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ABSTRACT

While dragonflies are well-known for their high success rates when
hunting prey, how the underlying neural circuitry generates the
prey-interception trajectories used by dragonflies to hunt remains
an open question. I present a model of dragonfly prey intercep-
tion that uses a neural network to calculate motor commands for
prey-interception. The model uses the motor outputs of the neu-
ral network to internally generate a forward model of prey-image
translation resulting from the dragonfly's own turning that can then
serve as a feedback guidance signal, resulting in trajectories with fi-
nal approaches very similar to proportional navigation. The neural
network is biologically-plausible and can therefore can be com-
pared against in vivo neural responses in the biological dragonfly,
yet parsimonious enough that the algorithm can be implemented
without requiring specialized hardware.
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1 INTRODUCTION

The field of neuromorphic computing is founded on the assumption
that better understanding of neural systems and how they function
can be leveraged to create more advanced computing systems. This
study focused on a highly specialized nervous system, the neural
circuitry underlying prey interception in the dragonfly. In nature
dragonflies are highly successful hunters (with a 90-95% success
rate [3, 11]). What key computations underlie the robustness of
dragonfly hunting and how easily can the dragonfly system be
translated to a man-made platform? This study seeks to contribute
to the advancement of neuromorphic computing by constructing a
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computational model of the dragonfly nervous system that is framed
at a level amenable for translation to a neuromorphic platform.

Dragonflies were of particular interest for this study not only
because of their high success rate, but also because they are known
to use proportional navigation guidance as they approach their prey.
Proportional navigation is a guidance law that results in the geomet-
rically shortest path to interception. Also, dragonflies demonstrate a
remarkably short latency when responding to prey maneuvers — on
the order of 50 ms [7, 8], quite remarkable given that the response
time constant of a single neuron is on the order of tens of ms. While
a number of animal species (including dragonflies) are known to use
proportional navigation (see [1, 4, 7] for reviews), there are certain
advantages to studying an insect system, including the assumption
that the underlying circuitry is likely to be 'light' (and therefore
the validated model could be translated to a manmade system with
relative ease).
As dragonflies approach their prey, they adjust their head posi-

tion to maintain the image of its prey (referred to here as the 'prey
image') on a specific part of the eye [8] (referred to as the fovea)
through behavior known as foveation. While simply maintaining
a constant angle between the dragonfly's direction of movement
and its line-of-sight to the prey will result in behavior known as
`classical pursuit' (during which the dragonfly will head directly at
its prey at all times) or a variant known as 'deviated pursuit' (in
which a constant but non-zero angle will be maintained between
the dragonfly's direction of flight and its line-of-sight to the prey)
and therefore is not sufficient to produce proportional navigation. I
have developed a model of dragonfly prey interception that executes
proportional navigation solely based upon prey-image translation
across the eye. While prey-image slippage away from the fovea has
been suggested as the signal used by dragonflies for interception
[6, 11], this is the first model (to the author's knowledge) of how
that signal is used. This model is in the form of a neural network
and incorporates certain simplifications intended to facilitate trans-
lation to a man-made system. Nevertheless, I will discuss model
predictions that can be directly tested in the nervous system of the
biological dragonfly.

2 MODELING APPROACH

While dragonflies have two eyes, the neural circuits thought to
process moving targets and underlie dragonfly tracking of prey [5,
6,10] largely do not have binocular receptive fields (although see [9],
suggesting that dragonflies do not use depth perception to capture
prey. Accordingly, the 'eyes' of the dragonfly model presented here
are simplified as a flat two-dimensional screen (referred to here as
the model dragonfly's eye). During each simulation time step, the
movement of the prey relative to the dragonfly and the resulting
translation of the image of the prey on the dragonfly eye (the prey
image) are calculated. The dragonfly then adjusts its pitch and yaw
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angles (for simplicity, this study did not include roll), to maintain
the prey image directly on the fovea. If the dragonfly approaches
to within a minimum distance of the prey (specifically the distance
that that the dragonfly can move within one simulation time step),
a successful capture is declared and the engagement ends.

One significant difference between the model dragonfly and the
biological dragonfly is that the fovea of the model dragonfly eye
is moveable - its location on the eye is a function of the previous
turns required to maintain the position of the prey image on the
fovea. As described below, the model adjusts the position of the
fovea to execute proportional navigation. By comparison, the fovea
of the biological dragonfly eye is immoveable, although it is likely
that proprioceptive information from the neck (encoding the angle
of the head relative to the body) performs an analogous function.

