
LLNL-JRNL-795525

ROUNDING ERROR ANALYSIS
OF MIXED PRECISION BLOCK
HOUSEHOLDER QR
ALGORITHMS

L. M. Yang, A. Fox, G. Sanders

October 28, 2019

SIAM Journal on Scientific Computing

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

ROUNDING ERROR ANALYSIS OF MIXED PRECISION BLOCK1

HOUSEHOLDER QR ALGORITHMS2

L. MINAH YANG, ALYSON FOX, AND GEOFFREY SANDERS3

Abstract. Although mixed precision arithmetic has recently garnered interest for training dense neural networks,4
many other applications could benefit from the speed-ups and lower storage if applied appropriately. The growing5
interest in employing mixed precision computations motivates the need for rounding error analysis that properly6
handles behavior from mixed precision arithmetic. We develop mixed precision variants of existing Householder QR7
algorithms and show error analyses supported by numerical experiments.8

1. Introduction. The accuracy of a numerical algorithm depends on several factors, including9

numerical stability and well-conditionedness of the problem, both of which may be sensitive to10

rounding errors, the difference between exact and finite-precision arithmetic. Low precision floats11

use fewer bits than high precision floats to represent the real numbers and naturally incur larger12

rounding errors. Therefore, error attributed to round-off may have a larger influence over the total13

error and some standard algorithms may yield insufficient accuracy when using low precision storage14

and arithmetic. However, many applications exist that would benefit from the use of low precision15

arithmetic and storage that are less sensitive to floating-point round off error, such as clustering or16

ranking graph algorithms [24] or training dense neural networks [20].17

Many computing applications today require solutions quickly and often under low size, weight,18

and power constraints, such as in sensor formation, where low precision computation offers the abil-19

ity to solve many problems with improvement in all four parameters. Utilizing mixed precision, one20

can achieve similar quality of computation as high-precision and still achieve speed, size, weight,21

and power constraint improvements. There have been several recent demonstrations of computing22

using IEEE half precision (fp16) achieving around half an order to an order of magnitude improve-23

ment of these categories in comparison to single and double precision (fp32, fp64). Trivially, the size24

and weight of memory required for a specific problem is 4×. Additionally, there exist demonstra-25

tions that the power consumption improvement is similar [10]. Modern accelerators (e.g., GPUs,26

Knights Landing, or Xeon Phi) are able to achieve this factor or better speedup improvements.27

Several examples include: (i) 2-4× speedup in solving dense large linear equations [12, 13], (ii) 12×28

speedup in training dense neural networks, and (iii) 1.2-10× speedup in small batched dense matrix29

multiplication [1] (up to 26× for batches of tiny matrices). Training deep artificial neural networks30

by employing lower precision arithmetic to various tasks such as multiplication [6] and storage [7]31

can easily be implemented on GPUs and are a common practice in some data science applications.32

The low precision computing environments that we consider are mixed precision settings, which33

are designed to imitate those of new GPUs that employ multiple precision types for certain tasks.34

For example, Tesla V100’s TensorCores perform block Fused Multiply Add operations (bFMAs),35

where matrix products of fp16 input data can be computed up to 16× than that of fp64. The36

existing rounding error analyses are built within what we call a uniform precision setting, which37

is the assumption that all arithmetic operations and storage are performed via the same precision.38

In this work, we develop mixed precision variants of existing Householder (HH) QR factorization39

algorithms and perform mixed precision error analysis.40

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344 and was supported by the LLNL-LDRD Program under Project
No. 17-SI-004, LLNL-JRNL-795525.

1

This manuscript is for review purposes only.

This work focuses on analyzing a few algorithms that use fp16/fp32 as the low/high precision41

types, but the error analysis can be easily modified for different floating point types (such as42

bfloat16 in [23]). The standard HH QR algorithm and its block variants that partition the columns43

(level-3 BLAS variant, see [11, 14]) and those that partition the columns (communication-avoiding44

algorithms of [9]) are presented in section 3, then modified to support bFMAs and an ad hoc mixed45

precision setting that mimics NVIDIA TensorCores in section 4. Our key findings are that mixed46

precision error analyses produce tighter error bounds as supported by experiments in section 5,47

algorithms that utilize level-3 BLAS operations can easily be modified to incorporate TensorCore48

bFMAs, and a row partition block algorithm operates more robustly in mixed precision than non-49

block techniques in certain regimes.50

2. Background: Build up to rounding error analysis for inner products. In this51

section, we introduce the basic motivations and tools for mixed precision rounding error analysis52

needed for the QR factorization. A matrix A ∈ Rm×n for m ≥ n can be written as53

A = QR =
[
Q1 Q2

] [R1

0m−n×n

]
= Q1R1,54

where an orthogonal Q ∈ Rm×m and an upper trapezoidal R form a full QR factorization, and55

Q1 ∈ Rm×n,R1 ∈ Rn×n form a thin QR factorization. If A is full rank then the columns of Q1 are56

orthonormal and R1 is upper triangular. In many applications, computing the thin decomposition57

requires less computation and is sufficient in performance. While important definitions are stated58

explicitly in the text, Table 1 serves to establish basic notation.59

Symbol Definition Section
x, A,|x| ,|A| Vector, matrix, and absolute value of each component 2
‖x‖p, ‖A‖p Vector, operator p-norms for p = 2, and Frobenius norm when p = F . 2
x[i],A[i, j], : ith element of x, ith row and jth column element of A, all indices 2
Xm×n, Xn m-by-n or n-by-n matrices for X in {0, I}, Im×n = [In 0n×(m−n)]

> 1
êi ith cardinal vector 1
Q,R Factors resulting from Householder (HH) QR factorization algorithms 2
Pv, Pi HH transformation corresponding to v, ith HH transformation in HQR 3
X,W,Y WY representation of succesive HH transformations, X = I−WY>

fl(x), x̂ Quantity x calculated from floating point operations 2
µ, η mantissa, exponent bits of a floating point number 2

bq, tq, u
(q) base, precision, unit round-off for precision q, u(q) := 1

2b
1−tq
q 2

δ(q) Quantity bounded by: |δ(q)| < u(q) 2

γ
(q)
k , θ

(q)
k

ku(q)

1−ku(q) , Quantity bounded by: |θ̃(q)k | ≤ γ̃
(q)
k

2

γ̃
(q)
k , θ̃

(q)
k

cku(q)

1−cku(q) for small integer c > 0, Quantity bounded by: |θ(q)k | ≤ γ
(q)
k

2

Table 1
Basic definitions and where they first appear.

2.1. Basic rounding error analysis of floating point operations. We use and analyze60

the IEEE 754 Standard floating point number systems, shown in Table 2. Let F ⊂ R denote the61

space of some floating point number system with base b ∈ N, precision t ∈ N, significand µ ∈ N,62

and exponent range [ηmin, ηmax] ⊂ Z. Then every element y in F can be written as63

(2.1) y = ±µ× bη−t,64

2

This manuscript is for review purposes only.

where µ is any integer in [0, bt − 1] and η is an integer in [ηmin, ηmax]. Although operations we use65

on R cannot be replicated exactly due to the finite cardinality of F, we can still approximate the66

accuracy of analogous floating point operations (FLOPs). We adopt the rounding error analysis67

tools described in [14], which allow a relatively simple framework for formulating error bounds for68

complex linear algebra operations. An analysis of FLOPs (see Theorem 2.2 [14]) shows that the69

relative error is controlled by the unit round-off, u := 1
2b

1−t in uniform precision settings. In mixed70

precision settings we denote the higher precision unit round-off with u(h) (h for high) and the lower71

precision unit round-off with u(l) (l for low).72

Name b t # of exponent bits ηmin ηmax unit round-off u
fp16 (IEEE754 half) 2 11 5 -15 16 4.883e-04

fp32 (IEEE754 single) 2 24 8 -127 128 5.960e-08

fp64 (IEEE754 double) 2 53 11 -1023 1024 1.110e-16
Table 2

IEEE754 formats and their primary attributes.

Let ‘op’ be any basic operation from the set OP = {+,−,×,÷} and let x, y ∈ R. The true value73

(x op y) lies in R, and it is rounded using some conversion to a floating point number, fl(x op y),74

admitting a rounding error. The IEEE 754 Standard requires correct rounding, which rounds the75

exact solution (x op y) to the closest floating point number and, in case of a tie, to the floating point76

number that has a mantissa ending in an even number. Correct rounding gives us an assumption77

for the error model where a single basic floating point operation yields a relative error, δ, bounded78

in the following sense:79

(2.2) fl(x op y) = (1 + δ)(x op y), |δ| ≤ u, op ∈ {+,−,×,÷}.80

We use (2.2) as a building block in accumulating errors from successive FLOPs. Successive opera-81

tions introduce multiple rounding error terms, and keeping track of all errors is challenging. Lemma82

2.1 introduces a convenient and elegant bound that simplifies accumulation of rounding error.83

Lemma 2.1 (Lemma 3.1 [14]). Let |δi| < u, ρi = ±1 for i = 1 : k, and ku < 1. Then,84

(2.3)

k∏
i=1

(1 + δi)
ρi = 1 + θk, where |θk| ≤

ku

1− ku
=: γk.85

Additionally, we define θ̃k that satisfies |θ̃k| ≤ γ̃k, where γ̃k =
cku

1− cku
for a small integer, c > 0.

In other words, θk represents the accumulation of rounding errors from k successive operations,86

and it is bounded by γk. In more complicated routines shown in later sections, we use the tilde87

notation (γ̃k) to permit only keeping track of the leading order error terms. Applying this lemma88

to the computation of x+ y + z, where x, y, z ∈ R, results in89

(2.4) fl(x+ y + z) = (1 + δ′) ((1 + δ)(x+ y) + z) = (1 + θ2)(x+ y) + (1 + θ1)z,90

where |δ|, |δ′| < u. Since |θ1| ≤ γ1 < γ2, we can further simplify (2.4) to91

(2.5) fl(x+ y + z) = (1 + θ′2)(x+ y + z), where |θ′2| ≤ γ2,92

at the cost of a slightly larger upper bound. Note that both |θ2|, |θ′2| are bounded above by γ2.93

Typically, error bounds formed in the fashion of (2.5) are converted to relative errors in order to94

3

This manuscript is for review purposes only.

put the error magnitudes in perspective. The relative error bound for our example is95

|(x+ y + z)− fl(x+ y + z)| ≤ γ2|x+ y + z|, x+ y + z 6= 0.96

Although Lemma 2.1 requires ku < 1, we actually need ku < 1
2 to maintain a meaningful97

relative error bound as this assumption implies γk < 1 and guarantees a relative error below98

100%. Since higher precision types have smaller unit round-offs, they can tolerate more successive99

FLOPs than lower precision floating types before reaching γm = 1. For example, the IEEE types100

introduced in Table 2 meet this requirement at 1/2 = 210u(fp16) = 223u(fp32) = 252u(fp64). Thus,101

accumulated rounding errors in lower precision types can lead to an instability with fewer operations102

in comparison to higher precision types and prompts us to evaluate whether existing algorithms103

can be naively adapted for mixed precision arithmetic.104

2.2. Rounding Error Example for the Inner Product. We now consider computing the105

inner product of two vectors to clearly illustrate how this situation restricts rounding error analysis106

in fp16. An error bound for an inner product of m-length vectors is107

(2.6) |x>y − fl(x>y)| ≤ γm|x|>|y|, x,y ∈ Rm108

as shown in [14]. Since vectors of length m accumulate rounding errors that are bounded by γm,109

dot products of vectors computed in fp16 already face a 100% relative error bound when m = 1024.110

A simple numerical experiment shows that the standard deterministic error bound is too pes-111

simistic and cannot be practically used to approximate rounding error for half-precision arithmetic.112

In this experiment, we generated 2 million random fp16 vectors of length 1024 from two random113

distributions: the standard normal distribution, N(0, 1), and the uniform distribution over (0, 1).114

Half precision arithmetic was simulated by calling alg. 1, which was proven to be a faithful simula-115

tion in [16], for every FLOP (multiplication and addition for the dot product). The relative error116

in this experiment is formulated as the LHS in Equation 2.6 divided by |x|>|y| and all operations117

outside of calculating fl(x>y) are executed by casting up to fp64 and using fp64 arithmetic. Table118

3 shows some statistics from computing the relative error for simulated fp16 dot products.

Random Distribution Average Stan. Dev. Maximum
Standard normal 1.621e-04 1.635e-04 3.204e-03

Uniform (0, 1) 6.904e-03 3.265e-03 2.447e-02
Table 3

Forward error statistics from experiment of dot products computed in simulated half precision.

119

We see that the inner products of vectors sampled from the standard normal distribution have120

backward relative errors that do not deviate much from the unit round-off (O(1e-4)), whereas121

the vectors sampled from the uniform distribution tend to accumulate larger errors on average122

(O(1e-3)). Even so, the theoretical upper error bound of 100% is far too pessimistic as the123

maximum relative error does not even meet 2% in this experiment. Recent work in developing124

probabilistic bounds on rounding errors of floating point operations (see [15, 18]) have shown that125

the inner product relative backward error for the conditions used for this experiment is bounded126

by 5.466e-2 with probability 0.99.127

Most importantly, we need error analysis that allows flexibility in precision in order to better128

our understanding of the impact of rounding errors on computations done on emerging hardware129

4

This manuscript is for review purposes only.

