‘ ! ! . LLNL-JRNL-795525

EEEEEEEE
EEEEEEEEE

oo | ROUNDING ERROR ANALYSIS
OF MIXED PRECISION BLOCK
HOUSEHOLDER QR
ALGORITHMS

L. M. Yang, A. Fox, G. Sanders

October 28, 2019

SIAM Journal on Scientific Computing

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

no

oo

ROUNDING ERROR ANALYSIS OF MIXED PRECISION BLOCK
HOUSEHOLDER QR ALGORITHMS

L. MINAH YANG, ALYSON FOX, AND GEOFFREY SANDERS

Abstract. Although mixed precision arithmetic has recently garnered interest for training dense neural networks,
many other applications could benefit from the speed-ups and lower storage if applied appropriately. The growing
interest in employing mixed precision computations motivates the need for rounding error analysis that properly
handles behavior from mixed precision arithmetic. We develop mixed precision variants of existing Householder QR
algorithms and show error analyses supported by numerical experiments.

1. Introduction. The accuracy of a numerical algorithm depends on several factors, including
numerical stability and well-conditionedness of the problem, both of which may be sensitive to
rounding errors, the difference between exact and finite-precision arithmetic. Low precision floats
use fewer bits than high precision floats to represent the real numbers and naturally incur larger
rounding errors. Therefore, error attributed to round-off may have a larger influence over the total
error and some standard algorithms may yield insufficient accuracy when using low precision storage
and arithmetic. However, many applications exist that would benefit from the use of low precision
arithmetic and storage that are less sensitive to floating-point round off error, such as clustering or
ranking graph algorithms [24] or training dense neural networks [20].

Many computing applications today require solutions quickly and often under low size, weight,
and power constraints, such as in sensor formation, where low precision computation offers the abil-
ity to solve many problems with improvement in all four parameters. Utilizing mixed precision, one
can achieve similar quality of computation as high-precision and still achieve speed, size, weight,
and power constraint improvements. There have been several recent demonstrations of computing
using IEEE half precision (fp16) achieving around half an order to an order of magnitude improve-
ment of these categories in comparison to single and double precision (fp32, fp64). Trivially, the size
and weight of memory required for a specific problem is 4x. Additionally, there exist demonstra-
tions that the power consumption improvement is similar [10]. Modern accelerators (e.g., GPUs,
Knights Landing, or Xeon Phi) are able to achieve this factor or better speedup improvements.
Several examples include: (i) 2-4x speedup in solving dense large linear equations [12, 13], (ii) 12x
speedup in training dense neural networks, and (iii) 1.2-10x speedup in small batched dense matrix
multiplication [1] (up to 26x for batches of tiny matrices). Training deep artificial neural networks
by employing lower precision arithmetic to various tasks such as multiplication [6] and storage [7]
can easily be implemented on GPUs and are a common practice in some data science applications.

The low precision computing environments that we consider are mixed precision settings, which
are designed to imitate those of new GPUs that employ multiple precision types for certain tasks.
For example, Tesla V100’s TensorCores perform block Fused Multiply Add operations (bFMAs),
where matrix products of fpl6 input data can be computed up to 16x than that of fp64. The
existing rounding error analyses are built within what we call a uniform precision setting, which
is the assumption that all arithmetic operations and storage are performed via the same precision.
In this work, we develop mixed precision variants of existing Householder (HH) QR factorization
algorithms and perform mixed precision error analysis.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07TNA27344 and was supported by the LLNL-LDRD Program under Project
No. 17-SI-004, LLNL-JRNL-795525.

This manuscript is for review purposes only.

41

60
61
62
63

64

This work focuses on analyzing a few algorithms that use fp16/fp32 as the low/high precision
types, but the error analysis can be easily modified for different floating point types (such as
bfloat16 in [23]). The standard HH QR algorithm and its block variants that partition the columns
(level-3 BLAS variant, see [11, 14]) and those that partition the columns (communication-avoiding
algorithms of [9]) are presented in section 3, then modified to support bFMAs and an ad hoc mixed
precision setting that mimics NVIDIA TensorCores in section 4. Our key findings are that mixed
precision error analyses produce tighter error bounds as supported by experiments in section 5,
algorithms that utilize level-3 BLAS operations can easily be modified to incorporate TensorCore
bFMASs, and a row partition block algorithm operates more robustly in mixed precision than non-
block techniques in certain regimes.

2. Background: Build up to rounding error analysis for inner products. In this
section, we introduce the basic motivations and tools for mixed precision rounding error analysis
needed for the QR factorization. A matrix A € R™*" for m > n can be written as

A=QR=[Q: Q] {O R J = QiRy,

where an orthogonal Q € R™*™ and an upper trap%zc?iég R form a full QR factorization, and
Q: € R™*™ Ry € R™ ™ form a thin QR factorization. If A is full rank then the columns of Q; are
orthonormal and R; is upper triangular. In many applications, computing the thin decomposition
requires less computation and is sufficient in performance. While important definitions are stated

explicitly in the text, Table 1 serves to establish basic notation.

Symbol Definition Section
x, A|x| ,|]A| | Vector, matrix, and absolute value of each component 2
Ix|lp, |All, | Vector, operator p-norms for p = 2, and Frobenius norm when p = F. 2
x[i], A[i,j],: | i*" element of x, i*" row and j!" column element of A, all indices 2
Xinxn, Xn m-by-n or n-by-n matrices for X in {0,I}, L, xn = [I, Onx(m_n)}—r 1
&; it" cardinal vector 1
QR Factors resulting from Householder (HH) QR factorization algorithms 2
P,, P; HH transformation corresponding to v, i*" HH transformation in HQR 3
X, W, Y WY representation of succesive HH transformations, X =1 - WY T

fl(x), x Quantity x calculated from floating point operations 2
W, n mantissa, exponent bits of a floating point number 2
by, tg, ul? base, precision, unit round-off for precision ¢, u(? := %b;ft“ 2
5@ Quantity bounded by: [§(®] < u(®) 2
'ylgq), ngq) %, Quantity bounded by: |é,(€q)| < ’y,(cq) 2
ﬁ/lsq), é,gq) % for small integer ¢ > 0, Quantity bounded by: \Gl(cq)| < ’y,(cq) 2

TABLE 1
Basic definitions and where they first appear.

2.1. Basic rounding error analysis of floating point operations. We use and analyze
the IEEE 754 Standard floating point number systems, shown in Table 2. Let FF C R denote the
space of some floating point number system with base b € N, precision ¢t € N, significand p € N,
and exponent range [Mmin, fmax] C Z. Then every element y in F can be written as

(2.1)

y=4px b1t
2

This manuscript is for review purposes only.

66
67
68
69
70
71
72

79

80

81

82

83

84

85

86
87
88
89

90

91

93
94

where p is any integer in [0,b" — 1] and 7 is an integer in [Nmin, Jmax)- Although operations we use
on R cannot be replicated exactly due to the finite cardinality of F, we can still approximate the
accuracy of analogous floating point operations (FLOPs). We adopt the rounding error analysis
tools described in [14], which allow a relatively simple framework for formulating error bounds for
complex linear algebra operations. An analysis of FLOPs (see Theorem 2.2 [14]) shows that the
relative error is controlled by the unit round-off, u := %bl_t in uniform precision settings. In mixed
precision settings we denote the higher precision unit round-off with u(® (h for high) and the lower
precision unit round-off with u(® (1 for low).

Name b | t | # of exponent bits | Nmin | Mmax | unit round-off u

fpl6 (IEEE754 half) 2|11 5 -15 16 4.883e-04

fp32 (IEEET754 single) | 2 | 24 8 -127 | 128 5.960e-08

fp64 (IEEE754 double) 2| 53 11 -1023 | 1024 1.110e-16
TABLE 2

IEEE754 formats and their primary attributes.

Let ‘op’ be any basic operation from the set OP = {+, —, X, +} and let z,y € R. The true value
(z op y) lies in R, and it is rounded using some conversion to a floating point number, fl(z op y),
admitting a rounding error. The IEEE 754 Standard requires correct rounding, which rounds the
exact solution (z op y) to the closest floating point number and, in case of a tie, to the floating point
number that has a mantissa ending in an even number. Correct rounding gives us an assumption
for the error model where a single basic floating point operation yields a relative error, §, bounded
in the following sense:

(2.2) fllzopy) =0+ (zopy), |§|<u, ope{+,—, x,+}

We use (2.2) as a building block in accumulating errors from successive FLOPs. Successive opera-
tions introduce multiple rounding error terms, and keeping track of all errors is challenging. Lemma
2.1 introduces a convenient and elegant bound that simplifies accumulation of rounding error.

LEMMA 2.1 (Lemma 3.1 [14]). Let |6;] < u, p; = £1 fori=1:k, and ku < 1. Then,

k

ku
(2.3) g(l 8P =1+ 0, where [0 < T——— =%
~ ~ k
Additionally, we define 0, that satisfies |0x| < A, where 3 = 1 ¢ uk for a small integer, ¢ > 0.
— cku

In other words, 6 represents the accumulation of rounding errors from k successive operations,
and it is bounded by 7. In more complicated routines shown in later sections, we use the tilde
notation (9x) to permit only keeping track of the leading order error terms. Applying this lemma
to the computation of z + y + z, where z,y, z € R, results in

(2.4) fllza+y+2)=0+8)(A1+0)(z+y)+2)=1+60)(z+y) +(1+6)z
where |0],]0'| < u. Since |61] <y < 72, we can further simplify (2.4) to
(2.5) Alx+y+2)=0+60))(r+y+z), where |05 <o,

at the cost of a slightly larger upper bound. Note that both |6s],|65| are bounded above by 7s.
Typically, error bounds formed in the fashion of (2.5) are converted to relative errors in order to

3

This manuscript is for review purposes only.

108

109
110
111
112
113
114
115
116
117
118

119
120
121
122
123
124
125
126
127
128
129

put the error magnitudes in perspective. The relative error bound for our example is

(@+y+2)—fllzt+y+2)<mnlzty+:z, z+y+z#0.

Although Lemma 2.1 requires ku < 1, we actually need ku < % to maintain a meaningful
relative error bound as this assumption implies 7, < 1 and guarantees a relative error below
100%. Since higher precision types have smaller unit round-offs, they can tolerate more successive
FLOPs than lower precision floating types before reaching ,, = 1. For example, the IEEE types
introduced in Table 2 meet this requirement at 1/2 = 2104,(fP16) — 923,,(fp32) — 9524,(fP64) = Thyg,
accumulated rounding errors in lower precision types can lead to an instability with fewer operations
in comparison to higher precision types and prompts us to evaluate whether existing algorithms
can be naively adapted for mixed precision arithmetic.

2.2. Rounding Error Example for the Inner Product. We now consider computing the
inner product of two vectors to clearly illustrate how this situation restricts rounding error analysis
in fp16. An error bound for an inner product of m-length vectors is

(2.6) x"y = (x"y)| < ymlx|"lyl, x,y €eR™

as shown in [14]. Since vectors of length m accumulate rounding errors that are bounded by ~y,,
dot products of vectors computed in fp16 already face a 100% relative error bound when m = 1024.

A simple numerical experiment shows that the standard deterministic error bound is too pes-
simistic and cannot be practically used to approximate rounding error for half-precision arithmetic.
In this experiment, we generated 2 million random fpl6 vectors of length 1024 from two random
distributions: the standard normal distribution, N (0, 1), and the uniform distribution over (0, 1).
Half precision arithmetic was simulated by calling alg. 1, which was proven to be a faithful simula-
tion in [16], for every FLOP (multiplication and addition for the dot product). The relative error
in this experiment is formulated as the LHS in Equation 2.6 divided by |x|"|y| and all operations
outside of calculating fi(x"y) are executed by casting up to fp64 and using fp64 arithmetic. Table
3 shows some statistics from computing the relative error for simulated fp16 dot products.

Random Distribution Average Stan. Dev. | Maximum

Standard normal 1.621e-04 | 1.635e-04 3.204e-03

Uniform (0, 1) 6.904e-03 | 3.265e-03 | 2.447e-02
TABLE 3

Forward error statistics from experiment of dot products computed in simulated half precision.

