

1 American Eel Resilience to Simulated Fluid Shear
2 associated with passage through Hydroelectric
3 Turbines

4

5 Brett D. PFLUGRATH*, Robert P. MUELLER, Kristin ENGBRECHT, and
6 Alison H. COLOTELO

7

8 Earth Systems Science Division, Pacific Northwest National Laboratory
9 902 Battelle Blvd, Richland WA 99352, USA

10

11

12 **Corresponding Author:**

13 Brett Pflugrath;

14 Phone: +1 (509) 375-6521;

15 Email: brett.pflugrath@pnnl.gov

16

17 **Running Title:** American Eel Resilience to Fluid Shear

18 **Keywords:** *fish passage, hydropower, water jet, stressor, morphology*

19 **Abstract**

20 American eel (*Anguilla rostrata*) populations have declined within their native range
21 along the eastern coast of North America due to factors such as commercial fishing,
22 habitat alteration, and dams. American eel are catadromous fish species, and high
23 mortality rates (>40%) have been observed for freshwater life-stage adult eel passing
24 downstream through hydropower turbines. Lacerations and sectioning of fish have
25 been observed downstream of turbines and these injuries are commonly associated
26 with direct contact with the turbine runner, whether through blade strike or pinching
27 and grinding. Exposure to fluid shear may also be a source of injury, however, little
28 is known about American eel susceptibility to this physical stressor. Eels are
29 considerably flexible when compared to other fish species and lack other
30 morphological characteristics that would make them susceptible to fluid shear, such
31 as protruding eyes, large scales, and large operculum. European eel, which have
32 previously been tested for susceptibility to fluid shear, were found to be resilient. To
33 determine if American eel are also resilient to fluid shear, forty American eel were
34 exposed to a water jet, simulating severe fluid shear (strain rate > 800 s⁻¹) that fish
35 may experience when passing downstream through turbines. No immediate or
36 delayed (48 h) signs of injury were observed after exposure to severe fluid shear.
37 Based on this study, and a previous study conducted on American eel susceptibility
38 to barotrauma, the source of injury and mortality of American eel passing through
39 turbines is likely attributed to blade strike or pinching and grinding.

40 **Introduction**

41 Many freshwater eel populations around the word have declined, including American
42 Eel (*Anguilla rostrata*; Dekker, 2003). American eel support a viable fisheries and
43 are a culturally significant food source to many Native American tribes of the US
44 and First Nations peoples of Canada (MacGregor et al., 2008). The Committee on
45 the Status of Endangered Wildlife in Canada listed American eel as a threatened
46 species and American eel were listed as an endangered species under Ontario's
47 (Canada) Endangered Species Act in 2008 (Tremblay, 2012). Additionally,
48 American eel are listed as endangered on the Red List of Threatened Species by the
49 International Union of Conservation of Nature (IUCN) and the populations trend is
50 currently assessed by the IUCN as decreasing (Jacoby et al., 2017). Several factors
51 are have led to the decline of American eel populations, including commercial
52 fishing, habitat alteration, and dams (Jacoby et al., 2017). Dams cause migrational
53 barriers and can directly expose fish to stressors, particularly when fish pass
54 downstream through hydropower turbines (Čada, 1997).

55 When passing downstream through hydropower turbines, fish can be exposed to
56 several stressors, including blade strike, pinching or grinding within moving parts of
57 the structure, rapid decompression, and fluid shear (Čada, 1997, Neitzel et al., 2004,
58 Brown et al., 2012b, Bevelhimer et al., 2019). Mortality rates vary greatly between
59 different turbines, but rates greater that 40 percent have been observed for American
60 eel passing through turbines (Eyler et al., 2016). American eel susceptibility to blade

61 strike has been observed in laboratory testing, where mortality occurred in 35% of
62 American eel when exposed to simulated turbine blade strike over various
63 combinations of blade thicknesses, blade velocities, strike locations, and fish
64 orientations (Saylor et al., 2019). Studies have linked turbine induced injuries and
65 mortality in American eel to strike or pinching and grinding because the observed
66 injuries included lacerations or complete sectioning of the fish (Heisey et al., 2019,
67 Saylor et al., 2019). However, there is potential that injuries can also be caused by
68 exposure to rapid decompression (e.g. swim bladder rupture, internal hemorrhaging,
69 and gas emboli) or fluid shear (e.g. spinal fracture), which can result in injuries that
70 may not be visually observed during an external examination.