Algorithm 1: z(fp16) = simHalf(f,x(fp16),y(fp16)). Given fp16 input variables x,y,
perform function f ∈ OP∪{dot product} in simulated fp16 arithmetic.

Input: x(fp16), y(fp16), f Output: z(fp16) = flfp16(f(x(fp16),y(fp16)))
1 [x(fp32),y(fp32)]← castup([x(fp16),y(fp16)]) // Convert input vars to fp32.

2 z(fp32) ← fl(f(x(fp32),y(fp32))) // Perform fp32 arithmetic.

3 z(fp16) ← castdown(z(fp32)) // Convert result to fp16.

4 return z(fp16)

(i.e. GPUs) that support mixed precision. We start by introducing some additional rules from130

[14] that build on Lemma 2.1 in Lemma 2.2. These rules summarize how to accumulate errors131

represented by θ’s and γ’s in a uniform precision setting.132

Lemma 2.2. For any positive integer k, let θk denote a quantity bounded according to |θk| ≤133
ku

1−ku =: γk. The following relations hold for positive integers j, n and nonnegative integer k.134

Arithmetic operations between bounded terms, θk’s, are:135

(2.7) (1 + θk)(1 + θj) = (1 + θk+j) and
1 + θk
1 + θj

=

{
1 + θk+j , j ≤ k
1 + θk+2j , j > k

.136

If max(j,k)u ≤ 1
2 and n ≤ 1

uk , the operations on the bounds, γ’s, are:137

γkγj ≤ γmin(k,j), nγk ≤ γnk,138

γk + u ≤ γk+1, γk + γj + γkγj ≤ γk+j .139140

Note that all the rules hold when replaced by γ̃’s, but result in looser bounds.141

We define two mixed precision settings that we use in section 4. In subsection 4.1, we present142

the block Fused Multiply-Add (bFMA) of NVIDIA’s TensorCore (TC) technology, which computes143

matrix-matrix multiply and accumulate for 4-by-4 blocks, and incorporate it into algs. 5 and 6. Here,144

we introduce an ad hoc mixed precision setting (MP Setting) which we use in subsection 4.2. This145

is explicitly defined in MP Setting 2.3 and is a level-2 BLAS variant of the TC bFMA. Both mixed146

precision settings define how inner products are computed although the bFMA is only applicable to147

inner products within matrix products and uses fp16 and fp32 whereas our ad hoc mixed precision148

setting is applicable to all inner products with any two precision types.149

Although our analysis concerns accuracy and stability and leaves out timing results of various150

hardwares, we add a general timing statement to MP Setting 2.3 that is analogous to that of TC:151

the mixed precision FMA inner product performs at least 2 times faster than the inner product in152

the higher precision. Note that TCs perform matrix-matrix multiply and accumulate up to 8 times153

faster than fp32, and up to 16 times faster than fp64 (see [19]), and our ad hoc timing assumption154

is in conservative in comparison. Nonetheless, this gives a vague insight into the trade-offs between155

speediness and accuracy from some mixed precision computations.156

The full precision multiplication in Assumption 2.3 is exact when the low precision type is fp16157

and the high precision type of fp32 due to their precisions and exponent ranges. As a quick proof,158

consider x(fp16) = ±µx2ηx−11, y(fp16) = ±µy2ηy−11 where µx, µy ∈ [0, 211−1] and ηx, ηy ∈ [−15, 16],159

and note that the significand and exponent ranges for fp32 are [0, 224 − 1] and [−127, 128]. Then160

5

This manuscript is for review purposes only.

the product in full precision is161

x(fp16)y(fp16) = ±µxµy2ηx+ηy+2−24,162

where µxµy ∈ [0, (211 − 1)2] ⊆ [0, 224 − 1] and ηx + ηy + 2 ∈ [−28, 34] ⊆ [−127, 128], and therefore163

is exact. Thus, the summation and the final cast down operations are the only sources of rounding164

error in this inner product scheme.165

MP Setting 2.3. Let l and h each denote low and high precision types with unit round-off166

values u(l) and u(h), where 1 � u(l) � u(h) > 0. Consider an FMA operation for inner products167

that take vectors stored in precision l, compute products in full precision, and sum the products in168

precision h. Finally, the result is then cast back down to precision l. Furthermore, we expect this169

procedure to be approximately twice as fast as if it were done entirely in the higher precision, and170

about the same as if it were done entirely in the lower precision.171

We now analyze the rounding error for the inner product scheme described in MP Setting 2.3 and172

hypothesize that the guaranteed accuracy for this mixed precision inner product should be better173

than that of the low precision inner product and worse than that of the high precision inner product.174

Let x(l),y(l) be m-length vectors stored in a low precision type (Fml), sk be the exact kth partial175

sum, and ŝk be sk computed with FLOPs. Then the first three partial sums are,176

ŝ1 = fl(x[1]y[1]) = x[1]y[1], ŝ2 = fl(ŝ1 + x[2]y[2]) = (x[1]y[1] + x[2]y[2]) (1 + δ
(h)
1),177

ŝ3 = fl(ŝ2 + x[3]y[3]) =
[
(x[1]y[1] + x[2]y[2]) (1 + δ

(h)
1) + x[3]y[3]

]
(1 + δ

(h)
2).178

179

We see a pattern emerging. The error for an m-length vector dot product is then180

(2.8) ŝm = (x[1]y[1] + x[2]y[2])

m−1∏
k=1

(1 + δ
(h)
k) +

n∑
i=3

x[i]y[i]

(
m−1∏
k=i−1

(1 + δ
(h)
k)

)
.181

Using Lemma 2.1, we further simplify and form componentwise backward errors with182

(2.9) fl(x>y) = (x + ∆x)>y = x>(y + ∆y) for |∆x| ≤ γ(h)m−1|x|, |∆y| ≤ γ(h)m−1|y|.183

Casting down to Fl without underflow or overflow results in backward errors,184

(2.10) castdown(fl(x>y)) = (x + ∆x + ∆̃x)>y = x>(y + ∆y + ∆̃y),185

where |∆x + ∆̃x| ≤ ((1 + u(l))(1 + γ
(h)
m−1) − 1)|x| and |∆y + ∆̃y| ≤ ((1 + u(l))(1 + γ

(h)
m−1) − 1)|y|.186

Our hypothesis is indeed true since,187

γ(h)m < u(l) + γ
(h)
m−1 + u(l)γ

(h)
m−1 < γ(l)m ,188

where the lower and upper bounds are derived from the uniform precision error bound in (2.6).189

Equation (2.10) shows us that the two larger error terms are from the higher precision summation,190

γ
(h)
m−1, and the cast down operation, u(l). We can measure the impact of the cast down step relative191

to the length of the vector, m, and the disparity in the two precisions, Ml,h := u(l)/u(h), since these192

two factors determine which one of u(l) and mu(h) is the leading order term. We consider 3 cases.193

Case 1: (m � Ml,h) The leading order term is u(l). The mixed precision inner product has a194

smaller worst case error bound than the bound of the low precision inner product (mu(l)) with no195

6

This manuscript is for review purposes only.

apparent improvements in speed. On the other hand, u(l) is a larger upper bound than that of the196

high precision inner product (mu(h) = m
Ml,h

u(l)), although it was computed approximately twice as197

fast. It is likely that this factor of Ml,h/m increase in the worst case error bound is unwanted even198

when considering the speed-up.199

Case 2: (m = Ml,h) Both terms are now leading order. This is still an improvement in comparison200

to the lower precision arithmetic as the error bound is reduced from mu(l) to 2u(l). Comparing this201

to the high precision inner product shows that the error bound has doubled from mu(h) to 2mu(h),202

but gained a factor of 2 in speed instead. One can argue that the loss in accuracy guarantee and203

the improvement in speed cancel each other out especially if 2mu(h) � 1 or if the speed-up greatly204

exceeds a factor of 2.205

Case 3: (m � Ml,h) Now γ
(h)
m−1 is the leading order term. As in the above two cases, this is an206

improvement in the context of the low precision accuracy since the error has been reduced from γ
(l)
m207

to γ
(l)
m/Ml,h

≡ γ
(h)
m . Since u(l) = Ml,hu

(h) � mu(h), the mixed precision error bound has the same208

order as the error bound from carrying the computation out in the higher precision. Therefore, we209

can expect about the same level of accuracy but a factor of 2 or greater reduction in speed when210

compared to the higher precision.211

While the above cases establish 3 regimes of trade-offs between accuracy and speed in mixed212

precision computing, the remainder of this paper focuses only on accuracy and does not consider the213

impact of mixed precision computations on speed. Finally, we present alternative representations214

of the error bound in (2.10),215

(1 + u(l))(1 + γ
(h)
m−1)− 1 ≤ γ(h)Ml,h+m−1 = γ

(l)
1+(m−1)/Ml,h

, Ml,h = u(l)/u(h),216

(1 + u(l))(1 + γ
(h)
m−1)− 1 ≤ u(l) + γ

(h)
m−1 + min{u(l), γ(h)m−1}, γ

(h)
m−1 < 1,217218

where the rules from Lemma 2.2 were directly applied. Both alternative bounds are only slightly219

larger than the original bound shown on the LHS and remain in the same order. The first is useful220

when comparing against the low or the high precision, whereas the second keeps track of the error221

bounds in both precisions. We summarize these ways of combining γ terms of different precisions222

in Lemma 2.4,223

Lemma 2.4. For any nonnegative integers kl, kh and some precision q defined with respect to224

the unit round-off, u(q), define γ
(q)
k := ku(q)

1−ku(q) . Consider a low precision and a high precision where225

1 � u(l) � u(h) > 0, and kl, kh that satisfy max{γ(h)kh
, γ

(l)
kl
} < 1/2. Then the following rules help226

us accumulate γ’s of different precisions,227

γ
(h)
kh
γ
(l)
kl
≤ min{γ(h)kh

, γ
(l)
kl
},(2.11)228

(1 + γ̃
(l)
kl

)(1 + γ̃
(h)
kh

)− 1 = γ̃
(l)
kl

+ γ̃
(h)
kh
.(2.12)229

230

Note that (2.12) drops the term γ̃
(l)
kl
γ̃
(h)
kh

since both γ̃
(l)
kl

and γ̃
(h)
kh

are larger than their product and231

this product can be swept under the small integer c > 0 assumption implicitly included in the tilde232

notation. Equations (2.9) and (2.10) are crucial for our analysis in section 4 since the two mixed233

precision settings add castdown operations at different parts of the HQR algorithms we consider.234

In general, error bounds in the fashion of (2.9) can be used before the cast down operations and235

the action of the cast down is best represented by error bounds similar to (2.10).236

We have demonstrated a need for rounding error analysis that is accurate for mixed precision237

procedures and analyzed the inner product in an ad hoc mixed precision inner product that mimics238

7

This manuscript is for review purposes only.

the TensorCore bFMA. We will use this to analyze various Householder (HH) QR factorization239

algorithms. Algorithms and the general framework for the standard rounding error analysis for240

these algorithms are introduced in section 3, and both are modified to meet different mixed precision241

assumptions in section 4.242

3. Algorithms and existing round-off error analyses. We introduce the Householder243

QR factorization algorithm (HQR) in subsection 3.1 and two block variants that use HQR within244

the block in subsections 3.2 and 3.3. The blocked HQR (BQR) in subsection 3.2 partitions the245

columns of the target matrix and is a well-known algorithm that uses the WY representation of246

[4] that utilizes mainly level-3 BLAS operations. In contrast, the Tall-and-Skinny QR (TSQR) in247

subsection 3.3 partitions the rows and takes a communication-avoiding divide-and-conquer approach248

that can be easily parallelized (see [8]). We present the standard rounding error analysis of these249

algorithms (see [14, 21]) which will be tweaked for various mixed precision assumptions in section 4.250

3.1. Householder QR (HQR). The HQR algorithm uses HH transformations to zero out251

elements below the diagonal of a matrix (see [17]). We present this as zeroing out all but the first252

element of some vector, x ∈ Rm.253

Lemma 3.1. Given vector x ∈ Rm, there exist a HH vector , v, and a HH constant, β, that254

define the HH transformation matrix, Pv := Im − βvv>, such that Pv zeros out x below the first255

element. The HH vector and constant are defined via256

(3.1) σ = −sign(x[1])‖x‖2, v = x− σê1, and β =
2

v>v
= − 1

σv[1]
.257

The transformed vector, Pvx = σê1, has the same 2-norm as x since Pv = P>v = P−1v .258

3.1.1. HQR: Algorithm. Given A ∈ Rm×n and Lemma 3.1, HQR is done by repeating the259

following processes until only an upper triangle matrix remains. For i = 1, 2, · · · , n,260

Step 1) Compute v and β that zeros out the ith column of A beneath aii (see alg. 2), and261

Step 2) Apply Pv to the bottom right partition, A[i : m, i : n] (lines 4-6 of alg. 3).262

Consider the following 4-by-3 matrix example adapted from [14]. Let Pi represent the ith HH263

transformation of this algorithm.264

A =

 × × ×
× × ×
× × ×
× × ×

 P1A−−−→

 × × ×
0 × ×
0 × ×
0 × ×

 P2P1A−−−−−→

 × × ×
0 × ×
0 0 ×
0 0 ×

 P3P2P1A−−−−−−−→

 × × ×
0 × ×
0 0 ×
0 0 0

265

The resulting matrix is the R factor, R := P3P2P1A, and the Q factor for a full QR factorization266

is Q := P1P2P3 since Pi’s are symmetric. The thin factors for a general matrix A ∈ Rm×n are267

(3.2) Qthin = P1 · · ·PnIm×n and Rthin = I>m×nPn · · ·P1A.268

Algorithm 2: β, v, σ = hhvec(x). Given a vector x ∈ Rm, return v ∈ Rm and β, σ ∈ R
that satisfy (I − βvv>)x = σê1 and v[1] = 1 (see [2, 14]).