We see that the inner products of vectors sampled from the standard normal distribution have
backward relative errors that do not deviate much from the unit round-off (O(1e-4)), whereas
the vectors sampled from the uniform distribution tend to accumulate larger errors on average
(O(1e-3)). Even so, the theoretical upper error bound of 100% is far too pessimistic as the
maximum relative error does not even meet 2% in this experiment. Recent work in developing
probabilistic bounds on rounding errors of floating point operations (see [15, 18]) have shown that
the inner product relative backward error for the conditions used for this experiment is bounded
by 5.466e-2 with probability 0.99.

Most importantly, we need error analysis that allows flexibility in precision in order to better
our understanding of the impact of rounding errors on computations done on emerging hardware

4

This manuscript is for review purposes only.

130
131
132
133
134
135

136

Algorithm 1: z(P19) — simHalf(f, x(16) y(P16)) Given fpl6 input variables x,y,
perform function f € OPU{dot_product} in simulated fpl6 arithmetic.

Input: x(P16) y(fp16) ¢ Output: z(P16) = ﬂfplG(f(X(fp16)7y(fp16)))
1 [x(P32) y(P32)] « cagtup([x(P10) y(P16)]) // Convert input vars to fp32.
2 z(fP32) fi(f(x(P32) y(fp32))) // Perform fp32 arithmetic.
3 z("P16) « castdown(z(P32)) // Convert result to fpl6.

4 return z(fr16)

(i.e. GPUs) that support mixed precision. We start by introducing some additional rules from
[14] that build on Lemma 2.1 in Lemma 2.2. These rules summarize how to accumulate errors
represented by 6’s and v’s in a uniform precision setting.

LEMMA 2.2. For any positive integer k, let 0 denote a quantity bounded according to 6| <
IEZu =: v,. The following relations hold for positive integers j,m and monnegative integer k.
Arithmetic operations between bounded terms, 0y ’s, are:

1+ 6, 1+0ktj, <k
2.7 14+60)(1+0;)=(1+ 0, d = '
(2.7) (k) i) = () an i {1+9k+2j7 J>k

If maxj yu < % and n < ﬁ, the operations on the bounds, v’s, are:

VEY5 < Ymin(k,j)s nYE < Yok,
Ve +u < Yeta, Ve + Vi VY S Vet

Note that all the rules hold when replaced by 7’s, but result in looser bounds.

We define two mixed precision settings that we use in section 4. In subsection 4.1, we present
the block Fused Multiply-Add (bFMA) of NVIDIA’s TensorCore (TC) technology, which computes
matrix-matrix multiply and accumulate for 4-by-4 blocks, and incorporate it into algs. 5 and 6. Here,
we introduce an ad hoc mixed precision setting (MP Setting) which we use in subsection 4.2. This
is explicitly defined in MP Setting 2.3 and is a level-2 BLAS variant of the TC bFMA. Both mixed
precision settings define how inner products are computed although the bFMA is only applicable to
inner products within matrix products and uses fp16 and fp32 whereas our ad hoc mixed precision
setting is applicable to all inner products with any two precision types.

Although our analysis concerns accuracy and stability and leaves out timing results of various
hardwares, we add a general timing statement to MP Setting 2.3 that is analogous to that of TC:
the mixed precision FMA inner product performs at least 2 times faster than the inner product in
the higher precision. Note that TCs perform matrix-matrix multiply and accumulate up to 8 times
faster than fp32, and up to 16 times faster than fp64 (see [19]), and our ad hoc timing assumption
is in conservative in comparison. Nonetheless, this gives a vague insight into the trade-offs between
speediness and accuracy from some mixed precision computations.

The full precision multiplication in Assumption 2.3 is exact when the low precision type is fp16
and the high precision type of fp32 due to their precisions and exponent ranges. As a quick proof,
consider 2(P16) = 4, 972 =11 o(P16) — 4, 9m =11 wwhere i, u, € [0,2' —1] and n,,n, € [~15,16],
and note that the significand and exponent ranges for fp32 are [0,224 — 1] and [~127,128]. Then

5

This manuscript is for review purposes only.

161
162
163
164
165
166
167
168
169
170
171

_ = = =
J N 1
Lo W N

K¢

176

183

184

185

186

187

188

189
190
191
192
193
194
195

the product in full precision is

JE(fp16)y(fplﬁ) _ iuxuﬂn‘”ﬂ”z—%,

where pizp,, € [0, (21 —1)%] C 0,22 — 1] and 7, + 1, + 2 € [—28,34] C [—127,128], and therefore
is exact. Thus, the summation and the final cast down operations are the only sources of rounding
error in this inner product scheme.

MP SETTING 2.3. Let | and h each denote low and high precision types with unit round-off
values u™ and u™ , where 1 > u® > uM > 0. Consider an FMA operation for inner products
that take vectors stored in precision [, compute products in full precision, and sum the products in
precision h. Finally, the result is then cast back down to precision l. Furthermore, we expect this
procedure to be approzimately twice as fast as if it were done entirely in the higher precision, and
about the same as if it were done entirely in the lower precision.

We now analyze the rounding error for the inner product scheme described in MP Setting 2.3 and
hypothesize that the guaranteed accuracy for this mixed precision inner product should be better
than that of the low precision inner product and worse than that of the high precision inner product.
Let x(,y® be m-length vectors stored in a low precision type (F7™), sk be the exact kth partial
sum, and S be s; computed with FLOPs. Then the first three partial sums are,

$1 = Ax[1]y[1)) = x[1y[1], 52 = (1 + x[2ly[2)) = <[y [1] + x[2ly[2)) (1 +67),
83 = (s + x[3]y[3]) = [(x[Lly[L] +x[2ly[2]) (1 +6{") + x[3}y[3]] (1 +85").

We see a pattern emerging. The error for an m-length vector dot product is then

(2.8) S = (x(1ly (1) + x(21y[2]) [(14 50") + xmym< II (H(sgjn).
k=1 i=3 k=i—1

K2

Using Lemma 2.1, we further simplify and form componentwise backward errors with
(29) A(xTy) = (x+Ax) Ty =x"(y + Ay) for [Ax| <700 [x]. Ay <40 Iyl
Casting down to F; without underflow or overflow results in backward errors,

(2.10) castdovn(fl(x"y)) = (x + Ax + Ax) Ty = x" (y + Ay + Ay),

where |Ax + Ax| < (1+u®)(1 44") = 1)|x| and |Ay + Ay| < (1 +u®D)(1 ++") = D]y].
Our hypothesis is indeed true since,

B <) 40 403 <o)

m—

where the lower and upper bounds are derived from the uniform precision error bound in (2.6).
Equation (2.10) shows us that the two larger error terms are from the higher precision summation,
”y,(fll, and the cast down operation, u("). We can measure the impact of the cast down step relative
to the length of the vector, m, and the disparity in the two precisions, M; j, := u(l)/u(h), since these
two factors determine which one of u(®) and mu® is the leading order term. We consider 3 cases.
Case 1: (m < M) The leading order term is u®. The mixed precision inner product has a
smaller worst case error bound than the bound of the low precision inner product (mu(®) with no

6

This manuscript is for review purposes only.

216
1€
219
220
221
222
223
224
225
226
227

228

231
232
233
234
235
236
237
238

apparent improvements in speed. On the other hand, u() is a larger upper bound than that of the
high precision inner product (mu") = ﬁu(l)), although it was computed approximately twice as
fast. It is likely that this factor of M,/ m increase in the worst case error bound is unwanted even
when considering the speed-up.

Case 2: (m = M; ;) Both terms are now leading order. This is still an improvement in comparison
to the lower precision arithmetic as the error bound is reduced from mu® to 2uY. Comparing this
to the high precision inner product shows that the error bound has doubled from mu to 2mu®,
but gained a factor of 2 in speed instead. One can argue that the loss in accuracy guarantee and
the improvement in speed cancel each other out especially if 2mu™ < 1 or if the speed-up greatly
exceeds a factor of 2.

Case 3: (m > M; ;) Now fy() | is the leading order term. As in the above two cases, this is an

improvement in the context of the low precision accuracy since the error has been reduced from 'y(l)

to vr(r?/Ml L= %(n). Since u¥) = Ml,hu() <« mu™ | the mixed precision error bound has the same
order as the error bound from carrying the computation out in the higher precision. Therefore, we
can expect about the same level of accuracy but a factor of 2 or greater reduction in speed when
compared to the higher precision.

While the above cases establish 3 regimes of trade-offs between accuracy and speed in mixed
precision computing, the remainder of this paper focuses only on accuracy and does not consider the
impact of mixed precision computations on speed. Finally, we present alternative representations
of the error bound in (2.10),

h h 1
(1 +u®) (1 +950) =1 <A = N 0 My, =u<”/u<"%

T+uM @ +98) =1 <u® 440 4 min{u® 4}, 40 <1,

where the rules from Lemma 2.2 were directly applied. Both alternative bounds are only slightly
larger than the original bound shown on the LHS and remain in the same order. The first is useful
when comparing against the low or the high precision, whereas the second keeps track of the error
bounds in both precisions. We summarize these ways of combining ~ terms of different precisions
in Lemma 2.4,

LEMMA 2.4. For any nonnegative integers ki, kp and some precision q defined with respect to

the unit round-off, u'?, define ’y(q) = 1’“];@(:) Consider a low precision and a high precision where

1> u® > u™ >0, and ki, ky, that satisfy max{vkh ,7 } < 1/2. Then the following rules help
us accumulate v’s of different precisions,

h) (1 l
(2.11) VI(ch)'Yl(c) < mm{v ,'y,(cl)}
l h l
(2.12) (1+ ,)/())(1 + 7()) 1= 7I(cl) 'Yl(ch)~

Note that (2.12) drops the term 7}5;) ") since both '715;) and VI(C) are larger than their product and
this product can be swept under the bmall integer ¢ > 0 assumption implicitly included in the tilde
notation. Equations (2.9) and (2.10) are crucial for our analysis in section 4 since the two mixed
precision settings add castdown operations at different parts of the HQR, algorithms we consider.
In general, error bounds in the fashion of (2.9) can be used before the cast down operations and
the action of the cast down is best represented by error bounds similar to (2.10).

We have demonstrated a need for rounding error analysis that is accurate for mixed precision
procedures and analyzed the inner product in an ad hoc mixed precision inner product that mimics

7

This manuscript is for review purposes only.

266
267

268

269

the TensorCore bFMA. We will use this to analyze various Householder (HH) QR factorization
algorithms. Algorithms and the general framework for the standard rounding error analysis for
these algorithms are introduced in section 3, and both are modified to meet different mixed precision
assumptions in section 4.

3. Algorithms and existing round-off error analyses. We introduce the Householder
QR factorization algorithm (HQR) in subsection 3.1 and two block variants that use HQR within
the block in subsections 3.2 and 3.3. The blocked HQR (BQR) in subsection 3.2 partitions the
columns of the target matrix and is a well-known algorithm that uses the WY representation of
[4] that utilizes mainly level-3 BLAS operations. In contrast, the Tall-and-Skinny QR (TSQR) in
subsection 3.3 partitions the rows and takes a communication-avoiding divide-and-conquer approach
that can be easily parallelized (see [8]). We present the standard rounding error analysis of these
algorithms (see [14, 21]) which will be tweaked for various mixed precision assumptions in section 4.

3.1. Householder QR (HQR). The HQR algorithm uses HH transformations to zero out
elements below the diagonal of a matrix (see [17]). We present this as zeroing out all but the first
element of some vector, x € R™.

LEMMA 3.1. Given vector x € R™, there exist a HH vector , v, and a HH constant, (3, that
define the HH transformation matriz, Py :=1,, — Bvv ', such that Py zeros out x below the first
element. The HH vector and constant are defined via

(3.1) o = —sign(x[1]])|x]l2s v =x—o@1, and § = % - _%[1]'
The transformed vector, Pyx = o€y, has the same 2-norm as x since Py, = PI = P;l.

