mathbf{Q}_{mpHQR2}\|_F \leq n^{1/2}(\tilde{\gamma}_n^{(l)} + n\tilde{\gamma}_m^{(h)}).$$

761 Unsurprisingly, the inner product mixed precision setting yields higher error bounds as it uses more
762 low precision arithmetic than the settings described in [subsection 4.1](#). In the next sections we
763 analyze using `mpHQR2` instead of `HQR` within [algs. 5](#) and [6](#).

764 **4.2.2. BQR round down at inner product:** `mpBQR2`. Now, we analyze [alg. 5](#) implemented
765 with [MP Setting 2.3](#). At the k^{th} block, we first apply the mixed precision HQR summarized in
766 [Theorem 4.1](#). Next, we construct the WY representation, where we can now use [\(4.18\)](#) and [\(4.19\)](#)
767 and [Lemma 3.2](#) to form

768 (4.24)
$$\|\hat{\mathbf{X}}_k^{(l)} - \mathbf{X}_k\|_F = \|(\hat{\mathbf{P}}_k^{(1)} \cdots \hat{\mathbf{P}}_k^{(r)}) - (\mathbf{P}_k^{(1)} \cdots \mathbf{P}_k^{(r)})\|_F \leq \tilde{\gamma}_r^{(l)} + r\tilde{\gamma}_m^{(h)}.$$

769 Then, the 2-norm bound for the j^{th} column of the \mathbf{R} factor and the Frobenius norm bound for the
770 orthogonal factor resulting from `mpBQR2` are

771 (4.25)
$$\|\hat{\mathbf{R}}_{mpBQR2}[:, j]\|_2 = \|\hat{\mathbf{X}}_1 \cdots \hat{\mathbf{X}}_N \mathbf{A}[:, j]\|_2 \leq (N\tilde{\gamma}_r^{(l)} + n\tilde{\gamma}_m^{(h)})\|\mathbf{A}[:, j]\|_2,$$

772 (4.26)
$$\|\hat{\mathbf{Q}}_{mpBQR2}\|_F \leq n^{1/2} (N\tilde{\gamma}_r^{(l)} + n\tilde{\gamma}_m^{(h)}) \approx \left(1 + \frac{M_{l,h}}{m}\right) n^{3/2} \tilde{\gamma}_m^{(h)}.$$

774 Note that this error bound is of the same order as the error bound for `mpHQR2`, shown in [\(4.23\)](#). The
775 corresponding error bound for `mpBQR3` of [section 4.1.1](#) yielded low precision errors r times smaller
776 than that from using [MP Setting 2.3](#) inner products, an unsurprising result as intermediate results
777 are cast down more often in `mpBQR2`. Furthermore, the $\tilde{\gamma}^{(l)}$ in this section requires $c = \mathcal{O}(25)$,
778 whereas the same notation in [section 4.1.1](#) assumes c to be a *small* positive integer. Therefore, the
779 numerical stability of `mpBQR2` is guaranteed at smaller matrix sizes than the numerical stability of
780 `mpBQR3` and BQR in high precision. While it is technically possible that the low precision errors
781 introduced from utilizing [MP Setting 2.3](#) do not dominate the errors incurred in `mpBQR2` and `mpHQR2`
782 when $m \gg M_{l,h}$ and can result in accuracy comparable to that of `mpBQR3` and high precision BQR,
783 our numerical results in [section 5](#) show that `mpHQR2` is already unstable at $m \approx M_{l,h}$.

784 **4.2.3. TSQR round down at inner product:** `mpTSQR2`. Finally, we consider using [MP
785 Setting 2.3](#) in [alg. 6](#). This corresponds to replacing every instance of $n\tilde{\gamma}_{m'}$ for $m' \in \{2n, m2^{-L}\}$ in

786 **Theorem 3.7** with $\tilde{\gamma}_n^{(l)} + n\tilde{\gamma}_{m'}^{(h)}$. We first consider the norm errors for the j^{th} column of the \mathbf{Q} factor
 787 computed by this mixed precision variant of [alg. 6](#),