Input: x Output: v, σ, and β
1 v← copy(x)
2 σ ← −sign(x[1])‖x‖2
3 v[1]← x[1]− σ
4 β ← −v[1]

σ
5 v← v/v[1]
6 return β, v, σ

269

8

This manuscript is for review purposes only.

Algorithm 3: V, β, R = HQR2(A). A Level-2 BLAS implementation of HQR. Given a
matrix A ∈ Rm×n where m ≥ n, return matrix V ∈ Rm×n, vector β ∈ Rn, and upper
triangular matrix R. The orthogonal factor Q can be generated from V and β.

Input: A Output: V,β, R
1 Initialize V← 0m×n, β ← 0m
2 for i = 1 : n do
3 v, β, σ ← hhvec(A[i : end, i]) /* Algorithm 2 */

4 V[i : end, i], βi, A[i, i]← v, β, σ
5 A[i+ 1 : end, i]← zeros(m− i)
6 A[i : end, i+ 1 : end]← A[i : end, i+ 1 : end]− βvv>A[i : end, i+ 1 : end]

7 return V, β, A[1 : n, 1 : n]

3.1.2. HQR: Rounding Error Analysis. Now we present an error analysis for alg. 3 by270

keeping track of the different operations of alg. 2 and alg. 3. We follow the analysis of [14] and271

modify it for the variant where v[1] is set to 1. The goal of this section is to present the basic272

steps of the standard error analysis for HQR so that we modify them easily in section 4 for different273

mixed precision settings.274

Calculating the ith HH vector and constant. In alg. 3, we compute the HH vector and constant275

by using alg. 2 to A[i : m, i]. For now, consider zeroing out any vector x ∈ Rm below its first276

component with a HH transformation. We first calculate σ as is implemented in line 2 of alg. 2.277

(3.3) fl(σ) = σ̂ = fl(−sign(x[1])‖x‖2) = σ + ∆σ, |∆σ| ≤ γm+1|σ|.278

Note that the backward error incurred here accounts for an inner product of a vector in Rm with279

itself and a square root operation to get the 2-norm. Let v′[1] ≡ x[i] − σ, the penultimate value280

v[1] held. The subtraction adds a single additional rounding error via281

(3.4) fl(v′[1]) = v′[1] + ∆v′[1] = (1 + δ)(x[i]− σ −∆σ) = (1 + θm+2)v′[1]282

where the last equality is granted because the sign of σ is chosen to prevent cancellation. Since283

alg. 2 normalizes the HH vector so that its first component is 1, the remaining components of v284

are divided by fl(ṽ1) incurring another single rounding error. As a result, the components of v285

computed with FLOPs have error fl(v[j]) = v[j] + ∆v[j] where286

(3.5) |∆v[j]| ≤ γ1+2(m+2)|v[j]| = γ̃m|v[j]| j = 2 : m− i+ 1,287

and |∆v[1]| = 0. Since 1 + 2(m + 2)+ = O(m), we have swept that minor difference between288

under our use of the γ̃ notation defined in Lemma 2.1. Next, we consider the HH constant, β, as is289

computed in line 4 of alg. 2.290

β̂ = fl (−v′[1]/σ̂) = −(1 + δ)
v′[1] + ∆v′[1]

σ + ∆σ
=

(1 + δ)(1 + θm+2)

(1 + θm+1)
β(3.6)291

= (1 + θ3m+5)β = β + ∆β, where |∆β| ≤ γ̃mβ.(3.7)292293

We have shown (3.6) to keep our analysis simple in section 4 and (3.7) show that the error incurred294

from calculating of ‖x‖2 accounts for the vast majority of the rounding error so far. At iteration295

i, we replace x with A[i : m, i] ∈ Rm−i+1 and the ith HH constant and vector (β̂i,vi) both have296

errors bounded by γ̃m−i+1.297

9

This manuscript is for review purposes only.

Applying a Single HH Transformation. Now we consider lines 4-6 of alg. 3. At iteration i,298

we set A[i + 1 : m, :] to zero and replace A[i, i] with σ computed from alg. 2. Therefore, we299

now need to calculate the errors for applying a HH transformation to the remaining columns,300

A[i : m, i + 1 : n] with the computed HH vector and constant. This is the most crucial building301

block of the rounding error analysis for any variant of HQR because the R factor is formed by302

applying the HH transformations to A and the Q factor is formed by applying them in reverse303

order to the identity. Both of the blocked versions in subsection 3.2 and subsection 3.3 also require304

slightly different but efficient implementations of this step. For example, BQR in alg. 5 uses level-3305

BLAS operations to apply multiple HH transformations at once whereas the variant of HQR in306

alg. 3 can only use level-2 BLAS operations to apply HH transformations.307

A HH transformation is applied through a series of inner and outer products, since HH matrices308

are rank-1 updates of the identity. That is, computing Pvx for any x ∈ Rm is as simple as computing309

(3.8) y := Pvx = x− (βv>x)v.310

Let us assume that x is an exact vector and there were errors incurred in forming v and β. The311

errors incurred from computing v and β need to be included in addition to the new rounding312

errors accumulating from the action of applying Pv to a column. In practice, x is any column in313

A(i−1)[i + 1 : m, i + 1 : n], where the superscript (i − 1) indicates that this submatrix of A has314

already been transformed by i − 1 HH transformations that zeroed out components below A[j, j]315

for j = 1 : i− 1. We show the error for forming ŵ where w := βv>xv and v,x ∈ Rm,316

ŵ = fl(β̂ fl(v̂>x)v̂) = (1 + θm)(1 + δ)(1 + δ′)(β + ∆β)(v + ∆v)>x(v + ∆v),317

where θm is from computing the inner product v̂>x, and δ and δ′ are from multiplying β, fl(v̂>x),318

and v̂. The forward error is ŵ = w + ∆w, where |∆w| ≤ γ̃m|β||v|>|x||v|. Subtracting ŵ from x319

yields the HH transformation with forward error,320

(3.9) fl(P̂vx) = fl(x− ŵ) = (1 + δ)(x−w −∆w) = y + ∆y = (Pv + ∆Pv)x,321

where |∆y| ≤ u|x|+ γ̃m|β||v||v|>|x|. Using
√

2/β = ‖v‖2, we form a normwise bound,322

(3.10) ‖∆y‖2 ≤ γ̃m‖x‖2.323

Since ∆Pv[i, j] = 1
‖x‖22

∆y[i]x[j], we can compute its Frobenius norm,324

(3.11) ‖∆Pv‖F =

 m∑
i=1

m∑
j=1

(
1

‖x‖22
∆y[i]x[j]

)2
1/2

=
‖∆y‖2
‖x‖2

≤ γ̃m,325

where the last inequality is a direct application of (3.10).326

Applying many successive HH transformations. Consider applying a sequence of transforma-327

tions in the set {Pi}ri=1 ⊂ Rm×m to x ∈ Rm, where Pi’s are all HH transformations computed with328

ṽi’s and β̂i’s. This is directly applicable to HQR as Q = P1 · · ·PnI and R = Q>A = Pn · · ·P1A.329

Lemma 3.2 is very useful for any sequence of transformations, where each transformation has a330

known bound. We will invoke this lemma to prove Lemma 3.3, and use it in future sections for331

other consecutive transformations.332

10

This manuscript is for review purposes only.

Lemma 3.2. If Xj + ∆Xj ∈ Rm×m satisfies ‖∆Xj‖F ≤ δj‖Xj‖2 for all j, then∣∣∣∣∣∣
∣∣∣∣∣∣
n∏
j=1

(Xj + ∆Xj)−
n∏
j=1

Xj

∣∣∣∣∣∣
∣∣∣∣∣∣
F

≤

−1 +

n∏
j=1

(1 + δj)

 n∏
j=1

‖Xj‖2.

Lemma 3.3. Consider applying a sequence of transformations Q = Pr · · ·P2P1 onto vector333

x ∈ Rm to form ŷ = fl(P̂r · · · P̂2P̂1x), where P̂k’s are HH transformations constructed from β̂k and334

v̂k. These HH vectors and constants are computed via alg. 2 and the rounding errors are bounded335

by (3.5) and (3.7). If each transformation is computed via (3.8), then336

ŷ = Q(x + ∆x) = (Q + ∆Q)x = Q̂x,(3.12)337

‖∆y‖2 ≤ rγ̃m‖x‖2, ‖∆Q‖F ≤ rγ̃m.(3.13)338339

Proof. Applying Lemma 3.2 directly to Q yields340

‖∆Q‖F =

∣∣∣∣∣∣
∣∣∣∣∣∣
r∏
j=1

(Pj + ∆Pj)−
r∏
j=1

Pj

∣∣∣∣∣∣
∣∣∣∣∣∣
F

≤

−1 +

r∏
j−1

(1 + γ̃m−j+1)r

 n∏
j=1

‖Pj‖2 ≤ −1 + (1 + γ̃m)r,341

since Pj ’s are orthogonal and have 2-norm, 1, and m− j + 1 ≤ m. While we omit the details here,342

we can show that (1 + γ̃m)r − 1 ≤ rγ̃m using the argument from Lemma 2.1 if rγ̃m ≤ 1/2.343

In this error analysis, the prevailing bound for errors at various stages of forming and applying344

a HH transformation is γ̃m where m corresponds to the dimension of the transformed vectors.345

In Lemma 3.3, a factor of r is introduced for applying r HH transformations to form the term346

rγ̃m ≈ rmu. Therefore, we can expect that the columnwise norm error for a thin QR factorization347

should be O(mnu) for a full rank matrix. In Theorem 3.4, we formalize this by applying Lemma 3.3348

directly and also show a conversion of columnwise bounds to a matrix norm bound,349

‖∆R‖F =

(
n∑
i=1

‖∆R[:, i]‖22

)1/2

≤

(
n∑
i=1

n2γ̃2m‖A[:, i]‖22

)1/2

= nγ̃m‖A‖F .350

We gather these results into Theorem 3.4.351

Theorem 3.4. Let A ∈ Rm×n with m ≥ n have full rank, n. Let Q̂ ∈ Rm×n and R̂ ∈ Rn×n be352

the thin QR factors of A obtained via alg. 3. Then,353

R̂ = R + ∆R = fl(P̂n · · · P̂1A), ‖∆R[:, j]‖2 ≤ nγ̃m‖A[:, j]‖2, ‖∆R‖F ≤ nγ̃m‖A‖F354

Q̂ = Q + ∆Q = fl(P̂1 · · · P̂nI), ‖∆Q[:, j]‖2 ≤ nγ̃m, ‖∆Q‖F ≤ n3/2γ̃m.355356

In future sections, we show the forward error columnwise bounds for each factor which can be easily357

converted to matrix norm bounds. The numerical experiments in section 5 measure backward errors358

with ‖Q̂R̂−A‖F and the orthogonality of the Q factor with ‖Q̂>Q̂− I‖2.359

The content of this section shows the standard rounding error analysis in [14] where some360

important stages are summarized in (3.5), (3.7), and (3.13), which we will modify to different361

mixed precision settings in section 4. These quantities account for various forward and backward362

errors formed in computing essential components of HQR, namely the HH constant and vector, as363

well as normwise errors of the action of applying HH transformations. In the next sections, we364

present blocked variants of HQR that use alg. 3.365

11

This manuscript is for review purposes only.