71 Though rapid decompression has been observed to be a potentially significant source
72 of injury or mortality for several fish species (Brown et al., 2012a, Pflugrath et al.,
73 2018, Pflugrath et al., 2020), American eel have a very low susceptibility (Pflugrath
74 et al., 2019). This is primarily because American eel are a demersal fish and don't
75 fill their swim bladder to achieve neutral buoyancy like pelagic fish (Pflugrath et al.,
76 2019). The expansion of the swim bladder, which responds according to Boyle's law
77 during decompression, is the major driving force of barotrauma in fish (Brown et al.,
78 2012b, Pflugrath et al., 2012). Additionally, American eel have a physostomous
79 swim bladder, possessing a duct connecting the swim bladder to the gastrointestinal
80 tract that allows them to quickly inflate or deflate the swim bladder. And, American
81 eel are particularly adept at quickly evacuating gas from the swim bladder when

82 decompressed (Pflugrath et al., 2019). These traits, reduce the capacity of the swim
83 bladder to expand and overinflate during decompression, consequently reducing the
84 likelihood that American eel will suffer swim bladder rupture and barotrauma
85 (Brown et al., 2012b, Pflugrath et al., 2012).

86 Though the susceptibility of American eel to fluid shear has not been examined, it
87 has been examined in European eel (*A. anguilla*) which were found to be very
88 resilient (Turnpenny et al., 1992). No injuries were observed when fish were exposed
89 to a submerged water jet with a jet velocity of 20.7 m s^{-1} creating an exposure strain
90 rate of 1153 s^{-1} (Turnpenny et al., 1992, Neitzel et al., 2000). European eel are very
91 similar to American eel, with minimal genetic variation between the two species,
92 only differing slightly on genes that contribute to growth and metabolism (Jacobsen
93 et al., 2014a, Jacobsen et al., 2014b). These slight genetic differences result in the
94 American eel maturing quicker than European eel. Because of the quicker
95 maturation, American eel are larvae for a shorter period and leave the Gulf Stream in
96 search of fresh water sooner, which happens to place them near the Atlantic coast of
97 North America (Pujolar et al., 2014). European eel remain in the Gulf Stream longer
98 and exit near Europe (Pujolar et al., 2014). The two species have been observed to
99 hybridize, and the offspring tend to mature at a rate between the two species and end
100 up leaving the Gulf Stream near Iceland (Pujolar et al., 2014). Morphologically the
101 two species are nearly indistinguishable except that European eel have more
102 vertebrae, potential due to the longer maturation process (Avise et al., 1990).

103 Therefore, due to their similarities, we hypothesize that American eel would have
104 similar resilience to fluid shear as European eel.

105 To determine if American eel have a similar resistance to fluid shear as European
106 eel, this study exposed American eel to a submerged water jet and assessed each fish
107 for injuries and mortality. By determining the susceptibility of American eel to fluid
108 shear, we can better understand the stressors that are causing injuries and mortality in
109 eel passing through hydropower turbines, and implement measures, such as design
110 and operational changes, to reduce these effects and help to restore native eel
111 populations.

112 Materials and Methods

113 *Fish acquisitions and handling*

114 Yellow-phase American eel were purchased from South Shore Trading Co. Ltd (Port
115 Elgin, NB, Canada) and shipped to the Pacific Northwest National Laboratory
116 (PNNL) Aquatic Research Laboratory (ARL) in September of 2019. Yellow-phase
117 eel may exhibit multiple life history patterns, including freshwater resident, saline
118 resident, and interhabitat shifter. Because these fish were captured in fresh water,
119 they are likely freshwater residents or interhabitat shifters and may encounter
120 hydropower facilities while conducting both upstream and downstream migrations
121 including the outmigration as they begin to convert to the silver-phase in preparation
122 for spawning. Fish had a median length of 34.0 cm (range = 26.5–45.3 cm) and

123 weight of 53.0 g (range = 24.0–112.0 g). Prior to testing, fish were held for 7 weeks
124 in a circular tank (2 m diameter and 1 m depth) with a water depth of 0.3 m. Ambient
125 filtered Columbia river water was continuously flowed through the tank, with
126 temperatures slowly cooling from 17.6 to 12.4 °C over the holding period. Testing
127 was conducted at 12.6 °C.

