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THE OHIO STATE UNIVERSITY Effective Preconditioner for IE

Mission Statement:

Find an effective preconditioner for integral equation

Step 1: Schur — PCA block

inverse \

Step 2: Local and global
preconditioner

Problem 1:
No advantage of MLFMM




THE OHIO STATE UNIVERSITY Step 1. Schur — PCA Block Inverse

Mission Statement:

Find an effective preconditioner for integral equation

Step 1: Schur — PCA block

inverse
Ingredient 1: Schur Ingredient 2: Principal Ingredient 3:
Complement Component Analysis Transpose of MLFMM



THE OHIO STATE UNIVERSITY Step 1. Schur — PCA Block Inverse

> Ingredient 1: Schur-Complement via octree

+ Matrix Decomposition

where

« Ais system matrix of CFIE

* Let'sassumeA,, C,,, A, and C,, are 2 x 2 partition of entire A

PAx=Pb ——> Ax=b

K:_Afl 0 Al C12
0 Agl C21 Az

| I AI_ICIZ Schur Decomposition I Al_lclz I_AI_ICIZA;CM 0 I 0
AEICZI I 0 | 0 I A;C21 I




THE OHIO STATE UNIVERSITY Step 1. Schur — PCA Block Inverse

> Ingredient 1: Schur-Complement via octree

A.E._l CEA_I
Let Al=|"71 Ik
cl-t Al

_ I 0] [(Ln — AT C A CLi)™t 0] [Im A7'Cy] [A7T 0
Al 1 _ m m ] k4L ki 4 N} ]
Then (A:) a [A;ZICLJ Iﬂ‘:| [ 0 Iﬂ‘ 0 In 0 A;l

Note: A;l and Agl are recursive call until reach to the leaf level

kth level of oct-tree
I'h level of binary-tree

Introduce Auxiliary Level  =======-

I—- - .
k — 1th level of oct-tree I :
_ 3t level of binary-tree 7 | ]

o % . 3 G o " y t .« % .« % . % 5
.O = .. % .0 s .0 4 o % .0 % .O = .0 .
< . & = . . . - ¢ . . L . . LA



L 002000 g | s g Schur PC with Octree

Pictorial explanation for recursive factorization: The finest level

Octree Structure Preconditioner

Level 0:
(finest) A, A, A, A, A A, A, A,




L 002000 g | s g Schur PC with Octree

Pictorial explanation for recursive factorization: Intermediate level

Octree Structure Preconditioner

Level 1:




L 002000 g | s g Schur PC with Octree

Pictorial explanation for recursive factorization: Intermediate level

Octree Structure Preconditioner

Al Ci,

Level 2:




L 002000 g | s g Schur PC with Octree

Pictorial explanation for recursive factorization: The Coarsest level

Octree Structure Preconditioner

Level 3: A
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Step 1. Schur — PCA Block Inverse

> Ingredient 2: Compress with PCA

: Al-1 szi
— |73 L (o3 H ith
Let A;= C}:l Ai—l /,/ Pg: Er;sairixei':ev:tlity
P A’::________I
_ I 0] 1[(Ly — AT C AT CL)™ " 0] [Im  A7'Cyi] [A7T 0
Alyv—1 __ m : m ] jEAAL kj ! 4 I ]
Then (4;)™" = [A;lckj I} [ """""  plaialeiiainie I,/ 0 I, 0 Al

Note: A;l and Agl are recursive call until reach to the leaf level
kth Ievel Of OCt-tree ------------------ =
I'h level of binary-tree

Introduce Auxiliary Level

I—- )

k — 1th level of oct-tree I :

_ 3t level of binary-tree 7 | ]
S R A < %10
o . . :’ n :’ =0 ) f G L o ¢

.
0 -
3 .