3.1.1. HQR: Algorithm. Given A € R™*™ and Lemma 3.1, HQR is done by repeating the
following processes until only an upper triangle matrix remains. For i =1,2,--- | n,
Step 1) Compute v and 3 that zeros out the i*" column of A beneath a;; (see alg. 2), and
Step 2) Apply Py to the bottom right partition, A[i: m,i : n| (lines 4-6 of alg. 3).

Consider the following 4-by-3 matrix example adapted from [14]. Let P; represent the i*" HH
transformation of this algorithm.

X X X X | x X X X | X X X X

o X X X P1A 0| x x PyP A 0 x| x P3PoP1A 0 x X
A= X X X 0| x x 0 0| x 0 0 x
X X X 0| x x 0 0| x o 0 O

The resulting matrix is the R factor, R := P3P,;P1 A, and the Q factor for a full QR factorization
is Q := P1P3yP3 since P;’s are symmetric. The thin factors for a general matrix A € R™*" are

(3.2) Quin=P1---P,L,x, and Riuin=1'", P,---P{A.

mxn= n

Algorithm 2: 8, v, 0 = hhvec(x). Given a vector x € R™, return v € R™ and 8,0 € R
that satisfy (I — Bvv')x = cé; and v[1] = 1 (see [2, 14]).

Input: x Output: v, o, and §
v < copy(x)

o + —sign(x{[1]) x|}

v[l] < x[1] - ¢

B ¥

v+ v/v[l]

return 3, v, o

o A W N =

This manuscript is for review purposes only.

Algorithm 3: V, 8, R = HQR2(A). A Level-2 BLAS implementation of HQR. Given a
matrix A € R™*™ where m > n, return matrix V. € R™*", vector 3 € R"™, and upper
triangular matrix R. The orthogonal factor Q can be generated from V and (3.

Input: A Output: V.3, R
1 Initialize V < 0,,%n, 3 < 0.,
2 fori=1:ndo
v, 3,0 < hhvec(Al[i : end, 1)) /* Algorithm 2 */
Vii:end,i], 8;, Ali,i| + v,B,0
Ali+1:end,i] < zeros(m —)
Afi:end,i+1:end] < Afi:end,i+1:end] — BvvTAfi:end,i+1:end]
7 return V, 3, A[l:n,1:n]

[=2 =L B)

3.1.2. HQR: Rounding Error Analysis. Now we present an error analysis for alg. 3 by
keeping track of the different operations of alg. 2 and alg. 3. We follow the analysis of [14] and
modify it for the variant where v[1] is set to 1. The goal of this section is to present the basic
steps of the standard error analysis for HQR so that we modify them easily in section 4 for different
mixed precision settings.

Calculating the i'" HH vector and constant. In alg. 3, we compute the HH vector and constant
by using alg. 2 to A[i : m,i]. For now, consider zeroing out any vector x € R™ below its first
component with a HH transformation. We first calculate o as is implemented in line 2 of alg. 2.

(3.3) (o) = & = fi(—sign(x[1])[x]}2) = o + A, [A0] < yusalo]

Note that the backward error incurred here accounts for an inner product of a vector in R™ with
itself and a square root operation to get the 2-norm. Let v'[1] = x[i] — o, the penultimate value
v[1] held. The subtraction adds a single additional rounding error via

(3.4) A(v'[1)) = V/[1] + AV'[1] = (1 + 6)(x[i] — & — Ac) = (1 + O i0)V'[1]

where the last equality is granted because the sign of ¢ is chosen to prevent cancellation. Since
alg. 2 normalizes the HH vector so that its first component is 1, the remaining components of v
are divided by fl(¥1) incurring another single rounding error. As a result, the components of v
computed with FLOPs have error fl(v[j]) = v[j] + Av[j] where

(3.5) AV < Yi2man VUl = AVl G =2:m—i+1,
and |Av[l]| = 0. Since 1+ 2(m + 2)+ = O(m), we have swept that minor difference between

under our use of the 4 notation defined in Lemma 2.1. Next, we consider the HH constant, (3, as is
computed in line 4 of alg. 2.

(3. B= Vi) = (140 TR = Bl

(3.7) = (14 03m45)8 = B+ AB, where |[AB| < 7, 0.

We have shown (3.6) to keep our analysis simple in section 4 and (3.7) show that the error incurred
from calculating of ||x||2 accounts for the vast majority of the rounding error so far. At iteration
i, we replace x with A[i : m,i] € R™™*! and the i** HH constant and vector (Bi,vi) both have
errors bounded by ¥ —it1-

This manuscript is for review purposes only.

317

318
319
320

321

326
327
328
329
330
331

332

Applying a Single HH Transformation. Now we consider lines 4-6 of alg. 3. At iteration ¢,
we set A[i + 1 : m,:] to zero and replace A[i,i] with o computed from alg. 2. Therefore, we
now need to calculate the errors for applying a HH transformation to the remaining columns,
Ali : m,i+ 1 : n] with the computed HH vector and constant. This is the most crucial building
block of the rounding error analysis for any variant of HQR because the R factor is formed by
applying the HH transformations to A and the Q factor is formed by applying them in reverse
order to the identity. Both of the blocked versions in subsection 3.2 and subsection 3.3 also require
slightly different but efficient implementations of this step. For example, BQR in alg. 5 uses level-3
BLAS operations to apply multiple HH transformations at once whereas the variant of HQR in
alg. 3 can only use level-2 BLAS operations to apply HH transformations.

A HH transformation is applied through a series of inner and outer products, since HH matrices
are rank-1 updates of the identity. That is, computing Py x for any x € R™ is as simple as computing

(3.8) y =Pyx=x—(fv'x)v.

Let us assume that x is an exact vector and there were errors incurred in forming v and 5. The
errors incurred from computing v and S need to be included in addition to the new rounding
errors accumulating from the action of applying Py to a column. In practice, x is any column in
AG=D[i +1:m,i+1:n], where the superscript (i — 1) indicates that this submatrix of A has
already been transformed by ¢ — 1 HH transformations that zeroed out components below Alj, j]
for j =1:4— 1. We show the error for forming W where w := Bv'xv and v,x € R™,

w =B AFTX)0) = (14 0,,)(1 +6)(1 + &) (B + AB) (v + Av) 'x(v + Av),

where 6, is from computing the inner product v'x, and ¢ and ¢’ are from multiplying 3, fI(v "x),
and V. The forward error is W = w + Aw, where |Aw| < 7,,|5||v|T |x||v|. Subtracting W from x
yields the HH transformation with forward error,

(3.9) A(Pyx) =fi(x — W) = (1+8)(x —w — Aw) =y + Ay = (P, + AP,)x,

where |Ay| < ulx| 4+ 3, |6]|[v||[v] T |x|. Using 1/2/8 = ||v||2, we form a normwise bound,

(3.10) [AY[l2 < FmI%[l2.

Since AP [i,j] = Hx1||§ Ay/[i]x[], we can compute its Frobenius norm,
o o\ /2

(3.11) 8Py = (X3 (paviinil) | =1 <5,
im1 =1 x||3 l1x]|2

where the last inequality is a direct application of (3.10).

Applying many successive HH transformations. Consider applying a sequence of transforma-
tions in the set {P;}I_; C R™*™ to x € R™, where P;’s are all HH transformations computed with
v;’s and BZ-’S. This is directly applicable to HQR as Q =P;---P,Jand R=Q'A =P, ---P,A.
Lemma 3.2 is very useful for any sequence of transformations, where each transformation has a
known bound. We will invoke this lemma to prove Lemma 3.3, and use it in future sections for
other consecutive transformations.

10

This manuscript is for review purposes only.

333
334

336

342
343
344
345
346
347
348
349

LEMMA 3.2. If X; + AX; € R™*™ satisfies |AX;||p < 8;||X,||2 for all j, then

[I&+ax) - [[X|| <(-1+TT+6) | [TIXll-
j=1 =1 j=1

J F Jj=1

LeEMMA 3.3. Consider applying a sequence of transformations Q = P, ---PyPy onto vector
x € R™ to formy = ﬁ(lsr e f’gf’lx), where Py, ’s are HH transformations constructed from 3k and
Vi. These HH wectors and constants are computed via alg. 2 and the rounding errors are bounded
by (3.5) and (3.7). If each transformation is computed via (3.8), then

(3.12) ¥ = Q(x+Ax) = (Q+AQ)x = Qx,
(3.13) [AYll2 < rymllx]l2, [AQ|F < 7m.
Proof. Applying Lemma 3.2 directly to Q yields

s

1AQlr = | [T®; +aP) = [[Ps|| < |-1+][O+ms0)" | []IPsll2 <=1+ +3m)"
j=1 j=1

=1 » i-1
since P;’s are orthogonal and have 2-norm, 1, and m — j + 1 < m. While we omit the details here,
we can show that (1 +9,,)" — 1 <19, using the argument from Lemma 2.1 if 73, < 1/2. 0

In this error analysis, the prevailing bound for errors at various stages of forming and applying
a HH transformation is 7,, where m corresponds to the dimension of the transformed vectors.
In Lemma 3.3, a factor of r is introduced for applying » HH transformations to form the term
¥m /= rmu. Therefore, we can expect that the columnwise norm error for a thin QR factorization
should be O(mnu) for a full rank matrix. In Theorem 3.4, we formalize this by applying Lemma 3.3
directly and also show a conversion of columnwise bounds to a matrix norm bound,

n 1/2

1/2 n
IAR]F = <ZIAR[:J]II§> < <Zn2ﬁzllA[:,iH|3> = | Al p-
i=1

i=1
We gather these results into Theorem 3.4.

THEOREM 3.4. Let A € R™*"™ with m > n have full rank, n. Let Q € R™*" gnd R € R™ " be
the thin QR factors of A obtained via alg. 3. Then,

R=R+AR=1{(P,---P1A), |[AR],j]ll2 < n¥m||A[j]ll2. [|AR|F < nim|Allr
Q=Q+AQ=1f(P;---P.I), [AQ[j]ll2 < n¥m, [|AQ|r < 1n*?F,,.

In future sections, we show the forward error columnwise bounds for each factor which can be easily
converted to matrix norm bounds. The numerical experiments in section 5 measure backward errors
with ||QR — A||p and the orthogonality of the Q factor with ||QTQ — I||s.

The content of this section shows the standard rounding error analysis in [14] where some
important stages are summarized in (3.5), (3.7), and (3.13), which we will modify to different
mixed precision settings in section 4. These quantities account for various forward and backward
errors formed in computing essential components of HQR, namely the HH constant and vector, as
well as normwise errors of the action of applying HH transformations. In the next sections, we
present blocked variants of HQR that use alg. 3.

11

This manuscript is for review purposes only.

366
367
368
369

0

N =

~

7!
7
-
7
7
7
-

W W W W Ww w w

6

377

378

379

380

381
382
383
384
385
386
387
388
389
390
391
392

3.2. Block HQR with partitioned columns (BQR). We refer to the blocked variant
of HQR where the columns are partitioned as BQR. Note that this section relies on the WY
representation described in [4] instead of the storage-efficient version of [22], even though both are
known to be just as numerically stable as HQR.

3.2.1. The WY Representation. A convenient matrix representation that accumulates r
HH reflectors is known as the WY representation (see [4, 11]). Lemma 3.5 shows how to update
a rank-j update of the identity, QY), with a HH transformation, P, to produce a rank-(j 4 1)
update of the identity, QU*Y. With the correct initialization of W and Y, we can build the WY
representation of successive HH transformations as shown in Algorithm 4. This algorithm assumes
that the HH vectors, V, and constants,3, have already been computed. Since the Y factor is
exactly V., we only need to compute the W factor.