3.2. Block HQR with partitioned columns (BQR). We refer to the blocked variant366

of HQR where the columns are partitioned as BQR. Note that this section relies on the WY367

representation described in [4] instead of the storage-efficient version of [22], even though both are368

known to be just as numerically stable as HQR.369

3.2.1. The WY Representation. A convenient matrix representation that accumulates r370

HH reflectors is known as the WY representation (see [4, 11]). Lemma 3.5 shows how to update371

a rank-j update of the identity, Q(j), with a HH transformation, P, to produce a rank-(j + 1)372

update of the identity, Q(j+1). With the correct initialization of W and Y, we can build the WY373

representation of successive HH transformations as shown in Algorithm 4. This algorithm assumes374

that the HH vectors, V, and constants,β, have already been computed. Since the Y factor is375

exactly V, we only need to compute the W factor.376

Lemma 3.5. Suppose X(j) = I−W(j)Y(j)> ∈ Rm×m is an orthogonal matrix with W(j),Y(j) ∈377

Rm×j. Let us define P = I− βvv> for some v ∈ Rm and let z(j+1) = βX(j)v. Then,378

X(j+1) = X(j)P = I−W(j+1)Y(j+1)>,379

where W(j+1) = [W(j)|z] and Y(j+1) = [Y(j)|v] are each m-by-(j + 1).380

Algorithm 4: W,Y ← buildWY(V,β): Given a set of householder vectors {V[:, i]}ri=1

and their corresponding constants {βi}ri=1, form the final W and Y factors of the WY
representation of P1 · · ·Pr, where Pi := Im − βiviv

>
i

Input: V ∈ Rm×r, β ∈ Rr where m > r.
Output: W

1 Initialize: W := β1V[:, 1]. /* Y is V. */

2 for j = 2 : r do
3 z← βj

[
V[:, j]−W

(
V[:, 1 : j − 1]>V[:, j]

)]
4 W← [W z] /* Update W to an m-by-j matrix. */

5 return W

In HQR, A is transformed into an upper triangular matrix R by identifying a HH transformation381

that zeros out a column below the diagonal, then applying that HH transformation to the bottom382

right partition. For example, the kth HH transformation finds an m−k+1 sized HH transformation383

that zeros out column k below the diagonal and then applies it to the (m − k + 1)-by-(n − k)384

partition of the matrix, A[k : m, k + 1 : n]. Since the k + 1st column is transformed by the385

kth HH transformation, this algorithm must be executed serially as shown in alg. 3. The highest386

computational burden at each iteration falls on alg. 3 line 6, which requires Level-2 BLAS operations387

when computed efficiently.388

In contrast, BQR replaces this step with Level-3 BLAS operations by partitioning A into blocks389

of columns. Let A = [C1 · · ·CN] where C1, · · · ,CN−1 are eachm-by-r, and CN holds the remaining390

columns. The kth block, Ck, is transformed with HQR (alg. 3), and the WY representation of these391

r successive HH transformations is constructed as in alg. 4. We write the WY update as392

(3.14) Xk = Im −WkY
>
k = P

(1)
k · · ·P

(r)
k .393

12

This manuscript is for review purposes only.

Thus far, algs. 3 and 4 are rich in Level-2 BLAS operations. Next, I − YkW
>
k is applied to394

[C2 · · ·CN] with two Level-3 BLAS operations as shown in line 5 of alg. 5. BQR performs ap-395

proximately 1 − O(1/N) fraction of its FLOPs in Level-3 BLAS operations (see section 5.2.3 of396

[11]), and can reap the benefits from the accelerated block FMA feature of TensorCore. Note that397

BQR does require strictly more FLOPs when compared to HQR, but these additional FLOPs are398

negligble in standard precision and does not impact the numerical stability. A pseudoalgorithm for399

BQR is shown in alg. 5 where we assume that n = Nr to make our error analysis in section 3.2.2400

simple. In practice, an efficient implementation might require r to be a power of two or a product401

of small prime factors and result a thinner N th block compared to the rest. This discrepancy is402

easily fixed by padding the matrix with zeros, a standard procedure for standard algorithms like403

the Fast Fourier Transform (FFT). For any variable x in {X,W,Y, z, β,v,P}, x(j)k corresponds to404

the jth update for the kth block.

Algorithm 5: Q,R← blockHQR(A, r): Perform HH QR factorization of matrix A with
column partitions of size r.

Input: A ∈ Rm×n, r ∈ R where r < n.
Output: Q,R

1 N = n
r

// Let A = [C1 · · ·CN] where all blocks except CN are m-by-r sized.

2 for i = 1 : N do
3 Vi,βi,Ci ← hhQR(Ci) /* Algorithm 3 */

4 Wi ← buildWY(Vi,βi) /* Algorithm 4 */

5 [Ci+1 · · ·CN] -= Vi

(
W>

i [Ci+1 · · ·CN]
)

/* update the rest: BLAS-3 */

// A has been transformed into R = Q>A.

// Now build Q using level-3 BLAS operations.

6 Q← I /* Im if full QR, and Im×n if thin QR. */

7 for i = N : −1 : 1 do
8 Q[(i− 1)r + 1 : m, (i− 1)r + 1 : n]-= Wi

(
V>i Q[(i− 1)r + 1 : m, (i− 1)r + 1 : n]

)
9 return Q,A

405

3.2.2. BQR: Rounding Error Analysis. We now present the basic structure for the round-406

ing error analysis for alg. 5, which consist of: 1)HQR, 2)building the W factor, and 3) updating407

the remaining blocks with the WY representation. We have adapted the analysis from [14] to fit408

this exact variant, and denote Q̂BQR, R̂BQR to be the outputs from alg. 5. First, we analyze the409

error accumulated from updating X
(j−1)
k to X

(j)
k , which applies a rank-1 update via the subtrac-410

tion of the outer product ẑ
(j)
k v̂

(j)>
k . Since z

(j)
k = β

(j)
k X

(j−1)
k v

(j)
k , this update requires a single HH411

transformation on the right side in the same efficient implementation that is discussed in (3.8),412

(3.15)
ˆ

X
(j)
k = X̂

(j−1)
k − fl(β̂

(j−1)
k X̂

(j−1)
k v̂

(j−1)
k)v̂

(j)>
k = X̂

(j−1)
k (P

(j)
k + ∆P

(j)
k),413

where ‖∆P
(j)
k ‖F ≤ γ̃m−(k−1)r. Since X̂

(1)
k = I − β̂(1)

k v̂
(1)
k v̂

(1)>
k = P

(1)
k + ∆P

(1)
k , we can travel up414

the recursion relation in (3.15) and use Lemma 3.2 to form415

(3.16) ‖∆X
(j)
k ‖F ≤ jγ̃m−(k−1)r.416

13

This manuscript is for review purposes only.

HQR within each block: line 3 of alg. 5. We apply Algorithm 3 to the kth block, X̂k−1 · · · X̂1Ck,417

which applies r more HH transformations to columns that had been transformed by (k − 1) WY418

transformations in prior iterations. The upper trapezoidal factor that results from applying HQR419

to C
((k−1)r)
k corresponds to the (k− 1)r+ 1st to krth columns of R̂BQR, and applying Lemmas 3.2420

and 3.3 yields421

‖R̂BQR[:, j]−R[:, j]‖2 ≤ rγ̃m‖X̂k−1 · · · X̂>1 Ck[:, j]‖2, j = (k − 1)r + 1 : kr.422

Build WY at each block: line 4 of alg. 5. We now calculate the rounding errors incurred from423

building the WY representation when given a set of HH vectors and constants as shown in alg. 4.424

Since the columns of Ŷk are simply {v̂(j)
k } built in alg. 3 the errors for forming these are shown in425

(3.5) where m should be replaced by m − (k − 1)r. The HH constants, β̂
(j)
k are bounded by (3.7)426

modified similarly. Thus, z
(j)
k is the only newly computed quantity. Using (3.5), (3.7), and (3.16),427

we find428

‖∆z
(j)
k ‖2 = ‖∆X

(j−1)
k β̂

(j)
k v̂

(j)
k ‖2 ≤ ‖∆X

(j−1)
k ‖2‖β̂(j)

k v̂
(j)
k ‖2 ≤ ‖∆X

(j)−1
k ‖F ‖β̂(j)

k v̂
(j)
k ‖2429

≤
(
(1 + (j − 1)γ̃m−(k−1)r)(1 + γ̃m−(k−1)r)− 1

)
‖β(j)

k v
(j)
k ‖2 ≤ jγ̃m−(k−1)r‖z

(j)
k ‖2.430431

Componentwise bounds follow immediately, and are summarized in Lemma 3.6.432

Lemma 3.6. Consider the construction of the WY representation for the kth partition of matrix433

A ∈ Rm×n given a set of HH constants and vectors, {β(j)
k }rj=1 and {v(j)

k } via alg. 4. Then,434

(3.17) ẑ
(j)
k = z

(j)
k + ∆z

(j)
k , |∆z

(j)
k | ≤ jγ̃m−(k−1)r|z

(j)
k |, ‖∆z

(j)
k ‖2 ≤ jγ̃m−(k−1)r‖z

(j)
k ‖2.435

Most importantly, this shows that constructing the WY update is just as numerically stable as436

applying successive HH transformations (see Section 19.5 of [14]).437

Update blocks to the right: line 5 of alg. 5. We now consider applying Xk := I −WkY
>
k to438

some matrix, B. In practice, B is the bottom right submatrix, [Ck+1 · · ·CN][(k − 1)r + 1 : m, :].439

We can apply (3.16) directly to the columns of B,440

‖fl(X̂kB[:, j])‖2 = ‖fl(X̂
(r)
k B[:, j])‖2 ≤ rγ̃m−(k−1)r‖B[:, j]‖2(3.18)441442

A normwise bound for employing a general matrix-matrix multiplication operation is stated in443

section 19.5 of [14].444

Multiple WY updates: line 8-9 of alg. 5. All that remains is to consider the application of445

successive WY updates to form the QR factorization computed with BQR denoted as QBQR and446

RBQR. We can apply Lemma 3.2 directly by setting Xk := I−WkY
>
k and consider the backward447

errors for applying the sequence to a vector, x ∈ Rm, as we did for Lemma 3.3. Since Xk =448

P(k−1)r+1 · · ·Pkr, is simply a sequence of HH transformations, it is orthogonal, i.e. ‖Xk‖2 = 1. We449

only need to replace with x with A[:, i]’s to form the columnwise bounds for RBQR, and apply the450

transpose to êi’s to form the bounds for QBQR. Then,451 ∣∣∣∣∣
∣∣∣∣∣
N∏
k=1

(Xk + ∆Xk)−
N∏
k=1

Xk

∣∣∣∣∣
∣∣∣∣∣
F

≤

(
−1 +

N∑
k=1

(1 + rγ̃m−(k−1)r)

)
≤ rNγ̃m ≡ nγ̃m,(3.19)452

‖Q̂BQR −Q‖F ≤ n3/2γ̃m.(3.20)453454

14

This manuscript is for review purposes only.

We can also form the normwise bound for the j′ th column of Q̂BQR, R̂BQR. If we let k′ = dj′/reth,455

then the j′ th column is the result of applying k′−1 WY updates and an additional HQR. Applying456

Lemma 3.2 yields457

‖∆RBQR[:, j′]‖2 ≤ rk′γ̃m‖A[:, j′]‖2, ‖∆RBQR‖F ≤ nγ̃m‖A‖F(3.21)458

‖∆QBQR[:, j′]‖2 ≤ rk′γ̃m, ‖∆QBQR‖F = rγ̃m

n∑
j=1

dj/re = n3/2γ̃m.(3.22)459

460

and near orthogonality of the Q factor is still achieved.461

BQR and HQR error bound comparison. BQR under exact arithmetic is equivalent to HQR,462

and it is often referred to as the level-3 BLAS version of HQR. Furthermore, the error analysis of463

this section shows that BQR is as numerically stable as HQR despite requiring more FLOPs. In464

fact, many linear algebra libraries such as LAPACK use a variant of BQR as the QR factorization465

algorithm (see dgeqrf of [2]). The primary goal of the analysis presented in this section is to466

provide the basic skeleton for the standard BQR rounding error analysis to make the generalization467

to mixed precision settings in section 4 easier. Readers should refer to [11, 14] for full details.468

3.3. Block HQR with partitioned rows : Tall-and-Skinny QR (TSQR). Some im-469

portant problems that require QR factorizations of overdetermined systems include least squares470

problems, eigenvalue problems, low rank approximations, as well as other matrix decompositions.471

Although Tall-and-Skinny QR (TSQR) broadly refers to block QR factorization methods with row472

partitions, we will discuss a specific variant of TSQR which is also known as the AllReduce algo-473

rithm [21]. In this paper, the TSQR/AllReduce algorithm refers to the most parallel variant of474

the block QR factorization algorithms discussed in [9]. A detailed description and rounding error475

analysis of this algorithm can be found in [21], and we present a pseudocode for the algorithm in476

alg. 6. Our initial interest in this algorithm came from its parallelizable nature, which is particu-477

larly suitable to implementation on GPUs. Additionally, our numerical simulations (discussed in478

section 5) show that TSQR can not only increase the speed but also outperform the traditional479

HQR factorization in low precisions.480

3.3.1. TSQR/AllReduce Algorithm. Algorithm 6 partitions the rows of a tall-and-skinny481

matrix, A. HQR is performed on each of those blocks and pairs of R factors are combined to form482

the next set of A matrices to be QR factorized. This process is repeated until only a single R factor483

remains, and the Q factor is built from all of the HH constants and vectors stored at each level.484

The most gains from parallelization can be made in the initial level where the maximum number485

of independent HQR factorizations occur. Although more than one configuration of this algorithm486

may be available for a given tall-and-skinny matrix, the number of nodes available and the shape of487

the matrix eliminate some of those choices. For example, a 1600-by-100 matrix can be partitioned488

into 2, 4, 8, or 16 initial row-blocks but may be restricted by a machine with only 4 nodes, and a489

1600-by-700 matrix can only be partitioned into 2 initial blocks. Our numerical experiments show490

that the choice in the initial partition, which directly relates to the recursion depth of TSQR, has491

an impact in the accuracy of the QR factorization.492

We refer to level as the number of recursions in a particular TSQR implementation. An493

L-level TSQR algorithm partitions the original matrix into 2(l) submatrices in the initial or 0th494

level of the algorithm, and 2L−i QR factorizations are performed in level i for i = 1, · · · , L. The495

set of matrices that are QR factorized at each level i are called A
(i)
j for j = 1, · · · , 2L−i, where496

superscript (i) corresponds to the level and the subscript j indexes the row-blocks within level497

15

This manuscript is for review purposes only.

i. In the following sections, alg. 6 (tsqr) will find a TSQR factorization of a matrix A ∈ Rm×n498

where m � n. The inline function qr refers to alg. 3 and we use alg. 2 as a subroutine of qr.499

Algorithm 6: Q,R = tsqr(A, L). Finds a QR factorization of a tall, skinny matrix, A.