128 *Exposure to fluid shear*

129 All test fish were transferred to a shallow raceway to facilitate capture and transport
130 to the test tank. Individual fish were collected from the holding tank and placed in a
131 transparent acrylic tube with a diameter of 3.8 cm and a length of 60 cm, hereafter
132 referred to as the cartridge. The cartridge was placed in the trough and eel were
133 allowed to volitionally swim into the cartridge, after which both ends of the cartridge
134 were temporarily sealed—on one end with a rubber stopper, and the other end with a
135 flexible polyurethane foam plug. Each fish was then visually examined within the
136 cartridge for preexisting injuries or deformities.

137 Fish were then exposed to elevated levels of fluid shear, simulating values expected
138 to be encountered during passage through a hydropower turbine (Neitzel et al.,
139 2004), using a submerged water jet in a rectangular flume (9 m long, 1.2 m wide, and
140 1.2 m deep), hereafter referred to as the shear flume (Neitzel et al., 2004). The jet
141 nozzle (Fig 1), which constricted flow from a 25.4 cm pipe to 6.35 cm over a span of
142 50.8 cm and had a 4.5 cm tip with a diameter of 6.35 cm, was powered by an
143 electronic-speed-controlled centrifugal pump with a capacity of 158 L s⁻¹ (Neitzel et

144 al., 2004). The pump was set to the desired speed and corresponding jet exit velocity.
145 To introduce the fish to the fluid shear created by the jet, the foam plug was removed
146 from the cartridge and the cartridge was placed on the end of an induction tube
147 which was mounted to the top side of the nozzle at a 30° angle from the direction of
148 flow. Eel swam down the induction tube, headfirst and were exposed to fluid shear
149 upon exit. This orientation of induction has been determined to be the worst-case
150 scenario for fluid shear exposure (as opposed to tail-first) and is why this method
151 was selected for testing (Neitzel et al., 2004). Fluid shear exposures were captured
152 on two high-speed video cameras (Photron Fastcam Mini UX50, Photron USA, Inc.,
153 San Diego, CA, USA) to provide observation of exposure and identify the
154 occurrence of any injuries. Cameras recorded at 1000 fps and were positioned to
155 record the nozzle exit through acrylic ports located on the side and bottom of the
156 shear tank.

157 A total of 45 fish were exposed to fluid shear (Fig 2)—20 at a jet velocity of 15 m s⁻¹
158 (strain rate equivalent = 833 s⁻¹), 20 at 18 m s⁻¹ (strain rate equivalent = 1000 s⁻¹) and
159 5 controls at 0 m s⁻¹ (strain rate equivalent = 0 s⁻¹). Strain rate was calculated
160 following the methods described by Neitzel et al. (2004), where the shear flume was
161 calibrated by taking detailed measurements of the flow field and strain rate (*e*) was
162 estimated using the equation:

$$163 \quad e = \frac{\Delta \bar{u}}{\Delta y} \quad \text{Equation 1}$$

164 where \bar{u} is the mean water velocity (cm/s) and y is the distance (cm) perpendicular to
165 the force (Neitzel et al., 2004). Neitzel et al. (2004) originally selected a change in
166 distance (Δy) of 18 mm, which was based on the width of the fish that were
167 examined. This Δy value (18 mm) has been continually used, independent of the
168 width of the fish that were examined, to determine strain rate for similarly conducted
169 fluid shear studies (Neitzel et al., 2004, Colotelio et al., 2018, Pflugrath et al., 2020).
170 In order to make the results from this study comparable to these previous studies, a
171 value of 18 mm was used for Δy to calculate strain rate.

172 Once an eel was exposed, the pump was turned off and the eel was observed by an
173 experienced researcher for any behavioral changes (e.g. erratic swimming),
174 incapacities (e.g. loss of equilibrium), or deformities (e.g. spinal fracture) prior to
175 being dip netted. Once recaptured, eel were placed back into the cartridge, and
176 examined for external injuries including bruising and appendage injury. Eel were
177 then returned to a separate holding trough, where partitions were used to separate
178 fish from each treatment (jet velocity 15, 18, and 0 m s⁻¹). Fish were held for 48 h
179 after exposure to observe any delayed mortality and after the 48 h period eel were
180 euthanized and externally examined a second time for the presence of any injuries.