788 (4.27) $\|\hat{\mathbf{Q}}_{mpTSQR2}[:, j] - \mathbf{Q}[:, j]\|_2 \leq (L + 1)\tilde{\gamma}_n^{(l)} + n(\tilde{\gamma}_{m2-L}^{(h)} + L\tilde{\gamma}_{2n}^{(h)}).$

789 Then, the matrix norm error bound is

790 (4.28) $\|\hat{\mathbf{Q}}_{mpTSQR2} - \mathbf{Q}\|_F \leq n^{1/2}(L + 1)\tilde{\gamma}_n^{(l)} + n^{3/2}(\tilde{\gamma}_{m2-L}^{(h)} + L\tilde{\gamma}_{2n}^{(h)})$

791 (4.29) $\approx \left(1 + \frac{M_{l,h}L}{m2^{-L} + 2Ln}\right) n^{3/2}(\tilde{\gamma}_{m2-L}^{(h)} + L\tilde{\gamma}_{2n}^{(h)}),$

793 and contributes larger low precision rounding errors than in [\(4.13\)](#). If the `mpTSQR2` error bound
 794 were to outperform that of `mpHQR2`, we now need integers $m, n > 0$, and $L \geq 0$ that satisfy

795 $1 \gg n^{1/2} \left(\tilde{\gamma}_n^{(l)} + n\tilde{\gamma}_m^{(h)} \right) \gg n^{1/2} \left((L + 1)\tilde{\gamma}_n^{(l)} + n(\tilde{\gamma}_{m2-L}^{(h)} + L\tilde{\gamma}_{2n}^{(h)}) \right).$

796 In contrast to the analysis for uniform precision settings, large L values do not necessarily reduce
 797 the error bounds of TSQR. While large L can imply $m \gg m2^{-L} + 2Ln$, it does not always lead to
 798 $d \gg d_1 + Ld_2$. Although the theoretical error bounds do not give a clear indication of the worst-
 799 case performances of HQR and TSQR in mixed-precision settings, TSQR outperformed HQR on
 800 ill-conditioned matrices within our numerical simulations. These experiments are discussed in detail
 801 in the next section.

802 **5. Numerical Experiments.** We conducted several numerical experiments to confirm the
 803 validity of the error bounds formed in [section 4](#) by varying size for all algorithms, block sizes in
 804 `mpBQR3`, and comparing `mpHQR2` against `mpTSQR2` with varying condition numbers. We used Julia,
 805 a programming language which allows fp16 storage and `castup` and `castdown` operations between
 806 types in fp16, fp32, fp64, but no built-in fp16 arithmetic. Therefore, we relied on using [alg. 1](#) for
 807 $f \in \text{OP} \cup \{\text{dot_product}\}$ to simulate [MP Setting 2.3](#) and TensorCore bFMAs.

808 In [sections 3](#) and [4](#), we gave the forward error bounds for \mathbf{R} and \mathbf{Q} separately. Since our
 809 numerical experiments instead measure a backward error, $\|\hat{\mathbf{Q}}\hat{\mathbf{R}} - \mathbf{A}\|_F$, and an orthogonal error,
 810 $\|\hat{\mathbf{Q}}^\top \hat{\mathbf{Q}} - \mathbf{I}\|_2$, we show how to convert general forward errors into those computed quantities. Given
 811 $\|(\hat{\mathbf{R}} - \mathbf{R})[:, j]\|_2 \leq \epsilon_R \|\mathbf{A}[:, j]\|_2$ and $\|\hat{\mathbf{Q}} - \mathbf{Q}\|_F \leq \epsilon_Q$,

812 (5.1) $\|(\hat{\mathbf{Q}}\hat{\mathbf{R}} - \mathbf{A})[:, j]\|_2 \leq (\epsilon_R + \epsilon_Q + \epsilon_R \epsilon_Q) \|\mathbf{A}[:, j]\|_2, \quad j = 1 : n, \quad \text{see [14]},$

813 (5.2) $\|\hat{\mathbf{Q}}\hat{\mathbf{R}} - \mathbf{A}\|_F \leq n^{1/2}(\epsilon_R + \epsilon_Q + \epsilon_R \epsilon_Q) \|\mathbf{A}\|_F,$