Input: A ∈ Rm×n where m� n, L ≤ blog2

(
m
n

)
c, and 2L is the initial number of blocks.

Output: Q ∈ Rm×n, R ∈ Rn×n such that QR = A.
1 h← m2−L // Number of rows.

/* Split A into 2L blocks. Note that level (i) has 2L−i blocks. */

2 for j = 1 : 2L do

3 A
(0)
j ← A[(j − 1)h+ 1 : jh, :]

/* Store HH vectors as columns of matrix V
(i)
j , HH constants as components of

vector β
(i)
j , and set up the next level. */

4 for i = 0 : L− 1 do
/* The inner loop can be parallelized. */

5 for j = 1 : 2L−i do

6 V
(i)
2j−1, β

(i)
2j−1, R

(i)
2j−1 ← qr(A

(i)
2j−1)

7 V
(i)
2j , β

(i)
2j , R

(i)
2j ← qr(A

(i)
2j)

8 A
(i+1)
j ←

[
R

(i)
2j−1

R
(i)
2j

]

9 V
(L)
1 , β

(L)
1 , R← qr(A

(L)
1) // The final R factor is built.

10 Q
(L)
1 ← hh mult(V

(L)
1 , I2n×n)

/* Compute Q(i) factors by applying V(i) to Q(i+1) factors. */

11 for i = L− 1 : −1 : 1 do
12 for j = 1 : 2L−i do

13 Q
(i)
j ← hh mult

(
V

(i)
j ,

[
Q̃

(i+1)
α(j),φ(j)

0

])
14 Q← []; // Construct the final Q factor.

15 for j = 1 : 2L do

16 Q←

 Q

hh mult

(
V

(0)
j ,

[
Q̃

(1)
α(j),φ(j)

0

])
17 return Q, R

500

TSQR Notation. We introduce new notation due to the multi-level nature of the TSQR algo-501

rithm. In the final task of constructing Q, Q
(i)
j factors are aggregated from each block at each level.502

Each Q
(i)
j factor from level i is partitioned such that two corresponding Q(i−1) factors from level i−1503

can be applied to them. The partition (approximately) splits Q
(i)
j into two halves, [Q̃

(i)>
j,1 Q̃

(i)>
j,2]>.504

The functions α(j) and φ(j) are defined such that Q
(i)
j is applied to the correct blocks from the level505

below: Q̃
(i+1)
α(j),φ(j). For j = 1, · · · , 2L−i at level i, we need j = 2(α(j)− 1) + φ(j), where α(j) = d j2e506

and φ(j) = 2 + j − 2α(j) ∈ {1, 2}. section 3.3.2 shows full linear algebra details for a single-level507

16

This manuscript is for review purposes only.

(L = 1, 2 initial blocks) example. The reconstruction of Q can be implemented more efficiently (see508

[3]), but the reconstruction method in alg. 6 is presented for a clear, straightforward explanation.509

3.3.2. Single-level Example. In the single-level version of this algorithm, we first bisect A510

into A
(0)
1 and A

(0)
2 and compute the QR factorization of each of those submatrices. We combine the511

resulting upper-triangular matrices (see below) which is QR factorized, and the process is repeated:512

A =

[
A

(0)
1

A
(0)
2

]
=

[
Q

(0)
1 R

(0)
1

Q
(0)
2 R

(0)
2

]
=

[
Q

(0)
1 0

0 Q
(0)
2

][
R

(0)
1

R
(0)
2

]
=

[
Q

(0)
1 0

0 Q
(0)
2

]
A

(1)
1 =

[
Q

(0)
1 0

0 Q
(0)
2

]
Q

(1)
1 R.513

The R factor of A
(1)
1 is the final R factor of the QR factorization of the original matrix, A. However,514

the final Q still needs to be constructed. Bisecting Q
(1)
1 into two submatrices, i.e. Q̃

(1)
1,1 and Q̃

(1)
1,2,515

allows us to write and compute the product more compactly,516

Q :=

[
Q

(0)
1 0

0 Q
(0)
2

]
Q

(1)
1 =

[
Q

(0)
1 0

0 Q
(0)
2

][
Q̃

(1)
1,1

Q̃
(1)
1,2

]
=

[
Q

(0)
1 Q̃

(1)
1,1

Q
(0)
2 Q̃

(1)
1,2

]
.517

More generally, alg. 6 takes a tall-and-skinny matrix A and level L and finds a QR factorization518

by initially partitioning A into 2(l) row-blocks and includes the building of Q. For simplicity, we519

assume that m is exactly h2(l) so that the initial partition yields 2(l) blocks of equal sizes, h-by-n.520

Also, note that hh mult refers to the action of applying multiple HH transformations given a set521

of HH vectors and constants, which can be performed by iterating line 6 of alg. 3. This step can522

be done in a level-3 BLAS operation via a WY update if alg. 6 was modified to store the WY523

representation at the QR factorization of each block of each level, A
(i)
j .524

3.3.3. TSQR: Rounding Error Analysis. The TSQR algorithm presented in alg. 6 is a525

divide-and-conquer strategy for the QR factorization that uses the HQR within the subproblems.526

Divide-and-conquer methods can naturally be implemented in parallel and accumulate less rounding527

errors. For example, the single-level TSQR decomposition of a tall-and-skinny matrix, A requires528

3 total HQRs of matrices of sizes blog2(mn)c-by-n, dlog2(mn)e-by-n, and 2n-by-n. The single-level529

TSQR strictly uses more FLOPs, but the dot product subroutines may accumulate smaller rounding530

errors (and certainly have smaller upper bounds) since they are performed on shorter vectors, and531

lead to a more accurate solution overall. These concepts are elucidated in [21] and we summarize532

the main results in Theorem 3.7.533

Theorem 3.7. Let A ∈ Rm×n with m ≥ n have full rank, n, and Q̂TSQR ∈ Rm×n and534

R̂TSQR ∈ Rn×n be the thin QR factors of A obtained via alg. 6 with L levels. Let us further535

assume that m is divisible by 2L and nγ̃m2−L , nγ̃2n � 1. Then, 2-norm error bound for the jth536

column (j = 1 : n) of R̂TSQR and the Frobenius norm error bound for Q̂TSQR are537

‖R̂TSQR[:, j]−R[:, j]‖2 ≤ n(γ̃m2−L + Lγ̃2n)‖A[:, j]‖2,(3.23)538

‖Q̂TSQR −Q‖F ≤ n3/2(γ̃m2−L + Lγ̃2n).(3.24)539540

Note that the nγ̃m2−L and nγ̃2n terms correspond to errors from applying HQR to the blocks541

in the initial partition and to the blocks in levels 1 through L respectively. We can easily replace542

these with analogous mixed precision terms and keep the analysis accurate. Both level-2 and level-3543

BLAS implementations will be considered in section 4.544

17

This manuscript is for review purposes only.

TSQR and HQR error bound comparison. We compare the error bounds for HQR and TSQR.545

Consider the bounds for ‖Q̂ −Q‖F in Theorems 3.4 and 3.7. TSQR has a lower worst-case error546

bound than HQR when integers m,n > 0, and L ≥ 0 satisfy547

1� n3/2γ(m) � n3/2(γ(
m

2L
) + Lγ(2n)).548

Let us consider as an example the case when m
2L

= 2n. Then, the HQR bound is 2L/(L+ 1) larger549

than the bound for TSQR with L levels. For example, in single precision, a HQR of a 215-by-26550

matrix results in an upper bound relative backward error (‖A − Q̂R̂‖F /‖A‖F) of ≈1.002, but a551

TSQR with L = 8 is bounded by ≈3.516e-02. This case exemplifies a situation in which stability552

is not guaranteed in HQR, but the method is stable when using TSQR, even in the worst-case.553

Now consider some 220-by-212 matrix and QR factorizations performed with double precision. The554

error bound for HQR is 1.686e-7, whereas the error bound for TSQR with 12 levels is 5.351e-10.555

In general, we can conjecture that values of L that can make m2−L and 2Ln much smaller than m,556

should produce a TSQR that outperforms HQR in worst-case scenarios, at least in uniform precision557

settings. However, the range of matrix sizes that TSQR can accommodate decreases as L grows558

larger. Figure 1 shows the matrix sizes HQR, 2-level TSQR, and 4-level TSQR can accommodate559

as well as their respective error bounds.560

Fig. 1. Non-white space indicates allowable
matrix sizes for each scheme, and color map rep-
resents error bounds for ‖∆Q‖F for uniform pre-
cision error analysis when using double precision
arithmetic.

4. Mixed precision error analysis. In this561

section, we consider three different mixed precision562

settings for the QR factorization, all of which take in563

a matrix A stored in low precision and return Q,R564

both represented in low precision. First, we con-565

sider a trivial mixed precision setting where HQR,566

BQR, and TSQR are computed in high precision af-567

ter casting up the input matrix at the beginning, and568

casting down the resulting high precision factors to569

low precision. Then in subsection 4.1, we modify570

BQR and TSQR to utilize level-3 BLAS operations571

and TensorCore bFMAs for the matrix product sub-572

routines. Finally, we impose MP Setting 2.3 in sub-573

section 4.2 to see how a mixed precision inner prod-574

uct impacts HQR, BQR, and TSQR when applied575

in level-2 BLAS operations.576

Backward error of casting down vectors. First,577

consider casting down a vector x ∈ F(m)
h . The com-578

ponentwise forward error is,579

castdownl(x) = x + ∆x, |∆x| < u(l)|x|.580

We use this to represent the backward error of a casting down a vector with a linear transformation,581

I(l) := I + E ∈ Rm×m, a diagonal perturbation of the identity. We write,582

(4.1) x(l) := castdown(x(h)) = I(l)x(h) = (I + E)x(h) = x(h) + ∆x,583

where |∆x| ≤ u(l)|x(h)| and ‖∆x‖2 ≤ u(l)‖x(h)‖2. Thus, E = ∆xx>/‖x‖22 and we can use the same584

argument as in (3.11) to form a backward matrix norm bound,585

(4.2) ‖E‖F ≤ u(l).586

18

This manuscript is for review purposes only.

Casting down after HQR in high precision. Let us consider the trivial case of carrying out HQR587

in high precision and casting down at the very end. This is useful for the analysis of mixed precision588

block algorithms as will be shown in subsection 4.1. If the two floating point types Fl and Fh satisfy589

Fl ⊆ Fh and the matrix to be factorized is stored with low precision numbers, A ∈ Fm×nl , then590

casting up adds no rounding errors. Therefore, we can directly apply the analysis that culminated591

in Theorem 3.4, and we only consider the columnwise forward error in the Q factor. Then, the592

jth column of Q̂HQR = Q + ∆QHQR is bounded normwise via ‖∆QHQR[:, j]‖2 ≤ nγ̃hm, and incurs593

an extra rounding error when Q̂HQR ∈ Fm×nh is cast down to Fm×nl . Using this in Lemma 3.2 to594

analyze the forward norm error for the jth column of the Q factor computed with alg. 3 yields595

(4.3) ‖(castdown(Q̂HQR)−Q)[:, j]‖2 = ‖(I(l)P̂1 · · · P̂n−P1 · · ·Pn)êj‖2 ≤ u(l) +nγ̃(h)m +nu(l)γ̃(h)m .596

The final castdown operation increases the upper bound by u(l) and the size of A has no impact on597

this extra rounding error. Applying this trivial mixed precision setting to BQR and TSQR would598

simply increases the error bound by approximately u(l) all the while taking an even longer time599

than the high precision implementation due the extra cast down and cast up operations. Therefore,600

we do not analyze the rounding error analysis of this mixed precision variant of BQR and TSQR.601

However, we will use this mixed precision HQR as a subroutine of the mixed precision BQR and602

TSQR in the following section.603

4.1. Round down at block-level: level-3 BLAS mixed precision setting. The mixed604

precision setting in this section is designed to meet the below requirements.605

1. Modify Algorithms 5 and 6 to maximize level-3 BLAS operations and use TensorCore606

bFMAs.607

2. Apply (4.3) to all instances of HQR to the error analyses for BQR and TSQR in section 3.608

3. Cast down quantities at every block/level and the insertion of low precision errors u(l)609

should be somewhat correlated to the number of blocks and levels.610

4. Both input and output of the various QR factorization algorithms are given in the low611

precision.612

TensorCore’s bFMA computes613

(4.4) D̂ = flTC(C + AB), C,D ∈ F4×4
fp16 or F4×4

fp32, and A,B ∈ F4×4
fp16,614

and employs full precision products and fp32 summation accumulate. Here, the full precision615

multiplication is exact as explained in section 2. In [5], the authors investigate all four possible616

matrix-matrix multiplication routines in TensorCore, which depend on whether C and D are com-617

puted in fp16 or fp32. They also note that matrices larger than 4-by-4 can still be computed using618

this block FMA by accumulating matrix sums with C ∈ F4×4
fp32. Suppose that we aim to compute619

a fp16 matrix product of two fp16 matrices, X ∈ Fm×p(fp16), Y ∈ Fp×n(fp16), and Z = XY ∈ Fm×nfp16 . We620

pad X,Y with zeros so that all matrix dimensions are multiples of 4 and the matrix product can621

be computed with the TensorCore block FMA. Let Q[i,j] := Q[4(i − 1) + 1 : 4i, 4(j − 1) + 1 : 4j]622

refer to the (i, j)th 4-by-4 block for any Q ∈ {X,Y,Z}. Then, we compute Z[i,j] via623