THE OHIO STATE UNIVERSITY Step 1. Schur — PCA Block Inverse

> Ingredient 2: Compress with PCA

. Woodbury
e Matrix Identity

7
7

(Im—A; ' Cii Ay Crj) ™t~ (I-USVH) ! =~ T1U(E 1 -VEU)IWWH = [+USVH

\ 4
N

\

“x_ Compress with S=@1-vip?
PCA (Low-rank)

[ . m X q matrix with left singular vectors
Y . g X q diagonal matrix with singular values

V' i g X n matrix with right singular vectors
S . q X g matrix - Compute explicitly due to g < m,n

How to determine q7 — f'_Tq/f'_Tl < €  where € is predetermined tolerance

1



THE OHIO STATE UNIVERSITY Step 1. Schur — PCA Block Inverse

> Ingredient 3: Transpose of MLFMM

During the PCA process, one need to compute a matrix-vector-multiplication
and can accelerate with MLFMM

AT Cr AL Cy = Usv?

~
~
~
~

Need C,x;, Cyx,, Cjx, and Cjx, with MLFMM MVM

K7
(No explicitly form a coupling matrix)

How to compute?
Change

1. direction of displacement vectors and propagation vectors
2. Order of radiation pattern and receiving pattern

12



Step 1. Schur — PCA Block Inverse

THE OHIO STATE UNIVERSITY

> Ingredient 3: Transpose of MLFMM

Example of EFIE and MFIE term with single level FMM,
m™ Box
ntBox|
" . \
~ i | i" basis
7" basis
C@'?FIE — /V]CE‘(I%7 ﬁm)lll’i’{/‘ g jl’/;‘;f)\)VgE(l%7f;lj)dk2

Regular FMM

vE and VM are functions to compute radiation pattern, translation, and 13

where V. T,.,, V7,
receiving pattern for EFIE and MFIE
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THE OHIO STATE UNIVERSITY

> Ingredient 3: Transpose of MLFMM

Example of EFIE and MFIE term with single level FMM,
m™ Box
nBox|
" . \
~ i | i" basis
7" basis
CETE = [ VP, T Lo (P V.2 s o 2

Regular FMM

vE and VM are functions to compute radiation pattern, translation, and 14

where V. T,.,, V7,
receiving pattern for EFIE and MFIE
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THE OHIO STATE UNIVERSITY

> Ingredient 3: Transpose of MLFMM

Example of EFIE and MFIE term with single level FMM,
m™ Box
F -
nfh Box . mn Gm
I
N 2 | i" basis
7" basis
( a
CETE = [ VP, T Lo (P V.2 s o 2
Regular FMM <
\ C@]yFIE — /VfM(zf,ﬁm)r/‘,,m 1‘(‘/’,_ P )‘/SE(]%,Fnj)dlz:Z
((CEFIENT = /Vf(_x}, ~75) Trnn (=& - =T ) VE (= kb, —Tim ) dk?
Transpose of FMM <

vE and VM are functions to compute radiation pattern, translation, and 15

where V. T,.,, V7,
receiving pattern for EFIE and MFIE
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THE OHIO STATE UNIVERSITY

> Ingredient 3: Transpose of MLFMM

Example of EFIE and MFIE term with single level FMM,
m'™ Box
nth BOX - ,/N/Z 7;'}/”
,’ 77 k\ .th .
N —~" | 1" basis
j™ basis
( A
CEPIZ — [ VE(h, Fom) Tonn (b - 7o)V (hy o2
Regular FMM <
\ C@]yFIE — /VfM(]%, ﬁm),[,le (\/V Lo )‘/SE(]% Fn])dl%2
r (CSFIE)T = /VSE(_];’ _FHJ)//////( r 'y ’VfE(_k7 ﬁTrz)dl%2
Transpose of FMM <
L (CZJ;/IFIE)T — /VSE(_IA{y _Fn])[mn(_/‘ ’ _’_/1/1 )VfM(_IAga _/F;m)dl/;:Q

vE and VM are functions to compute radiation pattern, translation, and 16

where V. T,.,, V7,
receiving pattern for EFIE and MFIE



THE OHIO STATE UNIVERSITY Step 1. Schur — PCA Block Inverse

> Ingredient 3: Transpose of MLFMM

« Radiation and Receiving pattern of EFIE

VE(k, 7)) = / (I —kzk) a(r)e Tl — VM(—k, —7;)

...........