181 Results

182 When exposed to fluid shear at strain rates of 833 and 1000 s⁻¹, no injuries or
183 behavioral changes were observed in American eel immediately after exposure to

184 fluid shear nor after 48 hours post exposure. When fish were initially placed into the
185 cartridge prior to exposure, a majority of eel immediately began to produce and sluff
186 off mucus. While eel were producing excess mucus, slightly darkened, vertically-
187 oblong spots running along the flank of the fish became evident. These marks
188 dissipated during the post exposure holding period.

189 **Discussion**

190 American eel were found to have a similar resilience to fluid shear exposure as
191 European eel. Certain morphological traits of freshwater eel are likely to lead to this
192 resilience, including small embedded scales; flexibility due to many small vertebrae;
193 conjoined anal, dorsal and caudal fins; small pectoral fins, and non-protruding eyes
194 and operculum. These traits enable eel to avoid common injuries observed in other
195 species, including descaling, vertebral fractures, and damage to fins, eyes, operculum
196 and gills (Turnpenny et al., 1992, Neitzel et al., 2004, Deng et al., 2005, Colotel et
197 al., 2018, Pflugrath et al., 2020). A similar resilience to fluid shear was also observed
198 in Pacific lamprey (*Entosphenus tridentatus*), which share many of these
199 morphological traits (Moursund et al., 2003). Other species which do not possess
200 many of these traits have been examined and were found to be much more susceptible
201 to flush shear, including American shad and Chinook salmon. Injury rates were
202 greater than 99% for American shad exposed to shear values that exceeded 500 s^{-1}
203 and 100% mortality was observed at a strain rate of 1000 s^{-1} (Pflugrath et al., 2020).
204 Neitzel et al. (2004) similarly examined several life stages of Chinook salmon and

205 found that the strain rate that affects 10% of the population ranged from 495 to 607 s⁻¹
206 ¹.

207 In addition to finding no injuries when exposed to fluid shear up to a strain rate of
208 1153 s⁻¹, European eel were also observed to have mucus sluff off during the
209 exposures (Turnpenny et al., 1992). This production of excess mucus appears to be a
210 stress reaction to handling and may not necessarily occur due to exposure to fluid
211 shear. However, exposure to fluid shear did appear to remove excess mucus from the
212 eel and may cause the eel to be more susceptible to diseases, as the mucus layer is an
213 eel's first defense against pathogens (Dalmo et al., 1997, Nielsen and Esteve-
214 Gassent, 2006).

215 The results from this study and previous studies conducted on American eel
216 exposure to rapid decompression and strike indicate that the likely sources of injury
217 and mortality for American eel, and likely other freshwater eels, passing downstream
218 through hydropower turbines is blade strike and/or pinching and grinding (Pflugrath
219 et al., 2019, Saylor et al., 2019). Though American eel are more resilient to strike
220 than other fish species (Saylor et al., 2019), their elongate morphology increases the
221 likelihood of blade strike occurrences during passage through turbines (Ferguson et
222 al., 2008, Deng et al., 2011). Therefore, when designing turbines to promote safe fish
223 passage for eels, designs to reduce the occurrence and severity of blade strike should
224 be considered, such as lower rotational velocity, fewer blades, and thicker blades.