LEMMA 3.5. Suppose XU = I-WUYUT € R™*™ is an orthogonal matriz with W), Y) ¢
R™*7. Let us define P =1— fvv' for some v € R™ and let 20+ = XU)v. Then,

XU = XOp =1 - WUty UG+DT

where WO = [Wlz] and YU = [YO|v] are cach m-by-(j + 1),

Algorithm 4: W,Y <« buildWY¥(V,8): Given a set of householder vectors {V[:,i]}7_;
and their corresponding constants {3;};_;, form the final W and Y factors of the WY
representation of Py ---P,., where P; :=1,, — ﬂiviv;'—
Input: V € R"*" 3 € R"” where m > r.
Output: W
Initialize: W := B; V[, 1]. /¥ Y is V. */
for j=2:rdo
L 2 B [V, 5] =W (V[1: 5 = 1TV, jl)
W+ [W gz /* Update W to an m-by-j matrix. x*/

B W N =

return W

w

In HQR, A is transformed into an upper triangular matrix R by identifying a HH transformation
that zeros out a column below the diagonal, then applying that HH transformation to the bottom
right partition. For example, the k** HH transformation finds an m — k41 sized HH transformation
that zeros out column k below the diagonal and then applies it to the (m — k + 1)-by-(n — k)
partition of the matrix, Ak : m,k + 1 : n]. Since the k + 1°* column is transformed by the
k" HH transformation, this algorithm must be executed serially as shown in alg. 3. The highest
computational burden at each iteration falls on alg. 3 line 6, which requires Level-2 BLAS operations
when computed efficiently.

In contrast, BQR replaces this step with Level-3 BLAS operations by partitioning A into blocks
of columns. Let A = [Cy --- Cn] where Cy, - - - , Cn_1 are each m-by-r, and Cp holds the remaining
columns. The k*" block, Cy, is transformed with HQR (alg. 3), and the WY representation of these
r successive HH transformations is constructed as in alg. 4. We write the WY update as

(3.14) X, =1, - WY =P ... P{".
12

This manuscript is for review purposes only.

414
415

116

Thus far, algs. 3 and 4 are rich in Level-2 BLAS operations. Next, I — YkW,;r is applied to
[Cy---Cy] with two Level-3 BLAS operations as shown in line 5 of alg. 5. BQR performs ap-
proximately 1 — O(1/N) fraction of its FLOPs in Level-3 BLAS operations (see section 5.2.3 of
[11]), and can reap the benefits from the accelerated block FMA feature of TensorCore. Note that
BQR does require strictly more FLOPs when compared to HQR, but these additional FLOPs are
negligble in standard precision and does not impact the numerical stability. A pseudoalgorithm for
BQR is shown in alg. 5 where we assume that n = Nr to make our error analysis in section 3.2.2
simple. In practice, an efficient implementation might require r to be a power of two or a product
of small prime factors and result a thinner N** block compared to the rest. This discrepancy is
easily fixed by padding the matrix with zeros, a standard procedure for standard algorithms like
the Fast Fourier Transform (FFT). For any variable z in {X, W,Y,z,3,v,P}, xg) corresponds to
the j** update for the k** block.

Algorithm 5: Q,R < blockHQR(A,r): Perform HH QR factorization of matrix A with
column partitions of size r.

Input: A € R™*"™ r € R where r < n.

Output: Q,R

N=2%

// Let A =][C;---Cy] where all blocks except Cy are m-by-r sized.

=

2 fori=1:N do

3 | Vi, B, C; < hhQr(C;) /* Algorithm 3 x/
4 W; + buildwy¥(V;, 3;) /* Algorithm 4 */
5 [Cit1---Cn]-=V; (WiT[Ci_H e CN]) /* update the rest: BLAS-3 */

// A has been transformed into R=QTA.
// Now build Q using level-3 BLAS operations.
6 Q1 /* I, if full QR, and I,,«, if thin QR. */
7fori=N:-1:1do
8 L Qi —1L)r+1:m,(i—1L)r+1:n-=W,;(V/Q[i —1)r+1:m,(i—1)r+1:n))
9 return Q, A

3.2.2. BQR: Rounding Error Analysis. We now present the basic structure for the round-
ing error analysis for alg. 5, which consist of: 1)HQR, 2)building the W factor, and 3) updating
the remaining blocks with the WY representation. We have adapted the analysis from [14] to fit
this exact variant, and denote QBQR,RBQR to be the outputs from alg. 5. First, we analyze the
error accumulated from updating X,(Cj b ¢o X,(Cj), which applies a rank-1 update via the subtrac-
tion of the outer product ig)\Af,ij)T Since z,(fj) = ﬂ,(f)X,(Cj _l)v,(cj), this update requires a single HH
transformation on the right side in the same efficient implementation that is discussed in (3.8),

(3.15) Xl(cj) — X}(ijl) _ ﬂ(B](cjil)X](gjil)‘A’](gjil))‘A’](gj)—r — X}(j*l)(Pg) + APIE)j))7

where HAPg)HF < Ym—(k—1)r- Since Xg) =1- B,gl)fl,gl)(/él)T = P,(:) + AP,(:), we can travel up
the recursion relation in (3.15) and use Lemma 3.2 to form

(3.16) IAXP || F < §Fm—(e—1)-
13

This manuscript is for review purposes only.

417
418
419
420
421

423
424
425
426
427
428

429

439
432
133
434

438
439
440

443

443
444
445
146
447
448
449
450
451

HQR within each block: line 3 of alg. 5. We apply Algorithm 3 to the k** block, X1+ X1Cy,
which applies » more HH transformations to columns that had been transformed by (k — 1) WY
transformations in prior iterations. The upper trapezoidal factor that results from applying HQR
to C,i(k_l)r) corresponds to the (k — 1)r + 1t to kr*” columns of RBQR, and applying Lemmas 3.2
and 3.3 yields

IRsrl:] = RE 2 < r3m [Xior - X Crlsydlllz, = (k=1 +1: k.

Build WY at each block: line 4 of alg. 5. We now calculate the rounding errors incurred from
building the WY representatlon when glven a set of HH vectors and constants as shown in alg. 4.

Since the columns of Y}, are simply {V } built in alg. 3 the errors for formmg these are shown in

(3.5) where m should be replaced by m — (k — 1)r. The HH constants, Bk are bounded by (3.7)

modified similarly. Thus, Z(J)

we find

is the only newly computed quantity. Using (3.5), (3.7), and (3.16),

|az |1z = 1AXY 379 o < 1AXY V20180 12 < [AXD 21187952
((1+(J_1)’Vm (k— 1)r)(1+’7m (k—1))_1) ||6](gj)vk ||2<]’7m (k—=1)r sz ”2

Componentwise bounds follow immediately, and are summarized in Lemma 3.6.

LEMMA 3.6. Consider the construction of the WY representation for the kP partition of matriz
A € R™*™ given a set of HH constants and vectors, {,61(;)};:1 and {v,(f)} via alg. 4. Then,

(3.17) 29 =29 + AP 182D | < e 2] 1829 s < 5o e yrllZ |2

Most importantly, this shows that constructing the WY update is just as numerically stable as
applying successive HH transformations (see Section 19.5 of [14]).

Update blocks to the right: line 5 of alg. 5. We now consider applying X := I — VVkY,;r to
some matrix, B. In practice, B is the bottom right submatrix, [Cg41---Cn][(k — 1)r + 1 : m,:].
We can apply (3.16) directly to the columns of B,

(3.18) 18BN e = 18XBLE Do < 71y IBE 4]l

A normwise bound for employing a general matrix-matrix multiplication operation is stated in
section 19.5 of [14].

Multiple WY updates: line 8-9 of alg. 5. All that remains is to consider the application of
successive WY updates to form the QR factorization computed with BQR denoted as Qpgor and
Rpor. We can apply Lemma 3.2 directly by setting X, :=1— WkY,I and consider the backward
errors for applying the sequence to a vector, x € R™, as we did for Lemma 3.3. Since X; =
P(;—1)r41- - Pgr, is simply a sequence of HH transformations, it is orthogonal, i.e. [|Xg|l2 = 1. We
only need to replace with x with A[:,4]’s to form the columnwise bounds for Rpgr, and apply the
transpose to €;’s to form the bounds for Qpgr. Then,

N N N

(319) H(Xk + Axk) - H X < <1 + Z(l + r&m—(k—l)r)) < TN:Ym = ’Il:)/m,
k=1 = k=1

(3.20) 1Qsqr — Qllr < n*?3,.

14

This manuscript is for review purposes only.

461
462
463
464
165
166
467
468

469
470
471
472
473
474
475
476
177
478
479
480

481
482
183

484

485

486
487
188

489

490

491
492
193

494

495
196
497

We can also form the normwise bound for the j ** column of QBQR, f{BQR. If we let &' = [5'/r]t",
then the j/ " column is the result of applying k' —1 WY updates and an additional HQR. Applying
Lemma 3.2 yields

(3.21) [ARBQR[: 7' 2 < 7K' Fml|AL, 7Nz [ARBQRIF < nm|AllF
(3.22) 1AQsoRL 2 < 7K Ams 1AQsgRIF = rm Y _[5/r] = n*/*Fpm.
j=1

and near orthogonality of the Q factor is still achieved.

BQR and HQR error bound comparison. BQR under exact arithmetic is equivalent to HQR,
and it is often referred to as the level-3 BLAS version of HQR. Furthermore, the error analysis of
this section shows that BQR is as numerically stable as HQR despite requiring more FLOPs. In
fact, many linear algebra libraries such as LAPACK use a variant of BQR as the QR factorization
algorithm (see dgeqrf of [2]). The primary goal of the analysis presented in this section is to
provide the basic skeleton for the standard BQR rounding error analysis to make the generalization
to mixed precision settings in section 4 easier. Readers should refer to [11, 14] for full details.

3.3. Block HQR with partitioned rows : Tall-and-Skinny QR (TSQR). Some im-
portant problems that require QR factorizations of overdetermined systems include least squares
problems, eigenvalue problems, low rank approximations, as well as other matrix decompositions.
Although Tall-and-Skinny QR (TSQR) broadly refers to block QR factorization methods with row
partitions, we will discuss a specific variant of TSQR which is also known as the AllReduce algo-
rithm [21]. In this paper, the TSQR/AllReduce algorithm refers to the most parallel variant of
the block QR factorization algorithms discussed in [9]. A detailed description and rounding error
analysis of this algorithm can be found in [21], and we present a pseudocode for the algorithm in
alg. 6. Our initial interest in this algorithm came from its parallelizable nature, which is particu-
larly suitable to implementation on GPUs. Additionally, our numerical simulations (discussed in
section 5) show that TSQR can not only increase the speed but also outperform the traditional
HQR factorization in low precisions.

3.3.1. TSQR/AllReduce Algorithm. Algorithm 6 partitions the rows of a tall-and-skinny
matrix, A. HQR is performed on each of those blocks and pairs of R factors are combined to form
the next set of A matrices to be QR factorized. This process is repeated until only a single R factor
remains, and the Q factor is built from all of the HH constants and vectors stored at each level.
The most gains from parallelization can be made in the initial level where the maximum number
of independent HQR factorizations occur. Although more than one configuration of this algorithm
may be available for a given tall-and-skinny matrix, the number of nodes available and the shape of
the matrix eliminate some of those choices. For example, a 1600-by-100 matrix can be partitioned
into 2, 4, 8, or 16 initial row-blocks but may be restricted by a machine with only 4 nodes, and a
1600-by-700 matrix can only be partitioned into 2 initial blocks. Our numerical experiments show
that the choice in the initial partition, which directly relates to the recursion depth of TSQR, has
an impact in the accuracy of the QR factorization.

We refer to level as the number of recursions in a particular TSQR implementation. An
L-level TSQR algorithm partitions the original matrix into 2 submatrices in the initial or 0**

level of the algorithm, and 27~ QR factorizations are performed in level ¢ for 4 = 1,---, L. The

set of matrices that are QR factorized at each level i are called A§»Z) for j = 1,---,27% where

superscript (i) corresponds to the level and the subscript j indexes the row-blocks within level
15

This manuscript is for review purposes only.

498 4. In the following sections, alg. 6 (tsqr) will find a TSQR factorization of a matrix A € R™*"
199 where m > n. The inline function qr refers to alg. 3 and we use alg. 2 as a subroutine of qr.

Algorithm 6: Q,R = tsqr(A, L). Finds a QR factorization of a tall, skinny matrix, A.
Input: A € R™*™ where m > n, L < |log, (%)J, and 2% is the initial number of blocks.
Output: Q € R™*" R € R™*"™ such that QR = A.