VfE(lAc,Fz-m) = /(I:—- /%k) a;(r)e” Jkk ”mdS Vf (— k. —Tm)

...........

gummse 4 assssssasas

17



THE OHIO STATE UNIVERSITY Step 1. Schur — PCA Block Inverse

» Ingredient 3: Transpose of MLFMM
> Test Target: Well Separated Two Cubes A
L 0.24
B 6/ |
___________________ §
--N---'"“*-:» — "
@ 1;/ 0.24
* Assembled Explicitly
= Relative Error: 7 7 7 7 FMM
¥ 11 12 11 12
ZCFIE :{ } ZFMM :{ FMM }
5 = ||ZCFIEX_ZMLFMM)_CH _9 488><1()_2 ZZI Zzz Z?_l Zzz
Zx — — ~e
HZCF,ExH .
Z,,,Z,, : Near Coupling (Zero out)
T — T —
Sy = [ o™ =2 im0 Zip» 4y - Far Coupling
’ A
2" cee] Z,"™™ 7, ™1 MLFMM Coupling 18




THE OHIO STATE UNIVERSITY Step 1. Schur — PCA Block Inverse

» Matrix Vector Multiplication

Let S=(D' —RL)_I

e, i e

“ @ Recursive MVM call for A;'x,

I |
— ) — {
I e S 1
:SDA:;I% TI‘AIICU:Azlxz_:]: | @ Recursive MVM call for A'x,
R oo Ry i 1
- = ® & *, ® UpdateS| A['x, —A['Cp,Aj'x, |with @ and @
_____________ sy l ) ) ) ) )
~-Aj'C,) S|:A x,—A;'CLA, le:l 'A_ ch_ | @ Update—A’'C, S |:A1 X A 1C12A21x2:|+A21x2
— S ‘ with @ and 3

19
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Step 1. Schur — PCA Block Inverse

Example

2]

|~
s

2
VAVATATAYAY
%

AYs

w
0

ol
CRE
‘b“g
%"%Ai p
PAV;

‘) ‘V‘V‘VI‘V
KL
Ay,
R
AV,
SIS

D

K DA
AN
v

S ATA
RO

4)
XSRS

VAVAVAVA 5%
AW WA G
T vata

Inner wall modes

: PEC Slotted Cylinder

TMzO16:
TMzH11:
TMzG12:

TMzB13:
TMzD14:

TEz111:
TEZ112:
TEZz113:
TEz114:

1.129391 [GHz]
1.155849 [GHz]
1.231818 [GHz]
1.34896 [GHz]

1.497643 [GHz]

Outer wall modes

0.8988588 [GHz]
©.9946542 [GHz]
1.136509 [GHz]
1.30954 [GHz]

TMzO10:
TMzB11:
TMzB12:
TMzB13:
TMzO14:

TEz111:
TEz112:
TEz113:
TEz114:

=  Metal thickness 0.00635m

= Aperture slot 0.000508m

1.062956
1.091026
1.171208
1.293849
1.448201

= Cylinder height h=0.6096m, inner
radius=0.1016m

» Analyze SE around first TM resonance at
1.1294GHz

[GHz ]
[GHz ]
[GHz ]
[GHz ]
[GHz ]

0.8500555 [GHz]
0.9507808 [GHz]
1.098317 [GHz]
1.276536 [GHz]




THE OHIO STATE UNIVERSITY Step 1. Schur — PCA Block Inverse

» Example: PEC Slotted Cylinder (Different PCA tolerance)