814 (5.3) $\|\hat{\mathbf{Q}}^\top \hat{\mathbf{Q}} - \mathbf{I}\|_2 \leq \|\hat{\mathbf{Q}}^\top \hat{\mathbf{Q}} - \mathbf{I}\|_F \simeq 2\epsilon_Q, \quad \text{see [21]}.$

816 First, we tested [algs. 3](#) and [5](#) to [7](#), `mpHQR2`, `mpBQR2`, and `mpTSQR2` for varying matrix sizes. We
 817 increased the number of rows m from 1000 to 13949, while keeping $n = m/4$, $r = n/4$, and
 818 $L = 2$ and the test matrices were sampled from the standard normal distribution. On the left
 819 plot of [Figure 2](#), we see three clusters which each correspond to: top, [MP Setting 2.3](#); middle,
 820 TensorCore bFMAs; and bottom, uniform precision implementations in fp32. The high precision
 821 and bFMA implementations scale similarly to each other when increasing the matrix size, whereas
 822 the [MP Setting 2.3](#) variants grow unstable more quickly. In addition, while HQR, BQR, and TSQR
 823 perform similarly in high precision and when using bFMAs, `mpTSQR2` is less accurate by a quarter to
 824 a half order of magnitude in comparison to `mpBQR2` and `mpHQR2`. The specifications for $m, n, L, M_{l,h}$

825 for this experiment derive the upper bound for $\|\Delta \mathbf{Q}_{mpTSQR2}\|_F$, (4.29), to be larger than that of
826 $\|\Delta \mathbf{Q}_{mpHQR2}\|_F$, (4.23). However, a more careful comparison of `mpHQR2` and `mpTSQR2` show that
827 there exists a regime where `mpTSQR2` can outperform `mpHQR2`.

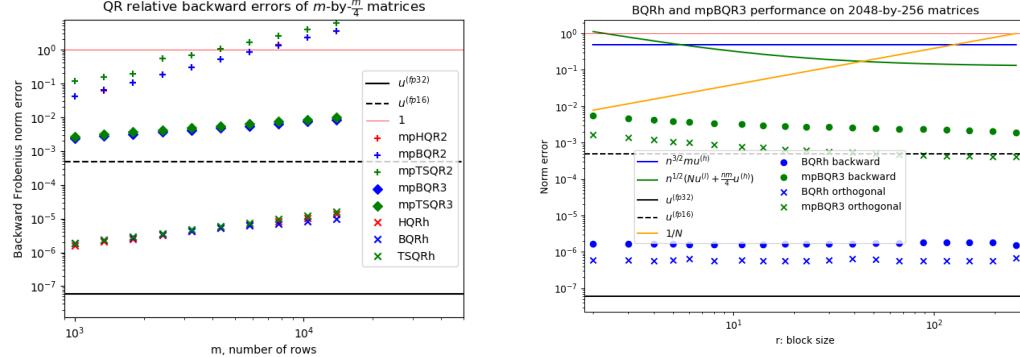


FIG. 2. Left plot: Backward errors of HH QR factorization algorithms in [sections 3](#) and [4](#) with varying matrix sizes. Right plot: Norm errors of fp32 BQR and mpBQR3 for 2048-by-256 matrices for varying block sizes.

827 Next, we varied the block sizes for performing fp32 BQR and mpBQR3 on 2048-by-256 sized
828 matrices, which were chosen to yield error bounds below 1 for both algorithms. The right plot
829 of [Figure 2](#) shows the error bounds and the computed value for the backward error for the two
830 algorithms where the block size r varies from 2 to 256. The test matrices were generated following
831 example from [5] by setting $\mathbf{A} = \text{castdown}(\mathbf{Q}_1 \mathbf{D} \mathbf{Q}_2)$ where $\mathbf{Q}_1 \in \mathbb{F}_h^{m \times n}$, $\mathbf{Q}_2 \in \mathbb{F}_h^{n \times n}$ are orthogonal
832 and $\mathbf{D} = \text{Diagonal}(\{\log_{10}(0), \dots, \log_{10}(-3)\}) \in \mathbb{F}_h^{n \times n}$. The high precision implementation yields
833 backward error close to $u^{(fp32)}$ and mpBQR3 yields errors near $u^{(fp16)}$ that follows the downward trend
834 suggested by (4.11). As block sizes increase, mpBQR3 grows more accurate. This trend correlates to
835 $1/N$, the approximate fraction of FLOPs in mpBQR3 performed in high precision, marked in orange.
836 However, the rightmost data for mpBQR3 (corresponds to $r = n$), is still between 3 and 4 orders of
837 magnitude less accurate than its high precision variant. Further studies that directly test speed-ups
838 from bFMAs against the accuracy of mpBQR3 are needed to fully understand the potential uses for
839 mixed precision QR algorithms.