Simulating the motor system (e.g. wings, muscles) was outside of
the scope of this project, as was detailed simulation of the dragonfly
eyes. For the results presented here, it is assumed that the dragonfly
and its prey fly at the same speed (10 m/s) and have the same
maneuverability.

2.1 Calculation of model dragonfly turning
The turning required to maintain the prey image on the fovea is
calculated by a neural network of continuous-valued (non-spiking)
neurons. Neurons in the 'prey-image representation' population
(denoted by open circles in Figure 1) encode the position of the
image of the prey on the eye (in 'eye coordinates'). The response fi
of each neuron i from this population is determined by a Gaussian
tuning curve:

fi(x1,x2) = eXp
( (an — xi)2 + (au — x2)2))

2c)-?

where (x1, x2) is the location of the prey image on the eye, (aii, ai2)
is the preferred position of the prey-image for neuron i, and crr
determines the width of the tuning curve.

Neurons in the 'fovea-position representation' (indicated by
filled blue circles in Figure 1) encode the position of the fovea in eye-
coordinates. The response (gj) of neuron j within this population
is also determined by a Gaussian tuning curve:

(—
(1)1 - yi)2 + (bjz - y2)2)

gj(yi, y2) = exp
2o-2

where (kii, bj2) is the preferred fovea location for the neuron,

(yi, y2) is the fovea location, and crg describes the width of the
tuning curve. These two inputs are combined in the sensory rep-
resentation (red circles in Figure 1) such that the response ski of
a sensory representation neuron multiplicatively combines input
from one prey-image neuron (i) and one fovea-position neuron (j) :

Sij = fi(x1, x2)9J(y1, y2).

The sensory representation is designed such that all possible com-
binations of prey-image position and fovea position neurons are
included.

Neurons in the motor output population (green circles) repre-
sent the goal direction, in eye coordinates, to which the dragonfly
should turn. The response of neuron i in the motor output popula-
tion, Ri, is determined by summing over all inputs in the sensory
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sensory representation
prey-image
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Figure 1: Schematic of the model dragonfly neural network.
Prey-image representation neurons are indicated by open
circles, fovea-position neurons are indicated by filled blue
circles. The responses of neurons in the sensory representa-
tion (filled red circles) arise from multiplicative interactions
between neurons in the eye and fovea representations. The
motor output population (green circles) represents the direc-
tion that the dragonfly should turn in eye-coordinates. Re-
sponses of the motor output population are determined as
described in the text. For clarity, some neurons and connec-
tions between neurons are not drawn.

representation, weighted by an appropriate factor (Wij):

Ri = EWijSj.

A11 network weights are calculated based upon the prey-image posi-
tion, fovea position, and goal-direction preferences of the presynap-
tic and postsynaptic neurons. The neural network does not require
training, and does not learn.

It is assumed that the motor output neurons are characterized
by some "inherent" response tuning that determines the preferred
goal location c of each motor output neuron. The inherent response
mi of neuron i of the motor output representation is:

mi(z1, z2) = exp (c  
— z1)2 + (ci2 — z2)2))

2o-„2,

where (ci , ci2) is the preferred goal direction, and (z1, z2) is the
direction of turn. It should be noted that, while there is some as-
sumed inherent tuning of the motor output neuron um, in practice
cr, and cf-9 play a dominant role in determining the specificity of
the motor output neurons.

The weight from sensory representation neuron j to motor out-
put neuron i is given by:

oc f f f f dyidy2dziclz2fj(aji - (z1 +yi), a j2 -(z2 +y2))

gi(bp - yi, bj2 - y2)mi(Cil - zi, C i2 Z2)
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where fj and gj are the prey-image representation and fovea-position
representation tuning curves. Goal direction are expressed in eye
coordinates, and because the eye is fixed relative to the body, this
is equivalent to expressing goal direction in body-coordinates, rela-
tive to the reference frame of the dragonfly's body. The biological
motivation to the pattern of connectivity is inspired by published
models of coordinate transformations in parietal cortex [12, 13].
To determine dragonfly turning, the motor output representa-

tion is decoded through a neural-activity weighted average of the
preferred directions of the motor population. The motor output
activity is first thresholded (activity below a certain threshold is set
to zero), then the direction and magnitude of turn is decoded as:

Ei ci2Ri
=  cilRi and d2 -  
E Ri Ei Ri

where (di, d2) is the change in direction (in eye-coordinates) that
the dragonfly executes. Expressed using terms more typically used
to describe turns by airborne vehicles, the change in yaw is AO =

tan-1 , and the change in pitch is AO = tan-1 ̀ 4 , where e is
the distance from the dragonfly's eye to the center of the dragon-
fly's head, defined as the point where the yaw and the pitch axes
intersect.