0 2 4 6 8 10 12 14 16 18 20

Number of lteration =  The number of oct-tree level: 4

T T T T T T T T T T T T T T T T T T e T e e e e >ty Tolerance: 1e-2
| : : : | L I Effective Rank: 141 |
: I : B 1165 Iterations
| |

| 1+
1 0 {1 2y
| 1 :& |
| 2 |
| i

2| 11 i
| § 10 11 : |
| I 1041

=

1 o <— - "
I &Lﬂ 3 : 1 I
1o 10T Tolerance: 1e-3 {1 ! woshi . | | . . ]
| E [ Effective Rank: 526 1 : o1 200 400 600 . 800 1000 1200
1 I 16 Iterations 11 i Number of |teration
&2 10 ' PEC
I 107 ER' -
1 : 1
: : = Freq: 1132.43 MHz
I -5 b -
I N Tolerance: 1e-4 I = #of Basis: 28,944 (~ 1/15 Mesh)
| Effective Rank: 788 | T
! Iterations | ] ]
| 108 £ , , ! , | | , , , 11 = The finest block size: 0.3
|
. :
! |
I |

= EFIE + IEDG (with MLFMM)

= lterative Solver (GCR, ¢, =107) 21



THE OHIO STATE UNIVERSITY Step 2. Two Level Preconditioner

Mission Statement:

Find an effective preconditioner for integral equation

Step 2: Two Level
Preconditioner

| |

Ingredient 1: Local
Preconditioner
(Schur-PCA Block Inverse)

Ingredient 2: Global
Preconditioner

22



THE OHIO STATE UNIVERSITY Step 2. Two Level Preconditioner

Propose two level preconditioner

For given matrix equation, Ax =b

We define two preconditioner Q, and P, and solve for x the following equation:

QrPAx = Qi Pb
where
P,;: Local Preconditioner

Qx: Global Preconditioner

23



THE OHIO STATE UNIVERSITY Step 2. Two Level Preconditioner

» Ingredient 1: Local Preconditioner

« Schur — PCA Block Inverse at the [ level of the binary-tree

For example:
- —1 e
Al 0 R 0 31 finest level of the oct-
—1 tree ™o
0 AQ ... 0 (I = 6 of the binary tree)
P s A
[ «— //
- - // - .
ey 4
p— 4
0 o ---1A ¢ Bl u u ud
- - 3
£ 1s the number of boxes at the level | = 6.
2d finest level
of the oct-tree [ | ad
H H || H

The Finest Level of the oct-tree
(leaf level, Il = 0 of the binary tree)



THE OHIO STATE UNIVERSITY Step 2. Two Level Preconditioner

» Ingredient 2: Global Preconditioner

« Compress off-diagonal terms with PCA

Qu = (PA)™ = (I + &)™ = (I + LkplxkRlxm)™ — | _ (D=1 4 RL)~R

\ Low-rank

Approximation

* P, is the local preconditioner
« ¢§ is off-diagonal terms of matrix A
« (D71 + RL)™T will compute explicitly (k «< m)

* k fixed to 50 to minimize computation time

25
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Step 2. Two Level Preconditioner
Applications of Step 2
(two level preconditioner)

Example 1: IBC
Slotted Cylinder

Example 2: PEC F-16
(at resonance freq)

Example 3: PEC
Vivaldi Antenna

S A P AN
O] AT
A VATATe

(FAVAYA
AVAY

DAL
7

\/

N

¥
2

DK
B 43"

K

VAV
Ly

A
4 VAVAVAY
QS i
\‘&AAA ﬂtﬁ

26
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Step 2. Two Level Preconditioner

Example

]

P
o

2
VAVATATAYAY
%

AN

w
0

O
LR
‘b“g
%"%Ai p
PAV;

ORROR
K
v,
R
(N
SIS

D

K DA
AN
ke
Ay,
RO

%
SRS

VAVAVAVA 5%
AW WA G
T vata

Inner wall modes

. IBC Slotted Cylinder

TMzO16:
TMzH11:
TMzG12:

TMzB13:
TMzD14:

TEz111:
TEZ112:
TEZz113:
TEz114:

1.129391 [GHz]
1.155849 [GHz]
1.231818 [GHz]
1.34896 [GHz]

1.497643 [GHz]

Outer wall modes

0.8988588 [GHz]
©.9946542 [GHz]
1.136509 [GHz]
1.30954 [GHz]

TMzO10:
TMzB11:
TMzB12:
TMzB13:
TMzO14:

TEz111:
TEz112:
TEz113:
TEz114:

=  Metal thickness 0.00635m

= Aperture slot 0.000508m

1.062956
1.091026
1.171208
1.293849
1.448201

= Cylinder height h=0.6096m, inner
radius=0.1016m

» Analyze SE around first TM resonance at
1.1294GHz

[GHz ]
[GHz ]
[GHz ]
[GHz ]
[GHz]

0.8500555 [GHz]
0.9507808 [GHz]
1.098317 [GHz]
1.276536 [GHz]




THE OHIO STATE UNIVERSITY Step 2. Two Level Preconditioner

= Convergence Behavior compared to PCA tolerance

T T T ? - IBC
- Freq: 1132.4207 MHz

» #of Basis: 28,944 (~ A/15 Mesh)

= i , o
2 . Block Diagonal The finest block size: 0.51
@ 10° ,
& ] =  The number of oct-tree level: 4
Q 1
= all
% 10 | = EFIE + IEDG (with MLFMM)
e E
105 = lterative Solver (GCR, &, =107")
- | Approximate Direct Inverse ]
| 72 Iterations 1 »  Approximate Direct Inverse
10°F Pg: Schur-PCA (e = 107%)
t ] Qx: (P;A)~1 with PCA (k = 50)
_,“}A? I I I I
0 500 1000 1500 2000 2500

Mumber of Iteration

28



() 7oz 0o StaTe UntvERSITY Step 2. Two Level Preconditioner

» Memory Comparison

= IBC
* Freq: 1132.4207 MHz

=  The finest block size: 0.54

W
RS
AR
i

)
v
Vi
24
7
OO
)

Block-Diag. Approx. Direct Inverse

"i"'AY
aaaravy
Ve VAV,
VeaYAYAY
A% AYAVAY,

\/
%y
7
5
N
Ny,
£
N

Far Terms (MLFMM) 0.35 0.35

A
%
<]
N

AV

AV
K]
kK]
o
SIS

Y

VA
]
‘V

7a
NTATAY:

\/
X
)

KL

AV

AV
X@ﬁv VA

<N
O

Near/Self Terms 1.77 1.77
P, 257

KA
N
N/

0y
5@

VAVAS
i

A0
TR
DA
D
ALY
VoY

RN
SRR,
A}
Ay

e ‘h—g‘;«)ﬂ
XX

Preconditioner 0.33
Qx 0.04

AV WAWAVAS

Total Memory 2.45 4.73

Table 1. Memory Comparison [GB]
29
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Step 2. Two Level Preconditioner
» Wall Time Comparison

= IBC

= Freq: 1132.4207 MHz
GO0 = The finest block size: 0.51

:;47' Block-Diag. Approx. Direct Inverse
L
REEEe Filling Far Terms (MLFMM) 1.2 1.2
%%%’g{ Filling Near/Self Terms 642.3 642.3
oy N P, 156.8
L Preconditioner 0.5
4ln Qk 52
RS Solve System Matrix 725.6 11.3
Total Wall Time 1369.6 816.8

Table 2. Wall Time Comparison [sec]

30



THE OHIO STATE UNIVERSITY Step 2. Two Level Preconditioner

LU
= Shielding Effectiveness @ 1131.988MHz
2D T T T T T T T T T
- ey,
e yrhur .
- 1 |
10 Q: 27,474 —0.003750
Max : 14.6dB

o @1131.988MHz | -»o.oozsoo
— 0001250

-or - .-0‘0000

E
= Q: 8,088 Vax 0007156
@ Max : 10.0dB in: 2.967e Outer Surface Inner Surface
EN 20 @1132.420MHz |
Schur 0p3 FMM
30 @1132.420MHz
-40
1 | | 1 | 1 | | i Var. Jreal_ma
-50 :005000
1120 1122 1124 1126 1128 1130 1132 1134 1136 1138 1140 .
Frequency [MHz] —0.003750
.»0,002500
—0.001250

0.0000
ng: 0.01557
Min: 2.007e-05 Outer Surface Inner Surface




THE OHIO STATE UNIVERSITY Step 2. Two Level Preconditioner

» Application: PEC F-16 ,
] = 5GHz Head on Incident

= # of Basis: 7,700,888 (1/5 Mesh)
= The finest FMM block size: 0.5 1
=  The number of MLFMM level: 10

= CFIE + IEDG

14.5m (145\)

= lterative Solver (GCR, €, = 1073)

= 2 X Intel Xeon 6148, 48 threads

=1
@ [T

9.4m (94A) \ '

=

/ 4.5m (45\)
D = = 32




THE OHIO STATE UNIVERSITY Step 2. Two Level Preconditioner

10°

» Application: PEC F-16

s Block Diag.
Apprx. Direct Inv.