225 Additionally, different edge geometry designs may reduce the occurrence and
226 severity of blade strike.

227 For this study, fish were exposed to a maximum strain rate of 1000 s^{-1} which is
228 greater than most fish will likely experience during passage through turbines. For
229 example, sensor fish deployments through a Kaplan turbine at Wanapum Dam
230 recorded severe shear events in only 1% of deployments (Deng et al., 2014). A
231 severe shear event was designated for any Sensor fish recording acceleration values
232 in excess of 932 m s^{-2} . Previous studies have correlated Sensor Fish acceleration to
233 strain rates achieved at various jet velocities within the shear flume (Pflugrath et al.,
234 2020), and an acceleration event of 932 m s^{-2} would likely result in a strain rate
235 exposure of approximately 1000 s^{-1} . However, there is potential that fish may be
236 exposed to strain rates in excess of 1000 s^{-1} , and some turbines, such as Francis type,
237 may be more likely to produce excessive fluid shear (Fu et al., 2016). In these cases,
238 injuries and mortality may be observed due to fluid shear and it may be warranted to
239 study greater strain rates than those examined in this study if fluid shear is expected
240 to commonly exceed 1000 s^{-1} through a relevant turbine. The shear flume used in this
241 study has a maximum jet exit velocity capacity of 18 m s^{-1} through the 6.35 cm
242 diameter nozzle, which corresponded to a strain rate of 1000 s^{-1} , therefore
243 modifications would be necessary to exceed this capacity. Additionally, past studies
244 have indicated that flow rates or fish orientation as they enter the turbines may be a
245 factor in injury and mortality rates (Turnpenny et al., 1992, Haro et al., 2000, Amaral

246 et al., 2011). Therefore, if fish are prone to entering an area of fluid shear in an
247 orientation that differs from what was achieved in this study, injury rates may differ
248 and further examination is needed.

249 *Conclusion*

250 Similar to European eel, yellow-phase American eel have a high resilience to fluid
251 shear (Turnpenny et al., 1992). Additionally, American eel are resilient to rapid
252 decompression (Pflugrath et al., 2019). Therefore, injuries and mortality of American
253 eel passing through hydropower facilities are likely caused by blade strike or
254 pinching and grinding. Measures to improve turbine passage survival for American
255 eel should focus on design and operational aspects that are likely to reduce the
256 occurrence and magnitude of these mechanical stressors.

257 **Acknowledgments**

258 This study was funded by the United States Department of Energy, Energy
259 Efficiency and Renewable Energy, Water Power Technologies Office (WPTO). The
260 authors' views expressed in this publication do not necessarily reflect the views of
261 WPTO or the United States government. This research was conducted in compliance
262 with a protocol approved by Pacific Northwest National Laboratory's Institutional
263 Animal Care and Use Committee. The Pacific Northwest National Laboratory is
264 operated for U.S. Department of Energy by Battelle Memorial institute under
265 contract DE-AC05-76RLO 1830.

References

AMARAL, S. V., HECKER, G. E. & DIXON, D. A. Designing leading edges of turbine blades to increase fish survival from blade strike. EPRI-DOE, Conference on Environmentally-Enhanced Hydropower Turbines, EPRI Report, 2011.

AVISE, J. C., NELSON, W. S., ARNOLD, J., KOEHN, R. K., WILLIAMS, G. C. & THORSTEINSSON, V. 1990. The evolutionary genetic status of Icelandic eels. *Evolution*, 44, 1254-1262.

BEVELHIMER, M. S., PRACHEIL, B. M., FORTNER, A. M., SAYLOR, R. & DECK, K. L. 2019. Mortality and Injury Assessment for Three Species of Fish Exposed to Simulated Turbine Blade Strike. *Canadian Journal of Fisheries and Aquatic Sciences*.

BROWN, R. S., CARLSON, T. J., GINGERICH, A. J., STEPHENSON, J. R., PFLUGRATH, B. D., WELCH, A. E., LANGESLAY, M. J., AHMANN, M. L., JOHNSON, R. L., SKALSKI, J. R., SEABURG, A. G. & TOWNSEND, R. L. 2012a. Quantifying mortal injury of juvenile Chinook salmon exposed to simulated hydro-turbine passage. *Transactions of the American Fisheries Society*, 141, 147-157.

BROWN, R. S., PFLUGRATH, B. D., COLOTELO, A. H., BRAUNER, C. J., CARLSON, T. J., DENG, Z. D. & SEABURG, A. G. 2012b. Pathways of barotrauma in juvenile salmonids exposed to simulated hydrotrubine passage: Boyle's law vs Henry's law. *Fisheries Research*, 121-122, 43-50.

ČADA, G. F. 1997. Shaken, Not Stirred: The Recipe for a Fish-Friendly Turbine. *Waterpower*. American Society Civil Engineers.