840 Lastly, we compared `mpTSQR2` against `mpHQR2`. Note that an empirical comparison of the two
841 algorithms implemented in fp64 arithmetic were reported in [21], and we omit the comparison
842 against `mpBQR2` since it performs very similarly to `mpHQR2`. Following example from [21], we used
843 m -by- n random matrices, $\mathbf{A}_\alpha = \mathbf{Q}'(\alpha \mathbf{E} + \mathbf{I})/\|\mathbf{Q}'(\alpha \mathbf{E} + \mathbf{I})\|_F$, where $\mathbf{Q}' \in \mathbb{R}^{m \times n}$ is orthogonal and
844 $\mathbf{E} \in \mathbb{R}^{n \times n}$ is the matrix of 1's. We constructed \mathbf{Q}' by computing the default QR factorization
845 of matrix $\mathbf{\Omega} \in \mathbb{F}_{fp64}^{4000 \times 100}$ in Julia, which performs BQR with $r = 36$ entirely in fp64 arithmetic,
846 and elements of the random matrix $\mathbf{\Omega}$ were sampled from the uniform distribution over $[0, 1]$. By
847 construction, \mathbf{A}_α has 2-norm condition number $n\alpha + 1$. By varying α from $1e-4$ to 1, we varied the
848 condition number from 1.1 to 101, and we generated 10 samples for each value of α . The relative
849 backward error, $\|\tilde{\mathbf{Q}}\tilde{\mathbf{R}} - \mathbf{A}\|_F/\|\mathbf{A}\|_F$, was computed by casting up $\tilde{\mathbf{Q}}$, $\tilde{\mathbf{R}}$, and \mathbf{A} to fp64 to compute
850 the Frobenius norms. Plugging in $m = 4000$, $n = 100$, $u^{(l)} = u^{(fp16)}$, $u^{(h)} = u^{(fp32)}$, and $c = 1$ (for
851 $\tilde{\gamma}$) into the error bounds for `mpHQR2` combined with (5.2) and (5.3) are approximately 1.179 and
852 1.146. These error bounds are *relative* and these worst-case bounds do not guarantee errors below
853 100%. The TSQR bounds for the same parameters for $L = 1 : 5$ are even larger, which indicates
854 that stability is not guaranteed. The leftmost plot of [Figure 3](#) shows the backward errors of `mpHQR2`

856 increasing as the theoretical condition numbers of the generated random matrices increase, and
 857 these errors correspond to the error data on the vertical axis, $L = 0$, of the middle plot. In addition
 858 to the errors from `mpHQR2`, Figure 3 shows the errors from `mpTSQR2s` of levels varying from $L = 1$
 859 to $L = 5$, where each line represents the errors of HQR and variants of TSQR calculated from
 860 the same random test matrix. Figure 3 reveals two different trends for the errors as we deepen the
 861 complexity of the QR algorithm from `mpHQR2` to `mpTSQR2` with $L = 5$. One trend occurs for matrices
 862 with smaller condition numbers, where `mpHQR2` is stable, but `mpTSQR2` with higher levels yield larger
 863 errors. Another trend occurs for matrices with higher condition numbers, where single-level and
 864 2-level `mpTSQR2` yield smaller errors than `mpHQR2`. In these cases, errors from `mpTSQR2` with 3 or
 865 more levels are similar to or worse than their 2-level variants, but generally do not exceed those of
 866 `mpHQR2` most of the times. These results suggests that TSQR can outperform HQR even in mixed
 precision settings, and particularly when HQR is unstable due to larger condition numbers.