Z[i,j] =

dp/4e∑
k=1

X[i,k]Y[k,j],624

where we use (4.4) by initializing with A(1) := X[i,1], B(1) := Y[1,j], and C(1) := 04×4 and setting625

A(k) := X[i,k], B(k) := Y[k,j], and C(k) := D(k−1) for k = 2 : dp/4e. By setting C(k),D(k) ∈ F4×4
fp32626

19

This manuscript is for review purposes only.

for k > 1 and only casting down at the end via Z[i,j] = fp16(D(dp/4e)), we maximize our use of627

fp32 arithmetic. This computes the most accurate mixed precision matrix product routine possible628

using TensorCore bFMAs whose inputs and output are required to be stored in fp16. For example,629

take p = 8. Then the [i, j]th 4-by-4 block of the product is computed via,630

D(1) = flTC(X[i,1]Y[1,j]), D(2) = flTC(X[i,2]Y[2,j] + D(1)) ∈ F4×4
fp32631

Z[i,j] = castdown(D(2)) ∈ F4×4
fp16.632

633

Adapting the rounding error analysis in [5] into this specific mixed precision matrix product setting634

yields the componentwise forward bound635

(4.5) |Z− fl(Z)| ≤
(
u(fp16) + γ

(fp32)
p/4 + u(fp16)γ

(fp32)
p/4

)
|X||Y|.636

We denote BQR and TSQR computed via TensorCore bFMA’s with mpBQR3 and mpTSQR3,637

where the 3 represents the BLAS level-3 nature of this mixed precision setting.638

4.1.1. BQR round down at block level: mpBQR3. Consider the input matrix, A ∈ Fm×nl ,639

partitioned into N blocks of r columns, A = [C1 · · ·CN] as in subsection 3.2. Algorithm 7 shows a640

mixed precision variant of BQR that maximizes the use of bFMAs but uses high precision arithmetic641

for level-1 and 2 BLAS operations which are only a O(1/N) fraction of the total number of FLOPs.642

Each block is casted up to compute a high precision HQR and to form the WY representation.643

The WY representation is then casted down to low precision since the bFMAs require low precision644

inputs for matrix products, and the R factor from the high precision HQR can be casted down to645

return a low precision R factor at the very end. Since the cast down operations for the R factor646

and the WY representations occur at every block, we can expect columnwise error bound for alg. 7647

to increase by approximately Nu(l) from the error bound for alg. 5.

Algorithm 7: Q̂mpBQR3, R̂mpBQR3 ← mpBQR3(A, r): Perform a mixed precision variant

of BQR of low precision A with column partitions of size r. Q̂mpBQR3,R̂mpBQR3, are
returned in low precision. Operations in lines 7 and 10 require low precision inputs.

Input: A, r. Output: Q̂mpBQR3,R̂mpBQR3

1 N = n
r /* Let A = [C1 · · ·CN]. */

2 for k = 1 : N − 1 do
3 Vk,βk,Ck ← hhQR(castup(Ck)) /* Algorithm 3 in high precision. */

4 Ck ←castdown (Ck) /* Builds R factor in low precision. */

5 Wk ← buildWY(Vk,βk) /* Algorithm 4 in high precision */

6 [Vk,Wk]←castdown([Vk,Wk])

7 [Ck+1 · · ·CN] -= Vk

(
W>

k [Ck+1 · · ·CN]
)

/* returned in low precision */

8 Q← I /* Build Q: Im if full QR, and Im×n if thin QR. */

9 for k = N : −1 : 1 do
// All updates are returned in low precision.

10 Q[(k − 1)r + 1 : m, (k − 1)r + 1 : n]-= Wk

(
V>k Q[(k − 1)r + 1 : m, (k − 1)r + 1 : n]

)
11 return Q,A

648

20

This manuscript is for review purposes only.

Since Ŵk, Ŷk’s are computed with alg. 4 in high precision then cast down, the new low precision649

WY update is X̂
(l)
k = I − I(l)ŴkI

(l)V̂
(>)
k . Consider applying X̂

(l)
k to some matrix stored in low650

precision, B using the TensorCore bFMAs. We analyze a single column bj := B[:, j] ∈ Fm−(k−1)rl651

even though this operation is done on B as a whole. Let I(l)Ŵk = (I + EW)Ŵk and I(l)Ŷk =652

(I+EY)Ŷk, where EW ,EY are diagonal and bounded componentwise by u(l). Then, the Frobenius653

norm error of forming X̂
(l)
k is,654

‖X̂(l)
k −Xk‖F = ‖ − (I + EW + EY + EWEY) ŴkŶ

>
k + WkY

>
k ‖F ,655

≤
(

(1 + γ
(l)
2 + (u(l))2)rγ̃

(h)
m−(k−1)r + γ

(l)
2 + (u(l))2

)
‖Xk‖F656

≤ γ̃(l)2 + rγ̃
(h)
m−(k−1)r + rγ̃

(l)
2 γ̃

(h)
m−(k−1)r.657

658

Now, we consider the backward error of applying X̂
(l)
k to bj with the bFMA matrix product error659

bound from (4.5). The multiplication by (I(l)Ŷk)> yields backward error bounded by660

flTC((I(l)Ŷk)>bj) = (Ŷk + ∆TCŶk)bj , |∆TCŶk| ≤ u(l) + γ
(h)
m−(k−1)

4

+ u(l)γ
(h)
m−(k−1)

4

|Ŷk||bj |,661

and the subsequent multiplication by (I(l)Ŵk) and subtraction from bj result in,662

flTC(X̂
(l)
k bj) = (X̂

(l)
k + ∆(l)Xk)bj ,663

|∆(l)Xk| ≤
(
γ
(l)
2 + γ

(h)

1+
m−(k−2)r

4

+ γ
(l)
2 γ

(h)

1+
m−(k−2)r

4

)(
|bj |+ |I(l)Ŵk||I(l)Ŷk|>|bj |

)
.664

665

Converting to a normwise error bound using the same logic from (3.9) and (3.10), we result in666

(4.6) ‖flTC(X̂
(l)
k bj)−Xkbj‖2 ≤ (γ̃

(l)
2 + rγ̃

(h)
m−(k−1)r + rγ

(l)
2 γ̃

(h)
m−(k−1)r)‖bj‖2,667

since the rounding errors from the bFMAs are small in comparison to the errors from casting down668

the WY representation built in high precision. The corresponding matrix error bound is669

(4.7) ‖flTC(X̂
(l)
k)−Xk‖F ≤ γ̃(l)2 + rγ̃

(h)
m−(k−1)r + rγ̃

(l)
2 γ̃

(h)
m−(k−1)r.670

We can finally compute the forward errors from implementing alg. 7. Consider the jth column671

of the Q factor, which we denote with qj := Q̂mpBQR3[:, j], and let k = bj/rc. Invoking Lemma 3.2672

with error bounds for flTC(X̂
(l)
k)’s in (4.7) results in columnwise error,673

‖∆qj‖2 ≤ −1 +

k∏
k′=1

(1 + γ̃
(l)
2)(1 + rγ̃

(h)
m−(k′−1)r)(4.8)674

≤ kγ̃(l)2 + krγ̃(h)m + k2rγ̃
(l)
2 γ̃(h)m ,(4.9)675676

where ∆qj = (flTC(X̂
(l)
1) · · · flTC(X̂

(l)
k)−X1 · · ·Xk)êj . Summing over the columns to find a matrix677

norm error bound yields678

(4.10) ‖Q̂mpBQR −Q‖F ≤ n1/2
(
γ̃
(l)
N + nγ̃(h)m

)
,679

21

This manuscript is for review purposes only.

where the summation of the third term in (4.9) is swept under the tilde notation in n1/2γ̃
(l)
N .680

This bound shows that alg. 7 only adds n1/2γ̃
(l)
N order errors to the bounds in (3.22). Using that681

u(l) = Ml,hu
(h), this increase corresponds to a multiplicative factor shown below,682

(4.11) n1/2γ̃
(l)
N + n(3/2)γ̃(h)m ≈

(
1 +

Ml,h

rm

)
n(3/2)γ̃(h)m .683

Therefore, the loss in accuracy due to mixed precision computing is relatively small when the684

disparity in precision (Ml,h) is small in comparison to the block size, mr. However, as r grows685

large, N = n/r decreases which then reduces the portion of mpBQR3 performed using level-3 BLAS686

operations and increases the size of high precision HQR being performed at each block. Whether687

this loss in accuracy in the worst-case scenario is worth the speed-ups from using mixed precision688

hardware is an open question that can be tackled in future research. Our analysis shows that the689

block size r, the dimension of the input matrix m,n, and hardware specificities will be contributing690

factors.691

4.1.2. TSQR round down at block level: mpTSQR3. Unlike BQR which is rich in level-3692

BLAS operations, the variant of TSQR in alg. 6 uses none. Therefore, we modify alg. 6 by replacing693

all instances of hh mult with level-3 BLAS operations. We omit presenting the exact algorithm694

for mixed precision variant of TSQR in this paper, but consider computing the HQR of each block695

in high precision and build and store the WY representation of the HH transformations in low696

precision as we did in lines (3-6) of alg. 7. The low precision WY representation is then applied697

with TensorCore bFMAs when building the Q factor (lines 11-16 of alg. 6).698

Rounding Error analysis. The analysis in [21] shows that each column of Q is transformed by699

n HH transformations of length 2n from levels L : −1 : 1, and another set of n HH transformations700

of length m2−L at level 0. Let us represent the WY representation at the jth block of level i and701

its bFMA counterpart as X
(i)
j and flTC(X̂

(i)
j). Then, we can use (4.7) to form backward error702

(4.12) ‖flTC(X̂
(i)
j)−X

(i)
j)‖F ≤ γ̃(l)2 + nγ̃

(h)
m′ + nγ̃

(l)
2 γ̃

(h)
m′ , m′ =

{
m2−L, i = 0

2n, i = 1 : L
.703

We can now modify the analysis in [21] by replacing nγ̃m2−L and nγ̃2n with704

(1 + γ̃
(l)
2)(1 + nγ̃

(h)

m2−L)− 1, and (1 + γ̃
(l)
2)(1 + nγ̃

(h)
2n)− 1,705

and apply Lemma 3.2. Then, the factors formed by mpTSQR3 are denoted by R̂mpTSQR3, Q̂mpTSQR3706

and the error bounds for the jth column of the triangular factor and the orthogonal factor are707

‖(R̂mpTSQR3 −R)[:, j]‖2 ≤ γ̃(l)L+1 + n
(
Lγ̃

(h)
2n + γ̃

(h)

m2−L

)
‖A[:, j]‖2,708

‖Q̂mpTSQR3 −Q‖F ≤ n1/2γ̃(l)L+1 + n3/2
(
Lγ̃

(h)
2n + γ̃

(h)

m2−L

)
.709

710

Converting the low precision rounding errors as a fraction of the TSQR error bound in (3.24) to711

quantify the impact of modifying alg. 6 to utilize bFMAs yields712

(4.13) n1/2γ̃
(l)
L+1 + n3/2

(
Lγ̃

(h)
2n + γ̃

(h)

m2−L

)
=

(
1 +

Ml,h(L+ 1)

n(2nL+m2−L)

)
n3/2

(
Lγ̃

(h)
2n + γ̃

(h)

m2−L

)
.713

22

This manuscript is for review purposes only.

Like in (4.11), the disparity in the two precisions, Ml,h is compared against the original matrix714

size m,n and the block size specifications derived from L. Let us consider the shallowest, middle,715

and the deepest levels of TSQR that are possible given some matrix in Rm×n. All three cases in716

Table 4 show that mpTSQR3 on sufficiently large matrices may yield errors closer to the high precision717

implementation, and the optimal choice for L depends on m,n.718

Number of levels, L 1 1
2 log2(m/n) −1 + log2(m/n)

(L+1)
n(2nL+m2−L)

1/(n2 +m/4) 1/
(

2n2 + m1/2n3/2

log2(m/n)

)
1/(2n2)

Table 4
Error bounds for ‖∆QmpTSQR3‖F for varying L’s.