1 h«m2t // Number of rows.
/* Split A into 2L blocks. Note that level (i) has 2E~% blocks. */

2 for j =1:2F do

s | A Al - Dh+1: 5k,

/* Store HH vectors as columns of matrix VJ(-Z), HH constants as components of

vector ﬁ]@, and set up the next level. */
4 fori=0:L—-1do
/* The inner loop can be parallelized. x/
5 for j=1:2"do
v ﬁ(i) RY o (A(i))
6 2j—1) Paj—1s Troj1 = AT ARg5
7 Vi), 85 RY) « ar(Af))
, RY
500 8 AYH) — | 25
R,/
9 VgL), gL), R(—qr(AgL)) // The final R factor is built.
10 Q1Y) + hhmuit (VY L)
/* Compute Q) factors by applying V(¥ to QU+ factors. */

11 fori=L—-1:-1:1do
12 for j =1:2""do

.) ~ (1)
13 L Qy) < hhmult (VEZ), [Qa(g,zﬁ(j)b

14 Q « [[; // Construct the final Q factor.
15 for j=1:2 do
Q
A1)
16 Q< n e <V§°), [Qa(a(‘))@(j)D

17 return Q, R

501 TSQR Notation. We introduce new notation due to the multi-level nature of the TSQR algo-
502 rithm. In the final task of constructing Q, Q;i) factors are aggregated from each block at each level.
503 Each QJ@ factor from level 7 is partitioned such that two corresponding QU1 factors from level i—1
504 can be applied to them. The partition (approximately) splits Qgi) into two halves, [QY%TQ%T]T
505 The functions a(j) and ¢(j) are defined such that Q;i) is applied to the correct blocks from the level
506 below: an;7)¢(j). For j =1,---,2F7% at level 4, we need j = 2(a(j) — 1) + ¢(j), where a(j) = [£]
507 and ¢(5) = 2+ j — 2a(j) € {1,2}. section 3.3.2 shows full linear algebra details for a single-level

16

This manuscript is for review purposes only.

514
515

516

ot
iy
~

518

519

ot
[\]
o = O

ot Ot Ot
NN N
[\

ot C
)
= w

S © 0 g O Ot

v O Ot Ot Ot Ot Ot Ot Ot

NIV IO
FNOU I I

[SO, G SN
W W w w

J

538

(L =1, 2 initial blocks) example. The reconstruction of Q can be implemented more efficiently (see
[3]), but the reconstruction method in alg. 6 is presented for a clear, straightforward explanation.

3.3.2. Single-level Example. In the single-level version of this algorithm, we first bisect A
into Ago) and Aéo) and compute the QR factorization of each of those submatrices. We combine the
resulting upper-triangular matrices (see below) which is QR factorized, and the process is repeated:

Al [T [ePme) e o T[RPT_[af 0,0 _[a” o
A~ labrb] = o a?| [r0] T [0 o af

The R factor of Agl) is the final R factor of the QR factorization of the original matrix, A. However,

the final Q still needs to be constructed. Bisecting le) into two submatrices, i.e. Qﬁ and leg,
allows us to write and compute the product more compactly,

ac [lar - [0 o l[a] e
o q o Q| [qQis] |@dQl),

More generally, alg. 6 takes a tall-and-skinny matrix A and level L and finds a QR factorization
by initially partitioning A into 2() row-blocks and includes the building of Q. For simplicity, we
assume that m is exactly h2() so that the initial partition yields 2() blocks of equal sizes, h-by-n.
Also, note that hh_mult refers to the action of applying multiple HH transformations given a set
of HH vectors and constants, which can be performed by iterating line 6 of alg. 3. This step can
be done in a level-3 BLAS operation via a WY update if alg. 6 was modified to store the WY

3.3.3. TSQR: Rounding Error Analysis. The TSQR algorithm presented in alg. 6 is a
divide-and-conquer strategy for the QR factorization that uses the HQR within the subproblems.
Divide-and-conquer methods can naturally be implemented in parallel and accumulate less rounding
errors. For example, the single-level TSQR decomposition of a tall-and-skinny matrix, A requires
3 total HQRs of matrices of sizes [logy(™)]-by-n, [logy(™)]-by-n, and 2n-by-n. The single-level
TSQR strictly uses more FLOPs, but the dot product subroutines may accumulate smaller rounding
errors (and certainly have smaller upper bounds) since they are performed on shorter vectors, and
lead to a more accurate solution overall. These concepts are elucidated in [21] and we summarize
the main results in Theorem 3.7.

THEOREM 3.7. Let A € R™*™ with m > n have full rank, n, and QTSQR € R™™ and

f{TsQR € R™™™ be the thin QR factors of A obtained via alg. 6 with L levels. Let us further
assume that m is divisible by 2L and nA,9-r, 02, < 1. Then, 2-norm error bound for the gth
column (j =1:n) of Rrsgr and the Frobenius norm error bound for Qrsgr are

representation at the QR factorization of each block of each level, A

(3.23) IRrsQrL: 4] — Rl dlll2 < n(Fma—r + LA2n) || AL 4]l2,
(3.24) 1Qrsor — QllF < 7% (Aot + Lian).

Note that the n?9,,5-r and n¥s, terms correspond to errors from applying HQR to the blocks
in the initial partition and to the blocks in levels 1 through L respectively. We can easily replace
these with analogous mixed precision terms and keep the analysis accurate. Both level-2 and level-3
BLAS implementations will be considered in section 4.

17

This manuscript is for review purposes only.

[N BTN
o ©

—

w N

S

© 0 N O

> 1 Ot Ot Ot Ot Ot Ot Ot
ot

()

Ul Ut Ot Ot Ot Ot Ut Ot Ot Ot ot Ut

561
562
563
564
565
566
567
568
569

TU R W N =

-~

583

584
585

586

TSQR and HQR error bound comparison. We compare the error bounds for HQR and TSQR.
Consider the bounds for ||Q — Q|| in Theorems 3.4 and 3.7. TSQR has a lower worst-case error
bound than HQR when integers m,n > 0, and L > 0 satisfy

1> n3/2,}/(m) > n3/2(,y(2%) + L,Y(Qn)).

Let us consider as an example the case when 3% = 2n. Then, the HQR bound is 2% /(L + 1) larger
than the bound for TSQR with L levels. For example, in single precision, a HQR of a 2!5-by-26
matrix results in an upper bound relative backward error (||A — QR||r/||A||r) of ~1.002, but a
TSQR with L = 8 is bounded by ~3.516e-02. This case exemplifies a situation in which stability
is not guaranteed in HQR, but the method is stable when using TSQR, even in the worst-case.
Now consider some 22°-by-2!? matrix and QR factorizations performed with double precision. The
error bound for HQR is 1.686e-7, whereas the error bound for TSQR with 12 levels is 5.351e-10.
In general, we can conjecture that values of L that can make m2~* and 2Ln much smaller than m,
should produce a TSQR that outperforms HQR in worst-case scenarios, at least in uniform precision
settings. However, the range of matrix sizes that TSQR can accommodate decreases as L grows
larger. Figure 1 shows the matrix sizes HQR, 2-level TSQR, and 4-level TSQR can accommodate
as well as their respective error bounds.

4. Mixed precision error analysis. In this

HQR TSQR with L levels section, we consider three different mixed precision
il = "=s settings for the QR factorization, all of which take in

s a matrix A stored in low precision and return Q, R
both represented in low precision. First, we con-
sider a trivial mixed precision setting where HQR,
* BQR, and TSQR are computed in high precision af-
2 ter casting up the input matrix at the beginning, and
, casting down the resulting high precision factors to
low precision. Then in subsection 4.1, we modify
le40 2 i o 2 i 0 2 7 BQR and TSQR to utilize level-3 BLAS operations
Number of Column (8) - Number of Coluns (n) - fumber of Columns (7 and TensorCore bFMAs for the matrix product sub-
routines. Finally, we impose MP Setting 2.3 in sub-

Fic. 1. Non-white space indicates allowable Section 4.2 to see how a mixed precision inner prod-

matriz sizes for each scheme, and color map rep- uct impacts HQR, BQR, and TSQR when applied
resents error bounds for [|AQ||F for uniform pre- in level-2 BLAS operations.

cision error analysis when wusing double precision
arithmetic.

3

Number of Rows (m)

2

1

Backward error of casting down vectors. First,
consider casting down a vector x € IFl(lm). The com-
ponentwise forward error is,

castdown;(x) = x + Ax, |Ax| < u®|x]|.

We use this to represent the backward error of a casting down a vector with a linear transformation,
IV .= T4+ E € R™*™, a diagonal perturbation of the identity. We write,

(4.1) x(.= castdown(x) = IWx™ = (1 + E)x" = x") 4+ Ax,

where |Ax| < u®[x™)] and |Ax|s < u®||xM]]5. Thus, E = Axx " /||x||? and we can use the same
argument as in (3.11) to form a backward matrix norm bound,

(4.2) |E||r < u®.
18

This manuscript is for review purposes only.

624

Casting down after HQR in high precision. Let us consider the trivial case of carrying out HQR
in high precision and casting down at the very end. This is useful for the analysis of mixed precision
block algorithms as will be shown in subsection 4.1. If the two floating point types [F; and Fj, satisfy
F; C Fj, and the matrix to be factorized is stored with low precision numbers, A € F}**", then
casting up adds no rounding errors. Therefore, we can directly apply the analysis that culminated
in Theorem 3.4, and we only consider the columnwise forward error in the Q factor. Then, the
§™" column of Qror = Q + AQgr is bounded normwise via |AQuorl: j]ll2 < 73", and incurs
an extra rounding error when QHQR € F;"™™ is cast down to F}"*". Using this in Lemma 3.2 to
analyze the forward norm error for the j** column of the Q factor computed with alg. 3 yields

(4.3) [(castdown(Qrqr) = Q) jllla = [AVP -+ Py =Py - Pr)gyllz < w0300 +nuD5).

The final castdown operation increases the upper bound by u() and the size of A has no impact on
this extra rounding error. Applying this trivial mixed precision setting to BQR and TSQR would
simply increases the error bound by approximately u(® all the while taking an even longer time
than the high precision implementation due the extra cast down and cast up operations. Therefore,
we do not analyze the rounding error analysis of this mixed precision variant of BQR and TSQR.
However, we will use this mixed precision HQR as a subroutine of the mixed precision BQR and
TSQR in the following section.

4.1. Round down at block-level: level-3 BLAS mixed precision setting. The mixed
precision setting in this section is designed to meet the below requirements.

1. Modify Algorithms 5 and 6 to maximize level-3 BLAS operations and use TensorCore

bFMAs.

2. Apply (4.3) to all instances of HQR to the error analyses for BQR and TSQR in section 3.

3. Cast down quantities at every block/level and the insertion of low precision errors u®
should be somewhat correlated to the number of blocks and levels.

4. Both input and output of the various QR factorization algorithms are given in the low

precision.
TensorCore’s bFMA computes
(4.4) D =flyc(C+AB), C,DeFL i or FL), and A, B € FLE,

and employs full precision products and fp32 summation accumulate. Here, the full precision
multiplication is exact as explained in section 2. In [5], the authors investigate all four possible
matrix-matrix multiplication routines in TensorCore, which depend on whether C and D are com-
puted in fp16 or fp32. They also note that matrices larger than 4-by-4 can still be computed using

this block FMA by accumulating matrix sums with C € F?péé. Suppose that we aim to compute

mXp

a fp16 matrix product of two fp16 matrices, X € F; 7o), Y €]I**’](’fxp%), and Z = XY ¢ Fgfﬁn. We
pad X,Y with zeros so that all matrix dimensions are multiples of 4 and the matrix product can
be computed with the TensorCore block FMA. Let Qy; jj := Q[4(i — 1) + 1 : 4i,4(j — 1) + 1 : 4j]
refer to the (i,)" 4-by-4 block for any Q € {X,Y,Z}. Then, we compute Z; ; via

[p/4]

Zig = D Xiw Y]

k=1
where we use (4.4) by initializing with A1) := X{i1]s B .= Y[y, and CW := 04,4 and setting
A® = Xy, B® := Y, 57, and CH) := DD for k = 2 : [p/4]. By setting C*), D) € F3

19

This manuscript is for review purposes only.