COLOTELO, A., MUELLER, R., HARNISH, R., MARTINEZ, J., PHOMMAVONG, T., PHOMMACHANH, K., THORNCRAFT, G., BAUMGARTNER, L., HUBBARD, J. & RHODE, B. 2018. Injury and mortality of two Mekong River species exposed to turbulent shear forces. *Marine and Freshwater Research*, 69, 1945-1953.

DALMO, R., INGEBRIGTSEN, K. & BØGWALD, J. 1997. Non - specific defence mechanisms in fish, with particular reference to the reticuloendothelial system (RES). *Journal of fish diseases*, 20, 241-273.

DEKKER, W. 2003. Worldwide decline of eel resources necessitates immediate action: Quabec Declaration of Concern. *Fisheries*, 28, 28-30.

DENG, Z., CARLSON, T. J., DAUBLE, D. D. & PLOSKEY, G. R. 2011. Fish Passage Assessment of an Advanced Hydropower Turbine and Conventional Turbine Using Blade-Strike Modeling. *Energies*, 4, 57-67.

DENG, Z., LU, J., MYJAK, M. J., MARTINEZ, J. J., TIAN, C., MORRIS, S. J., CARLSON, T. J., ZHOU, D. & HOU, H. 2014. Design and implementation of a new autonomous sensor fish to support advanced hydropower development. *Review of Scientific Instruments*, 85, 115001.

DENG, Z. D., GUENSCH, G. R., MCKINSTRY, C. A., MUELLER, R. P., DAUBLE, D. D. & RICHMOND, M. C. 2005. Evaluation of fish-injury mechanisms during exposure to turbulent shear flow. *Canadian Journal of Fisheries and Aquatic Sciences*, 62, 1513-1522.

EYLER, S. M., WELSH, S. A., SMITH, D. R. & ROCKEY, M. M. 2016. Downstream passage and impact of turbine shutdowns on survival of silver American eels at five

hydroelectric dams on the Shenandoah River. *Transactions of the American Fisheries Society*, 145, 964-976.

FERGUSON, J. W., PLOSKEY, G. R., LEONARDSSON, K., ZABEL, R. W. & LUNDQVIST, H. 2008. Combining turbine blade-strike and life cycle models to assess mitigation strategies for fish passing dams. *Canadian Journal of Fisheries and Aquatic Sciences*, 65, 1568-1585.

FU, T., DENG, Z. D., DUNCAN, J. P., ZHOU, D., CARLSON, T. J., JOHNSON, G. E. & HOU, H. 2016. Assessing hydraulic conditions through Francis turbines using an autonomous sensor device. *Renewable Energy*, 99, 1244-1252.

HARO, A., CASTRO-SANTOS, T. & BOUBÉE, J. 2000. Behavior and passage of silver-phase American eels, *Anguilla rostrata* (LeSueur), at a small hydroelectric facility. *Dana*, 12, 33-42.

HEISEY, P. G., MATHUR, D., PHIPPS, J. L., AVALOS, J. C., HOFFMAN, C. E., ADAMS, S. W. & DE - OLIVEIRA, E. 2019. Passage survival of European and American eels at Francis and propeller turbines. *Journal of fish biology*, 95, 1172-1183.

JACOBSEN, M., PUJOLAR, J., GILBERT, M., MORENO-MAYAR, J., BERNATCHEZ, L., ALS, T. D., LOBON-CERVIA, J. & HANSEN, M. M. 2014a. Speciation and demographic history of Atlantic eels (*Anguilla anguilla* and *A. rostrata*) revealed by mitogenome sequencing. *Heredity*, 113, 432-442.

JACOBSEN, M. W., PUJOLAR, J. M., BERNATCHEZ, L., MUNCH, K., JIAN, J., NIU, Y. & HANSEN, M. M. 2014b. Genomic footprints of speciation in Atlantic eels (*Anguilla anguilla* and *A. rostrata*). *Molecular ecology*, 23, 4785-4798.

JACOBY, D., CASSELMAN, J., DELUCIA, M. & GOLLOCK, M. 2017. *Anguilla rostrata* (amended version of 2014 assessment). [Online]. [Accessed March 17 2020].

MACGREGOR, R., MATHERS, A., THOMPSON, P., CASSELMAN, J. M., DETTMERS, J. M., LAPAN, S., PRATT, T. C. & ALLEN, B. 2008. Declines of American eel in North America: complexities associated with bi-national management. *International governance of fisheries ecosystems: learning from the past, finding solutions for the future. American Fisheries Society, Bethesda, Maryland*, 357-381.