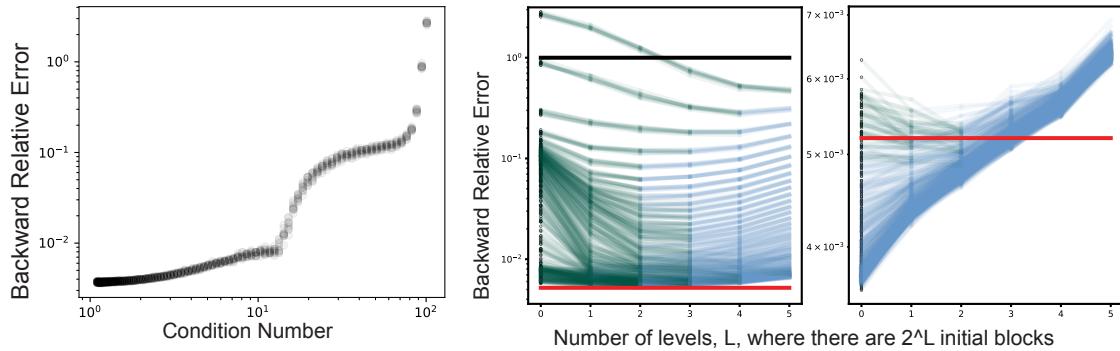


FIG. 3. All plots show the backward relative error for 4000-by-100 sized test matrices. Left: `mpHQR2` on condition numbers ranging from 1.1 to 101; Middle: `mpTSQR2` on condition numbers ranging from 5.3 to 101; Right: `mpTSQR2` on condition numbers ranging from 1.1 to 5.3.

867 In conclusion, most of the experiments display the trends that error bounds in sections 3 and 4
 868 suggest, and bFMA variants perform in between the high precision and MP Setting 2.3 variants as
 869 expected. Also, a special case is shown that demonstrate `mpTSQR2` can outperform `mpHQR2` despite
 870 having higher error bounds. All of the experiments showed that the actual errors were many orders
 871 of magnitude lower than the error bounds even when ill-conditioned, but this discrepancy varied for
 872 different mixed precision settings. For example, backward and forward errors of `mpBQR3` were *only*
 873 2-3 orders of magnitude below the error bounds, whereas the fp32 implementation of BQR yielded
 874 errors up to 6 orders of magnitude below the error bounds. Although further studies with larger
 875 problem sizes and timings would be beneficial in developing an `mpBQR3` with the optimal block size,
 876 r , our experiments confirm the intuition built from the error analysis in section 4.

877 **6. Conclusion.** The development of GPUs that optimize low precision floating point arithmetic
 878 have accelerated the interest in half and mixed precision algorithms that naturally reduces
 879 the bandwidth and storage needs. Loss in precision, stability, and representable range offset for
 880 those advantages, but these shortcomings may have little to no impact in some applications. It
 881 may even be possible to navigate around those drawbacks with algorithmic design.

882 We present the algorithm and standard error analysis of HQR and its blocked variants (BQR
 883 and TSQR), modify the algorithms to support two mixed precision settings, and performed error
 884 analysis that accurately bound the mixed precision versions. One mixed precision setting is that

886 of NVIDIA’s TensorCore bFMAs, and the other is an ad hoc setting that mimics the bFMAs at
 887 the level of inner products. These two are presented to offer mixed precision arithmetic at both
 888 level-2 and 3 BLAS operations and can be applied to other linear algebra tools as well. The new
 889 error bounds more accurately describe how rounding errors are accumulated in mixed precision
 890 settings. For a given problem, available hardware, and some error tolerance, these bounds can be
 891 used to first narrow down which QR factorization algorithms are feasible. Then, the speed-ups
 892 from the hardware specifications can be considered next to choose the most appropriate settings
 893 within the algorithms (i.e. block size r in BQR or number of levels, L , in TSQR). We found that
 894 TSQR can outperform HQR under [MP Setting 2.3](#) for ill-conditioned, extremely overdetermined
 895 cases even when the error bounds imply the opposite. While an optimistic interpretation of this
 896 result would be that algorithms like TSQR are more robust against lower precision arithmetic,
 897 further research is needed to explore other divide-and-conquer methods that can harness parallel
 898 capabilities. Meanwhile, we should rely on the error bounds formed in [section 4](#).