636

637
638

639
640
641
642
643
644
645
646
647

648

for K > 1 and only casting down at the end via Zj; ; = fp16(DP/4D) | we maximize our use of
fp32 arithmetic. This computes the most accurate mixed precision matrix product routine possible
using TensorCore bFMAs whose inputs and output are required to be stored in fp16. For example,
take p = 8. Then the [i, j]*" 4-by-4 block of the product is computed via,

DY = flye (X Yiy), D@ =flre(XjinYe, + DY) € Fii

Z[Z}j] = Castdown(D(Q)) c F?pﬁﬁé'

1,5

Adapting the rounding error analysis in [5] into this specific mixed precision matrix product setting
yields the componentwise forward bound

f] f]
(4.5) 1~ (Z)] < (w19 4 4B 1 @10, 152) Xy

We denote BQR and TSQR computed via TensorCore bFMA’s with mpBQR3 and mpTSQR3,
where the 3 represents the BLAS level-3 nature of this mixed precision setting.

4.1.1. BQR round down at block level: mpBQR3. Consider the input matrix, A € F/**",
partitioned into N blocks of r columns, A = [Cy - - - Cy] as in subsection 3.2. Algorithm 7 shows a
mixed precision variant of BQR that maximizes the use of bEFMAs but uses high precision arithmetic
for level-1 and 2 BLAS operations which are only a O(1/N) fraction of the total number of FLOPs.
Each block is casted up to compute a high precision HQR and to form the WY representation.
The WY representation is then casted down to low precision since the bFMAs require low precision
inputs for matrix products, and the R factor from the high precision HQR can be casted down to
return a low precision R factor at the very end. Since the cast down operations for the R factor
and the WY representations occur at every block, we can expect columnwise error bound for alg. 7
to increase by approximately Nu® from the error bound for alg. 5.

Algorithm 7: QmpBQRg, RmpBQRg < mpBQR3(A, r): Perform a mixed precision variant
of BQR of low precision A with column partitions of size . QmpQR3,RmpBQR3, are
returned in low precision. Operations in lines 7 and 10 require low precision inputs.

Input: A, r. Output: Q,pBoRr3:.RmpBoRs
1 N=1n /* Let A=[C;---Cpy|]. */
2 fork=1:N—-1do
3 Vi, Bk, Cr + hhQR(castup(Cy)) /* Algorithm 3 in high precision. */
4 C), +—castdown (Cy) /* Builds R factor in low precision. */
5 Wi < buildWY(Vy, Bk) /* Algorithm 4 in high precision */
6 [Vi, W] <—castdown([V, Wg])
7 [Cikt1---Cn] -= Vi (Wg[Ck+1 e CN]) /* returned in low precision */
8 Q«+1I /* Build Q: I,, if full QR, and I,,x, if thin QR. */
9 fork=N:-1:1do

// All updates are returned in low precision.

10 | Qk—1r+1:m,(k—1)r+1:n}-=W,(VIQ[(k—1)r+1:m,(k—1)r+1:n])

11 return Q, A

20

This manuscript is for review purposes only.

662

663

664

665

666

667

668
669

670

671

672
673

674

ey
1

677

678

679

Since Wk7 Y,’s are computed with alg. 4 in high precision then cast down, the new low precision
WY update is X(l) I-10OW, 10V (T). Consider applying X,(j)
precision, B using the TensorCore bFMAs. We analyze a single column b; : B[jl €F"
even though this operation is done on B as a whole. Let I(l)VAV;C =TI+ EW)VV;C and I(l)?k =
(I+Ey)Yk, where Eyy, Ey are diagonal and bounded componentwise by u(). Then, the Frobenius

()
norm error of forming X,(c) is,

to some matrix stored in low
—(k=1)r

XY — Xillr = || — A+ Ew + Ey + EwEy) W, Y] + W, Y/ ||,

l h l
< (428 + @A oy, 87 + @) Xl

(OF (h)

l ~(h
<34 + 17,)(kfl) T2 V= (k= 1)

Now, we consider the backward error of applying X,(f) to b; with the bFMA matrix product error
bound from (4.5). The multiplication by (IWY})T yields backward error bounded by

fre(IDY) Thy) = (Vi + Arc Yi)b, |ATcYk\<u”+v<if) , +u®y P gy 1Y[bj,

7

and the subsequent multiplication by (I(I)Wk) and subtraction from b, result in,
fre(XPb;) = (XY + AOX,)b,
40X, < (75” 41 oy i) (1031 EOWL Y b).
Converting to a normwise error bound using the same logic from (3.9) and (3.10), we result in

(1
(4.6) fre(Xb;) = Xibjlla < (38 + 730 oy, + 18030)b s

since the rounding errors from the bFMAs are small in comparison to the errors from casting down
the WY representation built in high precision. The corresponding matrix error bound is

(1 ~(1 ~ ~(1)~(h
(4.7) re(X) = Xillr <38+ 1350 0o + 78058 e

We can finally compute the forward errors from implementing alg. 7. Consider the 4t column
of the Q factor, which we denote with q; := Qmpgrs[:, j], and let k = [j/r|. Invoking Lemma 3.2

with error bounds for ﬂTc(X,(cl))’s in (4.7) results in columnwise error,

k
~(l ~(h
(4.8) IAgy]z < -1+ [T @+3)@+r78 010
k'=1
(4.9) < kA + kA + kKPrag A,

where Aq; = (flpc (X()) . -ﬂTc(X,(f)) — X - Xj)€;. Summing over the columns to find a matrix
norm error bound yields

(4.10) |Qupsanr — Qllr <n'/* (5§ +n3l) |
21

This manuscript is for review purposes only.

680
681
682

683

703

where the summation of the third term in (4.9) is swept under the tilde notation in n'/ 2’7%).

This bound shows that alg. 7 only adds n'/ Q%(\Z,) order errors to the bounds in (3.22). Using that
ul®) = Mlvhu(h), this increase corresponds to a multiplicative factor shown below,

M,
(4.11) nl/Q%(\lf) +nB/25M) ~ (1 + rln’lh) nB/25M)

Therefore, the loss in accuracy due to mixed precision computing is relatively small when the
disparity in precision (M) is small in comparison to the block size, mr. However, as r grows
large, N = n/r decreases which then reduces the portion of mpBQR3 performed using level-3 BLAS
operations and increases the size of high precision HQR being performed at each block. Whether
this loss in accuracy in the worst-case scenario is worth the speed-ups from using mixed precision
hardware is an open question that can be tackled in future research. Our analysis shows that the
block size r, the dimension of the input matrix m, n, and hardware specificities will be contributing
factors.

4.1.2. TSQR round down at block level: mpTSQR3. Unlike BQR which is rich in level-3
BLAS operations, the variant of TSQR in alg. 6 uses none. Therefore, we modify alg. 6 by replacing
all instances of hh mult with level-3 BLAS operations. We omit presenting the exact algorithm
for mixed precision variant of TSQR in this paper, but consider computing the HQR of each block
in high precision and build and store the WY representation of the HH transformations in low
precision as we did in lines (3-6) of alg. 7. The low precision WY representation is then applied
with TensorCore bFMAs when building the Q factor (lines 11-16 of alg. 6).

Rounding Error analysis. The analysis in [21] shows that each column of Q is transformed by
n HH transformations of length 2n from levels L : —1 : 1, and another set of n HH transformations
of length m2~% at level 0. Let us represent the WY representation at the j** block of level i and
its bFMA counterpart as Xg-l) and ﬂTc(Xy)). Then, we can use (4.7) to form backward error

w _ m2=L, i=0
(4.12) e (X)) = X)) r <34 +03l) + 0340, m' = {gn =1L

We can now modify the analysis in [21] by replacing n9,,5-r and n9s, with
A+3)A 40300) 1, and (1+3)1+n30) — 1,

and apply Lemma 3.2. Then, the factors formed by mpTSQR3 are denoted by RmpT SQR3s QmpT SQR3
and the error bounds for the j** column of the triangular factor and the orthogonal factor are

» l h ~(h .
|Riprsars = R)[dllle < 355 +n (L35 + 3002) 1AL iz,

1Quprsrs — Qllr < 0?3, +n?/? (Lv(h) + T L) '

Converting the low precision rounding errors as a fraction of the TSQR error bound in (3.24) to
quantify the impact of modifying alg. 6 to utilize bFMAs yields

250 42 (L3 1 4™) = Min(L+1) N\ s (gt ()
(4.13) 1+ (L,y Vo L) (1 * n(2nL + m2-1) (L'y + ’Ym?*L) '

22

This manuscript is for review purposes only.

© 0 S R W

-~ ~1 ~1 ~J ~1 ~ ~ =~ ~ ~ =~ =0 =3

W W NN NN NN DNNNDDNN =

—_

Like in (4.11), the disparity in the two precisions, M, is compared against the original matrix
size m,n and the block size specifications derived from L. Let us consider the shallowest, middle,
and the deepest levels of TSQR that are possible given some matrix in R™>*™. All three cases in
Table 4 show that mpTSQR3 on sufficiently large matrices may yield errors closer to the high precision
implementation, and the optimal choice for L depends on m,n.

Number of levels, L 1 3 logy(m/n) -1+ logy(m/n)
L mi/2,3/2
% 1/(%2 +m/4) | 1/ (2n2 + W) 1/(27},2)

TABLE 4
Error bounds for ||AQmprsqrsllF for varying L’s.

4.2. Round down at inner product: level-2 BLAS mixed precision setting. While
the previous section discussed blocked variants of HQR that can be easily adapted for the mixed
precision setting specific to TensorCore bFMA’s, we want to provide a more general mixed precision
environment in this section. Recall that HQR, BQR, and TSQR all rely on HH transformations
in one way or another, and implementations of HH transformations are expressed by (3.8). This
implementation capitalizes on the rank-1 update structure of HH transformations where the pre-
dominant share of FLOPs is spent on an inner product, and computing the HH vector and constant
also rely heavily on inner products. Therefore, nearly all of the computational tasks for algs. 3, 5
and 6 are attributed to the inner product, which is important in other linear algebra tools such as
projections, matrix-vector, and matrix-matrix multiply. Consequently, we return to MP Setting 2.3,
where every inner product is cast down to the lower precision as shown in (2.10). We denote HQR,
BQR, and TSQR computed with MP Setting 2.3 with mpHQR2, mpBQR2, and mpTSQR2, where the 2
represents the mixed precision procedure computed at a level-2 BLAS operation.

4.2.1. HQR round down at inner product: mpHQR2. Consider forming a HH transforma-
tion that zeros out x € R™ below the the i** element. We need to compute o, 3, V1, and v as
defined in subsection 3.1,

(4.14) fi(0) = fi(—sign(x[1)|xl}2) = o + Ac, |Ac] < (24 +7 + 420 Jol,
(415) AW]) =v[]+AV[] = (1 +6D)(x[1] -0 — Ag), |AV1]] < (48" + 30 V1]
(4.16) A(8) = B+ AB = (1+6D) (—v'[1]/6), a8 < (" + 318,

(417) AV]]) = vIj] + Av[j] where |AV[j]| < (A + 30 |vsl i =2:m =i+ 1.

These bounds on Ao, Av'[1], AB, and Av[j] are computed by using the rules from Lemma 2.4 on
the analysis shown in subsection 3.1. Using these, we can formulate the mixed precision version of
(3.9) where y = fl(P,x) € R™ is implemented via (3.8). Note that the inner product v'x via MP
Setting 2.3, and all other operations are done in the lower precision. Then, the transformed vector
is bounded by

(4.18) ¥ =y +Ay, [IAy]2 < (158 +3D) [yl

Thus, a backward error can be formed using AP, = Ayx ' /||x||3,

(4.19) ¥ = (Py + APV)x, [[APy|r < (380 + 7).
23

This manuscript is for review purposes only.