MOURSUND, R. A., DAUBLE, D. D. & LANGESLAY, M. 2003. Turbine intake diversion screens: investigating effects on Pacific lamprey. Pacific Northwest National Lab.(PNNL), Richland, WA (United States).

NEITZEL, D. A., DAUBLE, D. D., ČADA, G. F., RICHMOND, M. C., GUENSCH, G. R., MUELLER, R. P., ABERNETHY, C. S. & AMIDAN, B. G. 2004. Survival Estimates for Juvenile Fish Subjected to a Laboratory-Generated Shear Environment. *Transactions of the American Fisheries Society*, 133, 447-454.

NEITZEL, D. A., RICHMOND, M. C., DAUBLE, D. D., MUELLER, R. P., MOURSUND, R. A., ABERNETHY, C. S. & GUENSCH, G. R. 2000. Laboratory studies on the effects of shear on fish. Pacific Northwest National Lab.(PNNL), Richland, WA (United States).

NIELSEN, M. E. & ESTEVE-GASSENT, M. 2006. The eel immune system: present knowledge and the need for research. *Journal of Fish Diseases*, 29, 65-78.

PFLUGRATH, B. D., BOYS, C. A. & CATHERS, B. 2018. Predicting hydraulic structure-induced barotrauma in Australian fish species. *Marine and Freshwater Research*, 69(12), 1954-1961.

PFLUGRATH, B. D., BROWN, R. S. & CARLSON, T. J. 2012. Maximum neutral buoyancy depth of juvenile Chinook salmon: implications for survival during hydroturbine passage. *Transactions of the American Fisheries Society*, 141, 520-525.

PFLUGRATH, B. D., HARNISH, R., RHODE, B., BEIRAO, B., ENGBRECHT, K., STEPHENSON, J. R. & COLOTELO, A. H. 2019. American eel state of buoyancy and barotrauma susceptibility associated with hydroturbine passage. *Knowledge & Management of Aquatic Ecosystems*, 20.

PFLUGRATH, B. D., HARNISH, R. A., RHODE, B., ENGBRECHT, K., BEIRÃO, B., MUELLER, R. P., MCCANN, E. L., STEPHENSON, J. R. & COLOTELO, A. H. 2020. The Susceptibility of Juvenile American Shad to Rapid Decompression and Fluid Shear Exposure Associated with Simulated Hydroturbine Passage. *Water*, 12, 586.

PUJOLAR, J. M., JACOBSEN, M., ALS, T. D., FRYDENBERG, J., MAGNUSEN, E., JÓNSSON, B., JIANG, X., CHENG, L., BEKKEVOLD, D. & MAES, G. 2014. Assessing patterns of hybridization between North Atlantic eels using diagnostic single-nucleotide polymorphisms. *Heredity*, 112, 627-637.

SAYLOR, R., FORTNER, A. & BEVELHIMER, M. 2019. Quantifying mortality and injury susceptibility for two morphologically disparate fishes exposed to simulated turbine blade strike. *Hydrobiologia*, 842, 55-75.

TREMBLAY, V. 2012. *COSEWIC assessment and status report on the American eel *Anguilla rostrata* in Canada*, COSEWIC.

TURNPENNY, A. W., DAVIS, M., FLEMING, J. & DAVIES, J. 1992. Experimental Studies Relating to the Passage of Fish and Shrimps Through Tidal Power Turbines.

Figure Captions

Fig 1. Diagram of the Jet nozzle used to create an elevated fluid shear environment simulating fluid shear fish may encounter during turbine passage.

Fig 2. Frame captures from highspeed video (1000 fps) of American eel exposed to a jet of water simulating exposure to fluid shear during turbine passage.