101 |

Plateau

\

0 20 40 G0 80 100 120 140 160 180 200

= Freq: 5GHz

= # of Basis: 7,700,888 (1/5 Mesh )

var. Jrecl_mcglmsooo . ’ . .
S The finest FMM block size: 0.51

—0.003750

0,002500 = Number of Recycle: 40

—0.001250

P

r——— = Approximate Direct Inverse
bR i Pg: Schur-PCA (e = 10™%) 3
Qu: (P,A)~! with PCA (k = 50) <9




THE OHIO STATE UNIVERSITY Step 2. Two Level Preconditioner

» Application: PEC F-16

Block-Diag. Approx. Direct Inverse
Far Terms (MLFMM) 93.1 93.1
Near/Self Terms 61.4 61.4
P 27.8
Preconditioner 12.2
Qx 11.4
Total Memory 166.7 223.7

Table 1. Memory Comparison [GB]

Block-Diag. Approx. Direct Inverse
Filling Far Terms (MLFMM) 4.7 4.7
Filling Near/Self Terms 56.9 56.9
Py 16.8
Preconditioner 0.5
Qx 8.1
Solve System Matrix 38.6 (Plateau) 17.8
Total Wall Time 100.7 104.3

Table 2. Wall Time Comparison [min] 34



THE OHIO STATE UNIVERSITY Step 2. Two Level Preconditioner

» Application: Monostatic RCS of PEC Vivaldi Antenna

44 6mm
(1.48 1 @10GHz)
. 17.0mm . '
 (0.561@10GHz) - : /
12 Elements 28 Arrays with 12 Elements  : 0.5mm —
16 Elements : (0.16 1 @10GHz)
472 Elements Vivaldi Antenna Unit Elements



THE OHIO STATE UNIVERSITY Step 2. Two Level Preconditioner

» Application: Monostatic RCS of PEC Vivaldi Antenna

» # of Basis: 2,350,240 ( ~1/25 Mesh )
= The finest FMM block size: 0.51

=  The number of MLFMM level: 6
Einc

Jine = CFIE + IEDG
. (10 GHz) = |terative Solver (GCR, ¢, =107)

E =
2
P =
g g
5- 3
Horizontal Sweep: Vertical Sweep:
807 Fixed 8 = 90° T 30} Fixed ¢ = 0°
—-30°< ¢ <30° —60° <6 <120°
40 : t : : 40 1 1 1 L 1
-30 -20 -10 0 10 20 30 60 70 80 90 100 110 120 36

o [°] #=90° &[] ¢=0°



THE OHIO STATE UNIVERSITY Step 2. Two Level Preconditioner

» Single Incident (10GHz, 8 = 60°,¢ = 0°)

*# of Recycle: 40

= Einc
L 10v :
£ e L <: | —E0
s a kmc ) s Block Diag.
5 Plateau Appr. Direct. Inv.
" (6.94959E-01)
= 107
-
= |
2
i
E:
=
&
102

g 50 100 150 200 250 300 350 400 450 500
MNumber of Iteration

Surface Current Distribution Convergence Behavior

37



THE OHIO STATE UNIVERSITY Step 2. Two Level Preconditioner

» Computation Resources

Memory [GB] Wall Time [min]
Far Terms (MLFMM) 21.7 1.0
Near/Self Terms 89.9 185.2
Preconditioner 84.6 41.6
61 RHS lIterative Solve 22.4 574
Total 218.6 801.8

38
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Thank You
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