4.2. Round down at inner product: level-2 BLAS mixed precision setting. While719

the previous section discussed blocked variants of HQR that can be easily adapted for the mixed720

precision setting specific to TensorCore bFMA’s, we want to provide a more general mixed precision721

environment in this section. Recall that HQR, BQR, and TSQR all rely on HH transformations722

in one way or another, and implementations of HH transformations are expressed by (3.8). This723

implementation capitalizes on the rank-1 update structure of HH transformations where the pre-724

dominant share of FLOPs is spent on an inner product, and computing the HH vector and constant725

also rely heavily on inner products. Therefore, nearly all of the computational tasks for algs. 3, 5726

and 6 are attributed to the inner product, which is important in other linear algebra tools such as727

projections, matrix-vector, and matrix-matrix multiply. Consequently, we return to MP Setting 2.3,728

where every inner product is cast down to the lower precision as shown in (2.10). We denote HQR,729

BQR, and TSQR computed with MP Setting 2.3 with mpHQR2, mpBQR2, and mpTSQR2, where the 2730

represents the mixed precision procedure computed at a level-2 BLAS operation.731

4.2.1. HQR round down at inner product: mpHQR2. Consider forming a HH transforma-732

tion that zeros out x ∈ Rm below the the ith element. We need to compute σ, β, ṽ1, and v as733

defined in subsection 3.1,734

fl(σ) = fl(−sign(x[1])‖x‖2) = σ + ∆σ, |∆σ| ≤
(
γ
(l)
2 + γ(h)m + γ

(l)
2 γ(h)m

)
|σ|,(4.14)735

fl(v′[1]) = v′[1] + ∆v′[1] = (1 + δ(l))(x[1]− σ −∆σ), |∆v′[1]| ≤ (γ
(l)
3 + γ̃(h)m)|v′[1]|(4.15)736

fl(β) = β + ∆β = (1 + δ(l)) (−v′[1]/σ̂) , |∆β| ≤ (γ
(l)
8 + γ̃(h)m)|β|,(4.16)737

fl(v[j]) = v[j] + ∆v[j] where |∆v[j]| ≤ (γ
(l)
7 + γ̃(h)m)|vj |, j = 2 : m− i+ 1.(4.17)738739

These bounds on ∆σ, ∆v′[1], ∆β, and ∆v[j] are computed by using the rules from Lemma 2.4 on740

the analysis shown in subsection 3.1. Using these, we can formulate the mixed precision version of741

(3.9) where ŷ = fl(Pvx) ∈ Rm is implemented via (3.8). Note that the inner product v̂>x via MP742

Setting 2.3, and all other operations are done in the lower precision. Then, the transformed vector743

is bounded by744

(4.18) ŷ = y + ∆y, ‖∆y‖2 ≤ (γ
(l)
25 + γ̃(h)m)‖y‖2.745

Thus, a backward error can be formed using ∆Pv = ∆yx>/‖x‖22,746

(4.19) ŷ = (Pv + ∆Pv)x, ‖∆Pv‖F ≤ (γ
(l)
25 + γ̃(h)m).747

23

This manuscript is for review purposes only.

Now, we form the error bounds for applying n HH transformations to x using Lemma 3.2,748

ẑ = fl(P1 · · ·Pnx) = Q(x + ∆x) = (Q + ∆Q)x,(4.20)749

‖∆y‖2 ≤ (γ̃(l)n + nγ̃(h)m)‖x‖2, ‖∆Q‖F ≤ (γ̃(l)n + nγ̃(h)m).(4.21)750751

Note that we use the γ̃(l) notation, where the small integer c is now required to be O(25). The752

analogous mixed precision QR factorization error bounds are shown in Theorem 4.1.753

Theorem 4.1. Let A ∈ Rm×n with m ≥ n have full rank, n. Let Q̂mpHQR2 ∈ Rm×n and754

R̂ ∈ Rn×nmpHQR2 be the thin QR factors of A obtained via alg. 3 with mixed precision FLOPs where755

inner products are computed in precision h then cast down. All other operations are carried out in756

precision l. Then,757

‖∆RmpHQR2[:, j]‖2 ≤ (γ̃(l)n + nγ̃(h)m)‖A[:, j]‖2, ‖∆RmpHQR2‖F ≤ (γ̃(l)n + nγ̃(h)m)‖A‖F(4.22)758

‖∆Q[:, j]mpHQR2‖2 ≤ (γ̃(l)n + nγ̃(h)m), ‖∆QmpHQR2‖F ≤ n1/2(γ̃(l)n + nγ̃(h)m).(4.23)759760

Unsurprisingly, the inner product mixed precision setting yields higher error bounds as it uses more761

low precision arithmetic than the settings described in subsection 4.1. In the next sections we762

analyze using mpHQR2 instead of HQR within algs. 5 and 6.763

4.2.2. BQR round down at inner product: mpBQR2. Now, we analyze alg. 5 implemented764

with MP Setting 2.3. At the kth block, we first apply the mixed precision HQR summarized in765

Theorem 4.1. Next, we construct the WY representation, where we can now use (4.18) and (4.19)766

and Lemma 3.2 to form767

(4.24) ‖X̂(l)
k −Xk‖F = ‖(P̂(1)

k · · · P̂
(r)
k)− (P

(1)
k · · ·P

(r)
k))‖F ≤ γ̃(l)r + rγ̃(h)m .768

Then, the 2-norm bound for the jth column of the R factor and the Frobenius norm bound for the769

orthogonal factor resulting from mpBQR2 are770

‖R̂mpBQR2[:, j]‖2 = ‖X̂1 · · · X̂NA[:, j]‖2 ≤
(
Nγ̃(l)r + nγ̃(h)m

)
‖A[:, j]‖2,(4.25)771

‖Q̂mpBQR2‖F ≤ n1/2
(
Nγ̃(l)r + nγ̃(h)m

)
≈
(

1 +
Ml,h

m

)
n3/2γ̃(h)m .(4.26)772

773

Note that this error bound is of the same order as the error bound for mpHQR2, shown in (4.23). The774

corresponding error bound for mpBQR3 of section 4.1.1 yielded low precision errors r times smaller775

than that from using MP Setting 2.3 inner products, an unsurprising result as intermediate results776

are cast down more often in mpBQR2. Furthermore, the γ̃(l) in this section requires c = O(25),777

whereas the same notation in section 4.1.1 assumes c to be a small positive integer. Therefore, the778

numerical stability of mpBQR2 is guaranteed at smaller matrix sizes than the numerical stability of779

mpBQR3 and BQR in high precision. While it is technically possible that the low precision errors780

introduced from utilizing MP Setting 2.3 do not dominate the errors incurred in mpBQR2 and mpHQR2781

when m�Ml,h and can result in accuracy comparable to that of mpBQR3 and high precision BQR,782

our numerical results in section 5 show that mpHQR2 is already unstable at m ≈Ml,h.783

4.2.3. TSQR round down at inner product: mpTSQR2. Finally, we consider using MP784

Setting 2.3 in alg. 6. This corresponds to replacing every instance of nγ̃m′ for m′ ∈ {2n,m2−L} in785

24

This manuscript is for review purposes only.

Theorem 3.7 with γ̃
(l)
n +nγ̃

(h)
m′ . We first consider the norm errors for the jth column of the Q factor786

computed by this mixed precision variant of alg. 6,787

(4.27) ‖Q̂mpTSQR2[:, j]−Q[:, j]‖2 ≤ (L+ 1)γ̃(l)n + n(γ̃
(h)

m2−L + Lγ̃
(h)
2n).788

Then, the matrix norm error bound is789

‖Q̂mpTSQR2 −Q‖F ≤ n1/2(L+ 1)γ̃(l)n + n3/2(γ̃
(h)

m2−L + Lγ̃
(h)
2n)(4.28)790

≈
(

1 +
Ml,hL

m2−L + 2Ln

)
n3/2(γ̃

(h)

m2−L + Lγ̃
(h)
2n),(4.29)791

792

and contributes larger low precision rounding errors than in (4.13). If the mpTSQR2 error bound793

were to outperform that of mpHQR2, we now need integers m,n > 0, and L ≥ 0 that satisfy794

1� n1/2
(
γ̃(l)n + nγ̃(h)m

)
� n1/2

(
(L+ 1)γ̃(l)n + n(γ̃

(h)

m2−L + Lγ̃
(h)
2n)

)
.795

In contrast to the analysis for uniform precision settings, large L values do not necessarily reduce796

the error bounds of TSQR. While large L can imply m� m2−L + 2Ln, it does not always lead to797

d � d1 + Ld2. Although the theoretical error bounds do not give a clear indication of the worst-798

case performances of HQR and TSQR in mixed-precision settings, TSQR outperformed HQR on799

ill-conditioned matrices within our numerical simulations. These experiments are discussed in detail800

in the next section.801

5. Numerical Experiments. We conducted several numerical experiments to confirm the802

validity of the error bounds formed in section 4 by varying size for all algorithms, block sizes in803

mpBQR3, and comparing mpHQR2 against mpTSQR2 with varying condition numbers. We used Julia,804

a programming language which allows fp16 storage and castup and castdown operations between805

types in fp16, fp32, fp64, but no built-in fp16 arithmetic. Therefore, we relied on using alg. 1 for806

f ∈ OP ∪ {dot product} to simulate MP Setting 2.3 and TensorCore bFMAs.807

In sections 3 and 4, we gave the forward error bounds for R and Q separately. Since our808

numerical experiments instead measure a backward error, ‖Q̂R̂ −A‖F , and an orthogonal error,809

‖Q̂>Q̂− I‖2, we show how to convert general forward errors into those computed quantities. Given810

‖(R̂−R)[:, j]‖2 ≤ εR‖A[:, j]‖2 and ‖Q̂−Q‖F ≤ εQ,811

‖(Q̂R̂−A)[:, j]‖2 ≤ (εR + εQ + εRεQ)‖A[:, j]‖2, j = 1 : n, see [14],(5.1)812

‖Q̂R̂−A‖F ≤ n1/2(εR + εQ + εRεQ)‖A‖F ,(5.2)813

‖Q̂>Q̂− I‖2 ≤ ‖Q̂>Q̂− I‖F ' 2εQ, see [21].(5.3)814815

First, we tested algs. 3 and 5 to 7, mpHQR2, mpBQR2, and mpTSQR2 for varying matrix sizes. We816

increased the number of rows m from 1000 to 13949, while keeping n = m/4, r = n/4, and817

L = 2 and the test matrices were sampled from the standard normal distribution. On the left818

plot of Figure 2, we see three clusters which each correspond to: top, MP Setting 2.3; middle,819

TensorCore bFMAs; and bottom, uniform precision implementations in fp32. The high precision820

and bFMA implementations scale similarly to each other when increasing the matrix size, whereas821

the MP Setting 2.3 variants grow unstable more quickly. In addition, while HQR, BQR, and TSQR822

perform similarly in high precision and when using bFMAs, mpTSQR2 is less accurate by a quarter to823

a half order of magnitude in comparison to mpBQR2 and mpHQR2. The specifications for m,n,L,Ml,h824

25

This manuscript is for review purposes only.

for this experiment derive the upper bound for ‖∆QmpTSQR2‖F , (4.29), to be larger than that of825

‖∆QmpHQR2‖F , (4.23). However, a more careful comparison of mpHQR2 and mpTSQR2 show that826

there exists a regime where mpTSQR2 can outperform mpHQR2.

Fig. 2. Left plot: Backward errors of HH QR factorization algorithms in sections 3 and 4 with varying matrix
sizes. Right plot: Norm errors of fp32 BQR and mpBQR3 for 2048-by-256 matrices for varying block sizes.

827
Next, we varied the block sizes for performing fp32 BQR and mpBQR3 on 2048-by-256 sized828

matrices, which were chosen to yield error bounds below 1 for both algorithms. The right plot829

of Figure 2 shows the error bounds and the computed value for the backward error for the two830

algorithms where the block size r varies from 2 to 256. The test matrices were generated following831

example from [5] by setting A = castdown(Q1DQ2) where Q1 ∈ Fm×nh , Q2 ∈ Fn×nh are orthogonal832

and D = Diagonal({log10(0), · · · , log10(−3)}) ∈ Fn×nh . The high precision implementation yields833

backward error close to u(fp32) and mpBQR3 yields errors near u(fp16) that follows the downward trend834

suggested by (4.11). As block sizes increase, mpBQR3 grows more accurate. This trend correlates to835

1/N , the approximate fraction of FLOPs in mpBQR3 performed in high precision, marked in orange.836

However, the rightmost data for mpBQR3 (corresponds to r = n), is still between 3 and 4 orders of837

magnitude less accurate than its high precision variant. Further studies that directly test speed-ups838

from bFMAs against the accuracy of mpBQR3 are needed to fully understand the potential uses for839

mixed precision QR algorithms.840

Lastly, we compared mpTSQR2 against mpHQR2. Note that an empirical comparison of the two841

algorithms implemented in fp64 arithmetic were reported in [21], and we omit the comparison842

against mpBQR2 since it performs very similarly to mpHQR2. Following example from [21], we used843

m-by-n random matrices, Aα = Q′(αE + I)/‖Q′(αE + I)‖F , where Q′ ∈ Rm×n is orthogonal and844

E ∈ Rn×n is the matrix of 1’s. We constructed Q′ by computing the default QR factorization845

of matrix Ω ∈ F4000×100
fp64 in Julia, which performs BQR with r = 36 entirely in fp64 arithmetic,846

and elements of the random matrix Ω were sampled from the uniform distribution over [0, 1]. By847

construction, Aα has 2-norm condition number nα+1. By varying α from 1e-4 to 1, we varied the848

condition number from 1.1 to 101, and we generated 10 samples for each value of α. The relative849

backward error, ‖Q̂R̂−A‖F /‖A‖F , was computed by casting up Q̂, R̂, and A to fp64 to compute850

the Frobenius norms. Plugging in m = 4000, n = 100, u(l) = u(fp16), u(h) = u(fp32), and c = 1 (for851

γ̃) into the error bounds for mpHQR2 combined with (5.2) and (5.3) are approximately 1.179 and852

1.146. These error bounds are relative and these worst-case bounds do not guarantee errors below853

100%. The TSQR bounds for the same parameters for L = 1 : 5 are even larger, which indicates854

that stability is not guaranteed. The leftmost plot of Figure 3 shows the backward errors of mpHQR2855

26

This manuscript is for review purposes only.

increasing as the theoretical condition numbers of the generated random matrices increase, and856

these errors correspond to the error data on the vertical axis, L = 0, of the middle plot. In addition857

to the errors from mpHQR2, Figure 3 shows the errors from mpTSQR2s of levels varying from L = 1858

to L = 5, where each line represents the errors of HQR and variants of TSQR calculated from859

the same random test matrix. Figure 3 reveals two different trends for the errors as we deepen the860

complexity of the QR algorithm from mpHQR2 to mpTSQR2 with L = 5. One trend occurs for matrices861

with smaller condition numbers, where mpHQR2 is stable, but mpTSQR2 with higher levels yield larger862

errors. Another trend occurs for matrices with higher condition numbers, where single-level and863

2-level mpTSQR2 yield smaller errors than mpHQR2. In these cases, errors from mpTSQR2 with 3 or864

more levels are similar to or worse than their 2-level variants, but generally do not exceed those of865

mpHQR2 most of the times. These results suggests that TSQR can outperform HQR even in mixed866

precision settings, and particularly when HQR is unstable due to larger condition numbers.