Figures

Figure 1

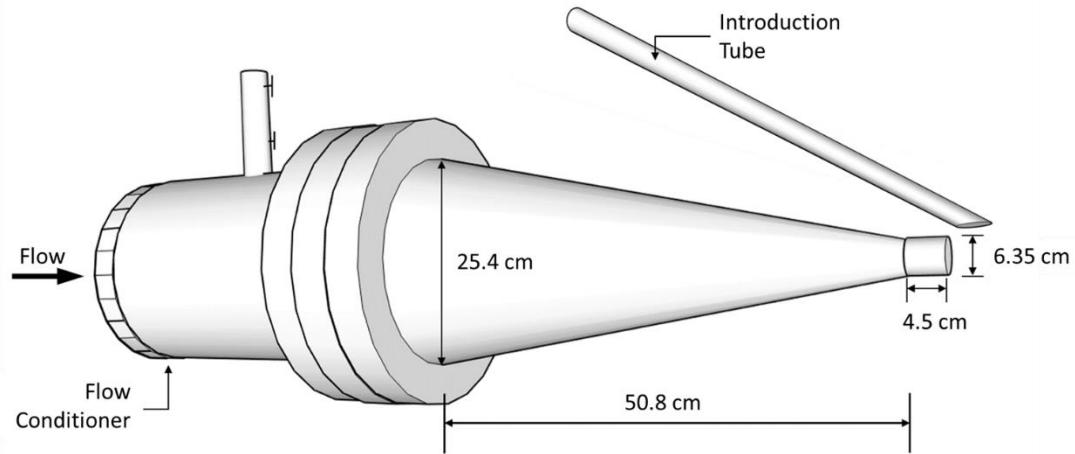
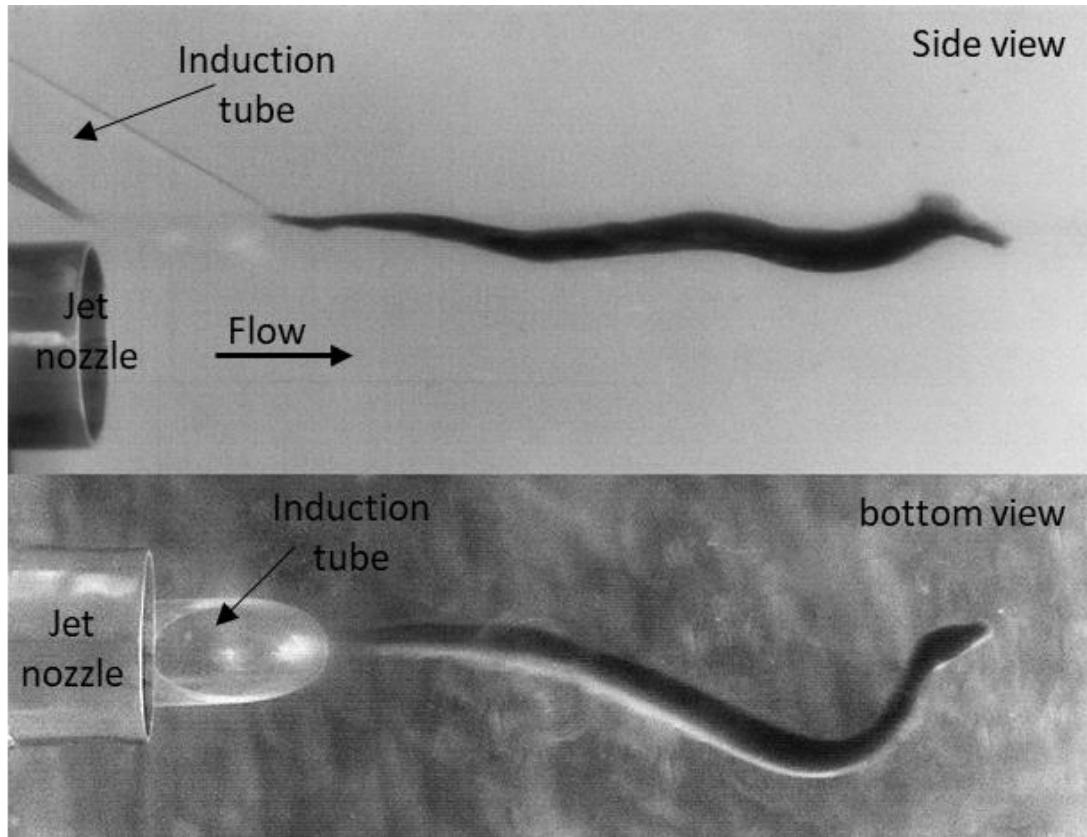



Figure 2