~
=
o

-3
N
)

-
Ut
-

3l
Do

ot ot ot Ot
(S BETEN w

N N

ot Ut
~

Now, we form the error bounds for applying n HH transformations to x using Lemma 3.2,

(4.20) 2=A(P; - P,x) = Q(x + Ax) = (Q + AQ)x,
(4.21) Ayll2 < (B + n3N))2, 1AQIr < (B + n3).

Note that we use the () notation, where the small integer ¢ is now required to be O(25). The
analogous mixed precision QR factorization error bounds are shown in Theorem 4.1.

THEOREM 4.1. Let A € R™*"™ with m > n have full rank, n. Let QmpHQRQ e R™*™ and
R e R%ﬁ[@m be the thin QR factors of A obtained via alg. 3 with mixed precision FLOPs where
inner products are computed in precision h then cast down. All other operations are carried out in
precision l. Then,

(4.22) [|ARmpror2[5dlll2 < B + nAU)AL]Iz, |ARmprorellr < B + nA) Al R
(4.23) |AQL, dlmprorzllz < G +03M), |AQumpnor2llr < 02D +nyM).

Unsurprisingly, the inner product mixed precision setting yields higher error bounds as it uses more
low precision arithmetic than the settings described in subsection 4.1. In the next sections we
analyze using mpHQR2 instead of HQR within algs. 5 and 6.

4.2.2. BQR round down at inner product: mpBQR2. Now, we analyze alg. 5 implemented
with MP Setting 2.3. At the k** block, we first apply the mixed precision HQR summarized in
Theorem 4.1. Next, we construct the WY representation, where we can now use (4.18) and (4.19)
and Lemma 3.2 to form

S (1 A (1 ~(r 1 r ~ ~
(4.24) XY = Xyl = BN PY) = @V PO e < 5D + 7.

Then, the 2-norm bound for the j*" column of the R factor and the Frobenius norm bound for the
orthogonal factor resulting from mpBQR2 are

(4.25) IRompponalis il = X -+ Xy AL jllls < (N5D + 030 AL]2,

A B B M, B
(4.26) Qupparalle < 172 (V304030) = (14 208) /2500,

Note that this error bound is of the same order as the error bound for mpHQR2, shown in (4.23). The
corresponding error bound for mpBQR3 of section 4.1.1 yielded low precision errors r times smaller
than that from using MP Setting 2.3 inner products, an unsurprising result as intermediate results
are cast down more often in mpBQR2. Furthermore, the 4() in this section requires ¢ = 0(25),
whereas the same notation in section 4.1.1 assumes c to be a small positive integer. Therefore, the
numerical stability of mpBQR2 is guaranteed at smaller matrix sizes than the numerical stability of
mpBQR3 and BQR in high precision. While it is technically possible that the low precision errors
introduced from utilizing MP Setting 2.3 do not dominate the errors incurred in mpBQR2 and mpHQR2
when m > M, j, and can result in accuracy comparable to that of mpBQR3 and high precision BQR,
our numerical results in section 5 show that mpHQR2 is already unstable at m ~ M y,.

4.2.3. TSQR round down at inner product: mpTSQR2. Finally, we consider using MP
Setting 2.3 in alg. 6. This corresponds to replacing every instance of n7,, for m’ € {2n,m2=*} in

24

This manuscript is for review purposes only.

786
787

788

789

790

791
792
793
794

Theorem 3.7 with %(ll) + nﬁf:,). We first consider the norm errors for the 5" column of the Q factor

computed by this mixed precision variant of alg. 6,

(4.27) 1Quprsorels il — QL dllz < (L + DAY + 03, + LA).

Then, the matrix norm error bound is

(4.28) I1Quprsorz — Qllr < n'2(L+ 15D + 0250, + L7
M nL ~(h ~(h
(4.29) ~ (1 + mQ—L—i-QLn) n3/2(’71(ng)-L + L),

and contributes larger low precision rounding errors than in (4.13). If the mpTSQR2 error bound
were to outperform that of mpHQR2, we now need integers m,n > 0, and L > 0 that satisfy

1 0l (30 4+ 030} > 0t/ (L + DD + 0l + L135))

In contrast to the analysis for uniform precision settings, large L values do not necessarily reduce
the error bounds of TSQR. While large L can imply m > m2~% + 2Ln, it does not always lead to
d > dy + Ldy. Although the theoretical error bounds do not give a clear indication of the worst-
case performances of HQR and TSQR in mixed-precision settings, TSQR outperformed HQR on
ill-conditioned matrices within our numerical simulations. These experiments are discussed in detail
in the next section.

5. Numerical Experiments. We conducted several numerical experiments to confirm the
validity of the error bounds formed in section 4 by varying size for all algorithms, block sizes in
mpBQR3, and comparing mpHQR2 against mpTSQR2 with varying condition numbers. We used Julia,
a programming language which allows fpl16 storage and castup and castdown operations between
types in fpl6, fp32, fp64, but no built-in fpl6 arithmetic. Therefore, we relied on using alg. 1 for
f € OP U {dot_product} to simulate MP Setting 2.3 and TensorCore bFMAs.

In sections 3 and 4, we gave the forward error bounds for R and Q separately. Since our
numerical experiments instead measure a backward error, |QR — A/, and an orthogonal error,
QT Q —1||2, we show how to convert general forward errors into those computed quantities. Given

[(R—R)[:,5]ll2 < erl|A[:,5]|l2 and |Q — Q|| < €q,

(5.1) QR — AL, jlllz < (er +eq +ereq)| AL dll2, j=1:n, see[14],
(5-2) IQR — Allr < n'2(er +eq + ereq) | Al r,
(5-3) IQTQ -T2 < |QTQ —T||r = 2¢q, see [21].

First, we tested algs. 3 and 5 to 7, mpHQR2, mpBQR2, and mpTSQR2 for varying matrix sizes. We
increased the number of rows m from 1000 to 13949, while keeping n = m/4, r = n/4, and
L = 2 and the test matrices were sampled from the standard normal distribution. On the left
plot of Figure 2, we see three clusters which each correspond to: top, MP Setting 2.3; middle,
TensorCore bFMAs; and bottom, uniform precision implementations in fp32. The high precision
and bFMA implementations scale similarly to each other when increasing the matrix size, whereas
the MP Setting 2.3 variants grow unstable more quickly. In addition, while HQR, BQR, and TSQR
perform similarly in high precision and when using bFMAs, mpTSQR2 is less accurate by a quarter to
a half order of magnitude in comparison to mpBQR2 and mpHQR2. The specifications for m,n, L, M, j,

25

This manuscript is for review purposes only.

825
826

827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854

855

for this experiment derive the upper bound for [|AQuprsorz|lr, (4.29), to be larger than that of
IAQuproR2| Py (4.23). However, a more careful comparison of mpHQR2 and mpTSQR2 show that
there exists a regime where mpTSQR2 can outperform mpHQR2.

QR relative backward errors of m-by-7] matrices BQRh and mpBQR3 performance on 2048-by-256 matrices
¥
. : + 100 —|
100 T +
+ 10714 I—
+ + +
5 10 oroE — P32
5 + L] 102
£ 10724 * (] 1 . ®
E [¢ ©® o 0 0 00 0 0 o
S ¢ & O e & ¢ + mpHQR2 R X X wxx oy e e o 0 0 o
v q0-3 5 X v v .
10 2 E I g —x——x -~z =g
2 R +_ _mMpBQR2 H — nmuth © BORh backward XTTRTTRTTRTTR
i, + mpTSQR2 £ 104 n2(vulh+) @ mpBOR3 backward
g w & mMpBOR3 2 . X BQRh orthogonal
® & mpTSQR3 ~ “mﬂ o x mpBQR3 orthogonal
:3: 1075 4 X oxo% M x x ¥ x HQRh 1072 - LN
FRSEE " X BORh o 8 e ee o e e e e o o -« e o o o
@ 10 X TSQRh PTIx x x x X x X x x x x X X x x x x x X
1077 5 107
i i 10! 102
10° 10*

r: block size
m, number of rows

F1a. 2. Left plot: Backward errors of HH QR factorization algorithms in sections 3 and 4 with varying matrizc
sizes. Right plot: Norm errors of fp32 BQR and mpBQR3 for 2048-by-256 matrices for varying block sizes.

Next, we varied the block sizes for performing fp32 BQR and mpBQR3 on 2048-by-256 sized
matrices, which were chosen to yield error bounds below 1 for both algorithms. The right plot
of Figure 2 shows the error bounds and the computed value for the backward error for the two
algorithms where the block size r varies from 2 to 256. The test matrices were generated following
example from [5] by setting A = castdown(Q;DQ2) where Q; € F}"*", Qg € F*" are orthogonal
and D = Diagonal({log,((0), - ,log;o(—3)}) € F*". The high precision implementation yields
backward error close to u/?32) and mpBQR3 yields errors near «/?16) that follows the downward trend
suggested by (4.11). As block sizes increase, mpBQR3 grows more accurate. This trend correlates to
1/N, the approximate fraction of FLOPs in mpBQR3 performed in high precision, marked in orange.
However, the rightmost data for mpBQR3 (corresponds to r = n), is still between 3 and 4 orders of
magnitude less accurate than its high precision variant. Further studies that directly test speed-ups
from bFMAs against the accuracy of mpBQR3 are needed to fully understand the potential uses for
mixed precision QR algorithms.

Lastly, we compared mpTSQR2 against mpHQR2. Note that an empirical comparison of the two
algorithms implemented in fp64 arithmetic were reported in [21], and we omit the comparison
against mpBQR2 since it performs very similarly to mpHQR2. Following example from [21], we used
m-by-n random matrices, A, = Q'(aE + I)/||Q’(aE + I)|| r, where Q" € R™*" is orthogonal and
E € R™ ™ is the matrix of 1’s. We constructed Q" by computing the default QR factorization
of matrix Q €]F;fg%?lx 100 4 Julia, which performs BQR with r = 36 entirely in fp64 arithmetic,
and elements of the random matrix € were sampled from the uniform distribution over [0, 1]. By
construction, A, has 2-norm condition number na+ 1. By varying « from 1e-4 to 1, we varied the
condition number from 1.1 to 101, and we generated 10 samples for each value of c. The relative
backward error, ||Q13L —A|lr/||A| F, was computed by casting up Q, R, and A to fp64 to compute
the Frobenius norms. Plugging in m = 4000, n = 100, u() = «(/P16) (") = 4,(fP32) and ¢ =1 (for
%) into the error bounds for mpHQR2 combined with (5.2) and (5.3) are approximately 1.179 and
1.146. These error bounds are relative and these worst-case bounds do not guarantee errors below
100%. The TSQR bounds for the same parameters for L = 1 : 5 are even larger, which indicates
that stability is not guaranteed. The leftmost plot of Figure 3 shows the backward errors of mpHQR2

26

This manuscript is for review purposes only.

856
857
858
859
860
861
862
863
864
865
866

867
868
869
870
871
872
873
874
875
876
877

878
879
880
881
882
883
884
885

increasing as the theoretical condition numbers of the generated random matrices increase, and
these errors correspond to the error data on the vertical axis, L = 0, of the middle plot. In addition
to the errors from mpHQR2, Figure 3 shows the errors from mpTSQR2s of levels varying from L =1
to L = 5, where each line represents the errors of HQR and variants of TSQR calculated from
the same random test matrix. Figure 3 reveals two different trends for the errors as we deepen the
complexity of the QR algorithm from mpHQR2 to mpTSQR2 with L = 5. One trend occurs for matrices
with smaller condition numbers, where mpHQR2 is stable, but mpTSQR2 with higher levels yield larger
errors. Another trend occurs for matrices with higher condition numbers, where single-level and
2-level mpTSQR2 yield smaller errors than mpHQR2. In these cases, errors from mpTSQR2 with 3 or
more levels are similar to or worse than their 2-level variants, but generally do not exceed those of
mpHQR2 most of the times. These results suggests that TSQR can outperform HQR even in mixed
precision settings, and particularly when HQR is unstable due to larger condition numbers.