Number of levels, L, where there are 2^L initial blocks

B
ac

kw
ar

d
R

el
at

iv
e

E
rr

or

Condition Number

B
ac

kw
ar

d
R

el
at

iv
e

E
rr

or

Fig. 3. All plots show the backward relative error for 4000-by-100 sized test matrices. Left: mpHQR2 on
condition numbers ranging from 1.1 to 101; Middle: mpTSQR2 on condition numbers ranging from 5.3 to 101; Right:
mpTSQR2 on condition numbers ranging from 1.1 to 5.3.867

In conclusion, most of the experiments display the trends that error bounds in sections 3 and 4868

suggest, and bFMA variants perform in between the high precision and MP Setting 2.3 variants as869

expected. Also, a special case is shown that demonstrate mpTSQR2 can outperform mpHQR2 despite870

having higher error bounds. All of the experiments showed that the actual errors were many orders871

of magnitude lower than the error bounds even when ill-conditioned, but this discrepancy varied for872

different mixed precision settings. For example, backward and forward errors of mpBQR3 were only873

2-3 orders of magnitude below the error bounds, whereas the fp32 implementation of BQR yielded874

errors up to 6 orders of magnitude below the error bounds. Although further studies with larger875

problem sizes and timings would be beneficial in developing an mpBQR3 with the optimal block size,876

r, our experiments confirm the intuition built from the error analysis in section 4.877

6. Conclusion. The development of GPUs that optimize low precision floating point arith-878

metic have accelerated the interest in half and mixed precision algorithms that naturally reduces879

the bandwidth and storage needs. Loss in precision, stability, and representable range offset for880

those advantages, but these shortcomings may have little to no impact in some applications. It881

may even be possible to navigate around those drawbacks with algorithmic design.882

We present the algorithm and standard error analysis of HQR and its blocked variants (BQR883

and TSQR), modify the algorithms to support two mixed precision settings, and performed error884

analysis that accurately bound the mixed precision versions. One mixed precision setting is that885

27

This manuscript is for review purposes only.

of NVIDIA’s TensorCore bFMAs, and the other is an ad hoc setting that mimics the bFMAs at886

the level of inner products. These two are presented to offer mixed precision arithmetic at both887

level-2 and 3 BLAS operations and can be applied to other linear algebra tools as well. The new888

error bounds more accurately describe how rounding errors are accumulated in mixed precision889

settings. For a given problem, available hardware, and some error tolerance, these bounds can be890

used to first narrow down which QR factorization algorithms are feasible. Then, the speed-ups891

from the hardware specifications can be considered next to choose the most appropriate settings892

within the algorithms (i.e. block size r in BQR or number of levels, L, in TSQR). We found that893

TSQR can outperform HQR under MP Setting 2.3 for ill-conditioned, extremely overdetermined894

cases even when the error bounds imply the opposite. While an optimistic interpretation of this895

result would be that algorithms like TSQR are more robust against lower precision arithmetic,896

further research is needed to explore other divide-and-conquer methods that can harness parallel897

capabilities. Meanwhile, we should rely on the error bounds formed in section 4.898

REFERENCES899

[1] A. Abdelfattah, S. Tomov, and J. Dongarra, Fast batched matrix multiplication for small sizes using half-900
precision arithmetic on GPUs, in 2019 IEEE International Parallel and Distributed Processing Symposium901
(IPDPS), May 2019, pp. 111–122, https://doi.org/10.1109/IPDPS.2019.00022.902

[2] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. J. Dongarra, J. Du Croz, S. Ham-903
marling, A. Greenbaum, A. McKenney, and D. Sorensen, LAPACK Users’ Guide (Third Ed.), So-904
ciety for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1999; also available online from905
http://www.netlib.org.906

[3] G. Ballard, J. W. Demmel, L. Grigori, M. Jacquelin, H. Diep Nguyen, and E. Solomonik, Reconstructing907
Householder vectors from tall-skinny QR, vol. 85, 05 2014, pp. 1159–1170, https://doi.org/10.1109/IPDPS.908
2014.120.909

[4] C. Bischof and C. Van Loan, The WY Representation for Products of Householder Matrices, SIAM Journal910
on Scientific and Statistical Computing, 8 (1987), pp. s2–s13, https://doi.org/10.1137/0908009.911

[5] P. Blanchard, N. J. Higham, F. Lopez, T. Mary, and S. Pranesh, Mixed Precision Block Fused Multiply-912
Add : Error Analysis and Application to GPU Tensor Cores, (2019).913

[6] M. Courbariaux, Y. Bengio, and J.-P. David, Training deep neural networks with low precision multiplica-914
tions, arXiv preprint, arXiv:1412.7024, (2014).915

[7] M. Courbariaux, J.-P. David, and Y. Bengio, Low precision storage for deep learning, arXiv preprint916
arXiv:1412.7024, (2014).917

[8] J. Demmel, I. Dumitriu, and O. Holtz, Fast linear algebra is stable, Numerische Mathematik, 108 (2007),918
pp. 59–91, https://doi.org/10.1007/s00211-007-0114-x, https://arxiv.org/abs/0612264.919

[9] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou, Communication-optimal parallel and sequential920
QR and LU factorizations, SIAM Journal on Scientific Computing, 34 (2012), https://doi.org/10.1137/921
080731992, https://arxiv.org/abs/0808.2664.922

[10] M. Fagan, J. Schlachter, K. Yoshii, S. Leyffer, K. Palem, M. Snir, S. M. Wild, and C. Enz, Overcoming923
the power wall by exploiting inexactness and emerging COTS architectural features: Trading precision for924
improving application quality, in 2016 29th IEEE International System-on-Chip Conference (SOCC), Sep.925
2016, pp. 241–246, https://doi.org/10.1109/SOCC.2016.7905477.926

[11] G. H. Golub and C. F. Van Loan, Matrix computations, JHU press, 4 ed., 2013.927
[12] A. Haidar, A. Abdelfattah, M. Zounon, P. Wu, S. Pranesh, S. Tomov, and J. Dongarra, The Design928

of Fast and Energy-Efficient Linear Solvers: On the Potential of Half-Precision Arithmetic and Iterative929
Refinement Techniques, June 2018, pp. 586–600, https://doi.org/10.1007/978-3-319-93698-7 45.930

[13] A. Haidar, S. Tomov, J. Dongarra, and N. J. Higham, Harnessing GPU tensor cores for fast fp16 arithmetic931
to speed up mixed-precision iterative refinement solvers, in Proceedings of the International Conference932
for High Performance Computing, Networking, Storage, and Analysis, SC ’18, Piscataway, NJ, USA,933
2018, IEEE Press, pp. 47:1–47:11, https://doi.org/10.1109/SC.2018.00050, https://doi.org/10.1109/SC.934
2018.00050.935

[14] N. J. Higham, Accuracy and Stability of Numerical Methods, 2002, https://doi.org/10.2307/2669725.936
[15] N. J. Higham and T. Mary, A New Approach to Probabilistic Rounding Error Analysis, SIAM Journal on937

28

This manuscript is for review purposes only.

https://doi.org/10.1109/IPDPS.2019.00022
https://doi.org/10.1109/IPDPS.2014.120
https://doi.org/10.1109/IPDPS.2014.120
https://doi.org/10.1109/IPDPS.2014.120
https://doi.org/10.1137/0908009
https://doi.org/10.1007/s00211-007-0114-x
https://arxiv.org/abs/0612264
https://doi.org/10.1137/080731992
https://doi.org/10.1137/080731992
https://doi.org/10.1137/080731992
https://arxiv.org/abs/0808.2664
https://doi.org/10.1109/SOCC.2016.7905477
https://doi.org/10.1007/978-3-319-93698-7_45
https://doi.org/10.1109/SC.2018.00050
https://doi.org/10.1109/SC.2018.00050
https://doi.org/10.1109/SC.2018.00050
https://doi.org/10.1109/SC.2018.00050
https://doi.org/10.2307/2669725

Scientific Computing, 41 (2019), pp. A2815–A2835, https://doi.org/10.1137/18M1226312, https://epubs.938
siam.org/doi/10.1137/18M1226312.939

[16] N. J. Higham and S. Pranesh, Simulating Low Precision Floating-Point Arithmetic, SIAM Journal on Sci-940
entific Computing, 41 (2019), pp. C585–C602, https://doi.org/10.1137/19M1251308, https://epubs.siam.941
org/doi/10.1137/19M1251308.942

[17] A. S. Householder, Unitary triangularization of a nonsymmetric matrix, Journal of the ACM (JACM), 5943
(1958), pp. 339–342.944

[18] I. C. F. Ipsen and H. Zhou, Probabilistic Error Analysis for Inner Products, (2019), http://arxiv.org/abs/945
1906.10465, https://arxiv.org/abs/1906.10465.946

[19] S. Markidis, S. W. D. Chien, E. Laure, I. B. Peng, and J. S. Vetter, NVIDIA tensor core programmability,947
performance & precision, Proceedings - 2018 IEEE 32nd International Parallel and Distributed Process-948
ing Symposium Workshops, IPDPSW 2018, (2018), pp. 522–531, https://doi.org/10.1109/IPDPSW.2018.949
00091, https://arxiv.org/abs/1803.04014.950

[20] P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen, D. Garcia, B. Ginsburg, M. Houston,951
O. Kuchaiev, G. Venkatesh, and H. Wu, Mixed precision training, in International Conference on952
Learning Representations, 2018, https://openreview.net/forum?id=r1gs9JgRZ.953

[21] D. Mori, Y. Yamamoto, and S. L. Zhang, Backward error analysis of the AllReduce algorithm for householder954
QR decomposition, Japan Journal of Industrial and Applied Mathematics, 29 (2012), pp. 111–130, https:955
//doi.org/10.1007/s13160-011-0053-x.956

[22] R. Schreiber and C. Van Loan, A Storage-Efficient WY Representation for Products of Householder957
Transformations, SIAM Journal on Scientific and Statistical Computing, 10 (1989), pp. 53–57, https:958
//doi.org/10.1137/0910005.959

[23] G. Tagliavini, S. Mach, D. Rossi, A. Marongiu, and L. Benin, A transprecision floating-point platform for960
ultra-low power computing, in 2018 Design, Automation Test in Europe Conference Exhibition (DATE),961
March 2018, pp. 1051–1056, https://doi.org/10.23919/DATE.2018.8342167.962

[24] U. von Luxburg, A tutorial on spectral clustering, Statistics and Computing, 17 (2007), pp. 395–416, https:963
//doi.org/10.1007/s11222-007-9033-z, https://doi.org/10.1007/s11222-007-9033-z.964

29

This manuscript is for review purposes only.

https://doi.org/10.1137/18M1226312
https://epubs.siam.org/doi/10.1137/18M1226312
https://epubs.siam.org/doi/10.1137/18M1226312
https://epubs.siam.org/doi/10.1137/18M1226312
https://doi.org/10.1137/19M1251308
https://epubs.siam.org/doi/10.1137/19M1251308
https://epubs.siam.org/doi/10.1137/19M1251308
https://epubs.siam.org/doi/10.1137/19M1251308
http://arxiv.org/abs/1906.10465
http://arxiv.org/abs/1906.10465
http://arxiv.org/abs/1906.10465
https://arxiv.org/abs/1906.10465
https://doi.org/10.1109/IPDPSW.2018.00091
https://doi.org/10.1109/IPDPSW.2018.00091
https://doi.org/10.1109/IPDPSW.2018.00091
https://arxiv.org/abs/1803.04014
https://openreview.net/forum?id=r1gs9JgRZ
https://doi.org/10.1007/s13160-011-0053-x
https://doi.org/10.1007/s13160-011-0053-x
https://doi.org/10.1007/s13160-011-0053-x
https://doi.org/10.1137/0910005
https://doi.org/10.1137/0910005
https://doi.org/10.1137/0910005
https://doi.org/10.23919/DATE.2018.8342167
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1007/s11222-007-9033-z