899

REFERENCES

- 900 [1] A. ABDELFATTAH, S. TOMOV, AND J. DONGARRA, *Fast batched matrix multiplication for small sizes using half-precision arithmetic on GPUs*, in 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS), May 2019, pp. 111–122, <https://doi.org/10.1109/IPDPS.2019.00022>.
- 901 [2] E. ANDERSON, Z. BAI, C. BISCHOF, L. S. BLACKFORD, J. DEMMEL, J. J. DONGARRA, J. DU CROZ, S. HAM-
 902 MARLING, A. GREENBAUM, A. MCKENNEY, AND D. SORENSEN, *LAPACK Users’ Guide (Third Ed.)*, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1999; also available online from
 903 <http://www.netlib.org>.
- 904 [3] G. BALLARD, J. W. DEMMEL, L. GRIGORI, M. JACQUELIN, H. DIEP NGUYEN, AND E. SOLOMONIK, *Reconstructing
 905 Householder vectors from tall-skinny QR*, vol. 85, 05 2014, pp. 1159–1170, <https://doi.org/10.1109/IPDPS.2014.120>.
- 906 [4] C. BISCHOF AND C. VAN LOAN, *The WY Representation for Products of Householder Matrices*, SIAM Journal
 907 on Scientific and Statistical Computing, 8 (1987), pp. s2–s13, <https://doi.org/10.1137/0908009>.
- 908 [5] P. BLANCHARD, N. J. HIGHAM, F. LOPEZ, T. MARY, AND S. PRANESH, *Mixed Precision Block Fused Multiply-
 909 Add : Error Analysis and Application to GPU Tensor Cores*, (2019).
- 910 [6] M. COURBARIAUX, Y. BENGIO, AND J.-P. DAVID, *Training deep neural networks with low precision multiplications*, arXiv preprint, arXiv:1412.7024, (2014).
- 911 [7] M. COURBARIAUX, J.-P. DAVID, AND Y. BENGIO, *Low precision storage for deep learning*, arXiv preprint
 912 arXiv:1412.7024, (2014).
- 913 [8] J. DEMMEL, I. DUMITRIU, AND O. HOLTZ, *Fast linear algebra is stable*, Numerische Mathematik, 108 (2007),
 914 pp. 59–91, <https://doi.org/10.1007/s00211-007-0114-x>, <https://arxiv.org/abs/0612264>.
- 915 [9] J. DEMMEL, L. GRIGORI, M. HOEMMEN, AND J. LANGOU, *Communication-optimal parallel and sequential
 916 QR and LU factorizations*, SIAM Journal on Scientific Computing, 34 (2012), <https://doi.org/10.1137/080731992>, <https://arxiv.org/abs/0808.2664>.
- 917 [10] M. FAGAN, J. SCHLACHTER, K. YOSHII, S. LEYFFER, K. PALEM, M. SNIR, S. M. WILD, AND C. ENZ, *Overcoming
 918 the power wall by exploiting inexactness and emerging COTS architectural features: Trading precision for
 919 improving application quality*, in 2016 29th IEEE International System-on-Chip Conference (SOCC), Sep.
 920 2016, pp. 241–246, <https://doi.org/10.1109/SOCC.2016.7905477>.
- 921 [11] G. H. GOLUB AND C. F. VAN LOAN, *Matrix computations*, JHU press, 4 ed., 2013.
- 922 [12] A. HAIDAR, A. ABDELFATTAH, M. ZOUNON, P. WU, S. PRANESH, S. TOMOV, AND J. DONGARRA, *The Design
 923 of Fast and Energy-Efficient Linear Solvers: On the Potential of Half-Precision Arithmetic and Iterative
 924 Refinement Techniques*, June 2018, pp. 586–600, https://doi.org/10.1007/978-3-319-93698-7_45.
- 925 [13] A. HAIDAR, S. TOMOV, J. DONGARRA, AND N. J. HIGHAM, *Harnessing GPU tensor cores for fast fp16 arithmetic
 926 to speed up mixed-precision iterative refinement solvers*, in Proceedings of the International Conference
 927 for High Performance Computing, Networking, Storage, and Analysis, SC ’18, Piscataway, NJ, USA,
 928 2018, IEEE Press, pp. 47:1–47:11, <https://doi.org/10.1109/SC.2018.00050>, <https://doi.org/10.1109/SC.2018.00050>.
- 929 [14] N. J. HIGHAM, *Accuracy and Stability of Numerical Methods*, 2002, <https://doi.org/10.2307/2669725>.
- 930 [15] N. J. HIGHAM AND T. MARY, *A New Approach to Probabilistic Rounding Error Analysis*, SIAM Journal on
 931