[7x1072

6x107] ©

5x1072

1071 4 “,M

1072 4 4x1073

Backward Relative Error
Backward Relative Error

10° 10! 10? 0 H 2 3 4 5 o 1 2 3 4 5

Condition Number Number of levels, L, where there are 2AL initial blocks

Fic. 3. All plots show the backward relative error for 4000-by-100 sized test matrices. Left: mpHQR2 on
condition numbers ranging from 1.1 to 101; Middle: mpTSQR2 on condition numbers ranging from 5.8 to 101; Right:
mpTSQR2 on condition numbers ranging from 1.1 to 5.35.

In conclusion, most of the experiments display the trends that error bounds in sections 3 and 4

suggest, and bFMA variants perform in between the high precision and MP Setting 2.3 variants as
expected. Also, a special case is shown that demonstrate mpTSQR2 can outperform mpHQR2 despite
having higher error bounds. All of the experiments showed that the actual errors were many orders
of magnitude lower than the error bounds even when ill-conditioned, but this discrepancy varied for
different mixed precision settings. For example, backward and forward errors of mpBQR3 were only
2-3 orders of magnitude below the error bounds, whereas the fp32 implementation of BQR yielded
errors up to 6 orders of magnitude below the error bounds. Although further studies with larger
problem sizes and timings would be beneficial in developing an mpBQR3 with the optimal block size,
r, our experiments confirm the intuition built from the error analysis in section 4.

6. Conclusion. The development of GPUs that optimize low precision floating point arith-
metic have accelerated the interest in half and mixed precision algorithms that naturally reduces
the bandwidth and storage needs. Loss in precision, stability, and representable range offset for
those advantages, but these shortcomings may have little to no impact in some applications. It
may even be possible to navigate around those drawbacks with algorithmic design.

We present the algorithm and standard error analysis of HQR and its blocked variants (BQR
and TSQR), modify the algorithms to support two mixed precision settings, and performed error
analysis that accurately bound the mixed precision versions. One mixed precision setting is that

27

This manuscript is for review purposes only.

886
887
888
889
890
891
892
893
894
895
896
897
898

of NVIDIA’s TensorCore bFMAs, and the other is an ad hoc setting that mimics the bFMAs at
the level of inner products. These two are presented to offer mixed precision arithmetic at both
level-2 and 3 BLAS operations and can be applied to other linear algebra tools as well. The new
error bounds more accurately describe how rounding errors are accumulated in mixed precision
settings. For a given problem, available hardware, and some error tolerance, these bounds can be
used to first narrow down which QR factorization algorithms are feasible. Then, the speed-ups
from the hardware specifications can be considered next to choose the most appropriate settings
within the algorithms (i.e. block size r in BQR or number of levels, L, in TSQR). We found that
TSQR can outperform HQR under MP Setting 2.3 for ill-conditioned, extremely overdetermined
cases even when the error bounds imply the opposite. While an optimistic interpretation of this
result would be that algorithms like TSQR are more robust against lower precision arithmetic,
further research is needed to explore other divide-and-conquer methods that can harness parallel
capabilities. Meanwhile, we should rely on the error bounds formed in section 4.

REFERENCES

[1] A. ABDELFATTAH, S. TOMOV, AND J. DONGARRA, Fast batched matriz multiplication for small sizes using half-
precision arithmetic on GPUs, in 2019 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), May 2019, pp. 111-122, https://doi.org/10.1109/IPDPS.2019.00022.

[2] E. ANDERSON, Z. Bal, C. BIiscHOF, L. S. BLACKFORD, J. DEMMEL, J. J. DONGARRA, J. DU CrOz, S. HAM-
MARLING, A. GREENBAUM, A. MCKENNEY, AND D. SORENSEN, LAPACK Users’ Guide (Third Ed.), So-
ciety for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1999; also available online from
http://www.netlib.org.

[3] G.BALLARD, J. W. DEMMEL, L. GRIGORI, M. JACQUELIN, H. DIEP NGUYEN, AND E. SOLOMONIK, Reconstructing
Householder vectors from tall-skinny QR, vol. 85, 05 2014, pp. 1159-1170, https://doi.org/10.1109/IPDPS.
2014.120.

[4] C. BiscHOF AND C. VAN LOAN, The WY Representation for Products of Householder Matrices, STAM Journal
on Scientific and Statistical Computing, 8 (1987), pp. s2-s13, https://doi.org/10.1137/0908009.

[5] P. BLANCHARD, N. J. HicHAM, F. LoPEZ, T. MARY, AND S. PRANESH, Mized Precision Block Fused Multiply-
Add : Error Analysis and Application to GPU Tensor Cores, (2019).

[6] M. COURBARIAUX, Y. BENGIO, AND J.-P. DAVID, Training deep neural networks with low precision multiplica-
tions, arXiv preprint, arXiv:1412.7024, (2014).

[7] M. COURBARIAUX, J.-P. DAVID, AND Y. BENGIO, Low precision storage for deep learning, arXiv preprint
arXiv:1412.7024, (2014).

[8] J. DEMMEL, I. DuMITRIU, AND O. HOLTZ, Fast linear algebra is stable, Numerische Mathematik, 108 (2007),
pp. 59-91, https://doi.org/10.1007/s00211-007-0114-x, https://arxiv.org/abs/0612264.

[9] J. DEMMEL, L. GRIGORI, M. HOEMMEN, AND J. LANGOU, Communication-optimal parallel and sequential
QR and LU factorizations, SIAM Journal on Scientific Computing, 34 (2012), https://doi.org/10.1137/
080731992, https://arxiv.org/abs/0808.2664.

[10] M. FAGAN, J. SCHLACHTER, K. YOsHII, S. LEYFFER, K. PALEM, M. SNIR, S. M. WILD, AND C. ENz, Overcoming
the power wall by exploiting inexactness and emerging COTS architectural features: Trading precision for
improving application quality, in 2016 29th IEEE International System-on-Chip Conference (SOCC), Sep.
2016, pp. 241-246, https://doi.org/10.1109/SOCC.2016.7905477.

[11] G. H. GoLuB AND C. F. VAN LOAN, Matriz computations, JHU press, 4 ed., 2013.

[12] A. HAIDAR, A. ABDELFATTAH, M. ZOUNON, P. Wu, S. PRANESH, S. ToMOV, AND J. DONGARRA, The Design
of Fast and Energy-Efficient Linear Solvers: On the Potential of Half-Precision Arithmetic and Iterative
Refinement Techniques, June 2018, pp. 586-600, https://doi.org/10.1007/978-3-319-93698-7_45.

[13] A. HAIDAR, S. ToMOV, J. DONGARRA, AND N. J. HIGHAM, Harnessing GPU tensor cores for fast fp16 arithmetic
to speed up mized-precision iterative refinement solvers, in Proceedings of the International Conference
for High Performance Computing, Networking, Storage, and Analysis, SC ’18, Piscataway, NJ, USA,
2018, IEEE Press, pp. 47:1-47:11, https://doi.org/10.1109/SC.2018.00050, https://doi.org/10.1109/SC.
2018.00050.

[14] N. J. HicHAM, Accuracy and Stability of Numerical Methods, 2002, https://doi.org/10.2307/2669725.

[15] N. J. HIGHAM AND T. MARY, A New Approach to Probabilistic Rounding Error Analysis, SIAM Journal on

28

This manuscript is for review purposes only.

https://doi.org/10.1109/IPDPS.2019.00022
https://doi.org/10.1109/IPDPS.2014.120
https://doi.org/10.1109/IPDPS.2014.120
https://doi.org/10.1109/IPDPS.2014.120
https://doi.org/10.1137/0908009
https://doi.org/10.1007/s00211-007-0114-x
https://arxiv.org/abs/0612264
https://doi.org/10.1137/080731992
https://doi.org/10.1137/080731992
https://doi.org/10.1137/080731992
https://arxiv.org/abs/0808.2664
https://doi.org/10.1109/SOCC.2016.7905477
https://doi.org/10.1007/978-3-319-93698-7_45
https://doi.org/10.1109/SC.2018.00050
https://doi.org/10.1109/SC.2018.00050
https://doi.org/10.1109/SC.2018.00050
https://doi.org/10.1109/SC.2018.00050
https://doi.org/10.2307/2669725

938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964

(21]

22]

23]

24]

Scientific Computing, 41 (2019), pp. A2815-A2835, https://doi.org/10.1137/18M1226312, https://epubs.
siam.org/doi/10.1137/18M1226312.

N. J. HiIGHAM AND S. PRANESH, Simulating Low Precision Floating-Point Arithmetic, STAM Journal on Sci-
entific Computing, 41 (2019), pp. C585-C602, https://doi.org/10.1137/19M1251308, https://epubs.siam.
org/doi/10.1137/19M1251308.

A. S. HOUSEHOLDER, Unitary triangularization of a nonsymmetric matriz, Journal of the ACM (JACM), 5
(1958), pp. 339-342.

I. C. F. IPSEN AND H. ZHOU, Probabilistic Error Analysis for Inner Products, (2019), http://arxiv.org/abs/
1906.10465, https://arxiv.org/abs/1906.10465.

S. MARKIDIS, S. W. D. CHIEN, E. LAURE, I. B. PENG, AND J. S. VETTER, NVIDIA tensor core programmability,
performance & precision, Proceedings - 2018 IEEE 32nd International Parallel and Distributed Process-
ing Symposium Workshops, IPDPSW 2018, (2018), pp. 522531, https://doi.org/10.1109/IPDPSW.2018.
00091, https://arxiv.org/abs/1803.04014.

P. Micikevicius, S. NARANG, J. ALBEN, G. Diamos, E. ELSEN, D. GArcia, B. GINSBURG, M. HOUSTON,
O. KucHAIEV, G. VENKATESH, AND H. Wu, Mized precision training, in International Conference on
Learning Representations, 2018, https://openreview.net/forum?id=r1gs9JgRZ.

D. MoRrI, Y. YAMAMOTO, AND S. L. ZHANG, Backward error analysis of the AllReduce algorithm for householder
QR decomposition, Japan Journal of Industrial and Applied Mathematics, 29 (2012), pp. 111-130, https:
//doi.org/10.1007 /s13160-011-0053-x.

R. SCHREIBER AND C. VAN LoOAN, A Storage-Efficient WY Representation for Products of Householder
Transformations, SIAM Journal on Scientific and Statistical Computing, 10 (1989), pp. 53-57, https:
//doi.org/10.1137/0910005.

G. TAGLIAVINI, S. MAcCH, D. Rossi, A. MARONGIU, AND L. BENIN, A transprecision floating-point platform for
ultra-low power computing, in 2018 Design, Automation Test in Europe Conference Exhibition (DATE),
March 2018, pp. 1051-1056, https://doi.org/10.23919/DATE.2018.8342167.

U. vON LUXBURG, A tutorial on spectral clustering, Statistics and Computing, 17 (2007), pp. 395416, https:
//doi.org/10.1007/s11222-007-9033-z, https://doi.org/10.1007/s11222-007-9033-z.

29

This manuscript is for review purposes only.

https://doi.org/10.1137/18M1226312
https://epubs.siam.org/doi/10.1137/18M1226312
https://epubs.siam.org/doi/10.1137/18M1226312
https://epubs.siam.org/doi/10.1137/18M1226312
https://doi.org/10.1137/19M1251308
https://epubs.siam.org/doi/10.1137/19M1251308
https://epubs.siam.org/doi/10.1137/19M1251308
https://epubs.siam.org/doi/10.1137/19M1251308
http://arxiv.org/abs/1906.10465
http://arxiv.org/abs/1906.10465
http://arxiv.org/abs/1906.10465
https://arxiv.org/abs/1906.10465
https://doi.org/10.1109/IPDPSW.2018.00091
https://doi.org/10.1109/IPDPSW.2018.00091
https://doi.org/10.1109/IPDPSW.2018.00091
https://arxiv.org/abs/1803.04014
https://openreview.net/forum?id=r1gs9JgRZ
https://doi.org/10.1007/s13160-011-0053-x
https://doi.org/10.1007/s13160-011-0053-x
https://doi.org/10.1007/s13160-011-0053-x
https://doi.org/10.1137/0910005
https://doi.org/10.1137/0910005
https://doi.org/10.1137/0910005
https://doi.org/10.23919/DATE.2018.8342167
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1007/s11222-007-9033-z