938 Scientific Computing, 41 (2019), pp. A2815–A2835, <https://doi.org/10.1137/18M1226312>, <https://pubs.siam.org/doi/10.1137/18M1226312>.

939

940 [16] N. J. HIGHAM AND S. PRANESH, *Simulating Low Precision Floating-Point Arithmetic*, SIAM Journal on Sci-
941 entific Computing, 41 (2019), pp. C585–C602, <https://doi.org/10.1137/19M1251308>, <https://pubs.siam.org/doi/10.1137/19M1251308>.

942

943 [17] A. S. HOUSEHOLDER, *Unitary triangularization of a nonsymmetric matrix*, Journal of the ACM (JACM), 5
944 (1958), pp. 339–342.

945

946 [18] I. C. F. IPSEN AND H. ZHOU, *Probabilistic Error Analysis for Inner Products*, (2019), <http://arxiv.org/abs/1906.10465>, <https://arxiv.org/abs/1906.10465>.

947

948 [19] S. MARKIDIS, S. W. D. CHIEN, E. LAURE, I. B. PENG, AND J. S. VETTER, *NVIDIA tensor core programmability,
949 performance & precision*, Proceedings - 2018 IEEE 32nd International Parallel and Distributed Process-
950 ing Symposium Workshops, IPDPSW 2018, (2018), pp. 522–531, <https://doi.org/10.1109/IPDPSW.2018.80091>, <https://arxiv.org/abs/1803.04014>.

951

952 [20] P. MICIKEVICIUS, S. NARANG, J. ALBEN, G. DIAMOS, E. ELSEN, D. GARCIA, B. GINSBURG, M. HOUSTON,
953 O. KUCHAIEV, G. VENKATESH, AND H. WU, *Mixed precision training*, in International Conference on
954 Learning Representations, 2018, <https://openreview.net/forum?id=r1gs9JgRZ>.

955

956 [21] D. MORI, Y. YAMAMOTO, AND S. L. ZHANG, *Backward error analysis of the AllReduce algorithm for householder
957 QR decomposition*, Japan Journal of Industrial and Applied Mathematics, 29 (2012), pp. 111–130, <https://doi.org/10.1007/s13160-011-0053-x>.

958

959 [22] R. SCHREIBER AND C. VAN LOAN, *A Storage-Efficient \$WY\$ Representation for Products of Householder
960 Transformations*, SIAM Journal on Scientific and Statistical Computing, 10 (1989), pp. 53–57, <https://doi.org/10.1137/0910005>.

961

962 [23] G. TAGLIAVINI, S. MACH, D. ROSSI, A. MARONGIU, AND L. BENIN, *A transprecision floating-point platform for
963 ultra-low power computing*, in 2018 Design, Automation Test in Europe Conference Exhibition (DATE),
964 March 2018, pp. 1051–1056, <https://doi.org/10.23919/DATe.2018.8342167>.

965

966 [24] U. VON LUXBURG, *A tutorial on spectral clustering*, Statistics and Computing, 17 (2007), pp. 395–416, <https://doi.org/10.1007/s11222-007-9033-z>, <https://doi.org/10.1007/s11222-007-9033-z>.

967