If the fovea is held at a fixed position, the model dragonfly will
display behavior known as 'classical pursuie (if the fovea is at the
center of the eye, see top panel of Figure 2). For this figure, the prey
constantly travels in one direction only. During classical pursuit, the
pursuer heads directly at the prey at all times. While this strategy
for hunting can be successful, there is a tendency for the pursuer
to end up in a tail chase (as is the case for this figure) in which the
dragonfly falls directly behind the prey and fails to capture the prey
(because both dragonfly and prey are moving at the same speed,
if the dragonfly is directly behind the prey it is impossible for a
capture to occur if the prey does not turn). For this engagement,
the simulation was ended after 15 seconds of simulation time. A
variant of classical pursuit known as 'deviated pursuit', in which
the pursuer maintains a constant angle between the line-of-sight to
the prey and its direction of motion, is given in the bottom panel of
Figure 2). Depending on the location of the fovea, deviated pursuit
can be successful for engagements in which classical pursuit is not
(for comparison, the classical pursuit trajectory from the top panel
is replotted in cyan). If complete information about the trajectory of
the prey is known, deviated pursuit can produce a trajectory equiv-
alent to proportional navigation (see green trajectory in bottom
panel) but this requires accurate calculation of the fovea location
based upon full knowledge of the prey's velocity and position. If
prey velocity and position are not known, or if there is an error
in calculation, deviated pursuit will also end in a tail-chase (not
shown).

It is well-known that classical pursuit (or deviated pursuit) arises
from holding the prey image at a fixed location on the eye, pro-
vided that the eye and head are held at a fixed angle relative to
the body (for reviews see [2] [4]). These results are presented as a
demonstration of the viability of the above-described neural net-
work for generating trajectories driven by foveation. The generated
trajectories are very similar to previously presented results from a
similar model of dragonfly interception in which the dragonfly's
turns were analytically (see Chance, presentation at ICONS2019).
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Figure 2: The model dragonfly demonstrates classical pur-
suit behavior when the fovea is fixed at the center of the eye.
Red and black circles indicate positions of prey and dragon-
fly, respectively, for each time step. Large red and black cir-
cles indicate starting positions of prey and dragonfly. Top:
The prey maintains a straight-line trajectory and is not cap-
tured by the end of the simulation (after 15 seconds if no
capture). Bottom: The prey makes one randomly-generated
turn after two seconds of simulation time, and model drag-
onfly adjusts trajectory to continue pursuit. In this engage-
ment, the model dragonfly successfully captures the prey.

2.2 Generating proportional navigation
through forward model generated from
motor output

Recent work [7] has suggested that dragonflies utilize internal mod-
els both to compensate for prey-image drift on the eye resulting
from dragonfly-body rotations. Here we propose that dragonflies
may use internally-generated forward models of prey-image trans-
lation on the eye as a feedback signal for generating proportional
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navigation. In this version of the model, the decoded motor output
(d1, d2) is used not only to calculate the required trajectory, but is
also used to determine changes to the location of the fovea on the
eye. It should be noted that while this signal is easily decoded from
the motor commands in a biological signal, the fovea of a biological
eye is hardwired and cannot be moved. Instead, it is likely that the
biological dragonfly adjusts other variables, for example head posi-
tion relative to the body. For this version of the model dragonfly,
the new fovea location is now (e;, = (el — Qdi, e2 — Qd2), where
el, e2) is the former position of the fovea, (d1, d2) is the change in
direction decoded from the motor output population, and Q is a
gain factor. For the results shown here, Q = 1.

For these conditions (Q = 1), the fovea is essentially shifted in
an equal but opposite direction to the prey-image translation on
the eye. The behavior of the model with this additional component
is shown in Figure 3. As in Figure 2, the prey is indicated in red and
the dragonfly in black. The initial conditions in the top panel are
identical to the top panel in Figure 2. The classical pursuit trajectory
(from the top panel of Figure 2 except that the trajectory is truncated
when the model dragonfly captures the prey) is provided in blue
for comparison. Likewise, the geometrically shortest trajectory to
capture the target (assuming full knowledge of target direction,
speed, etc.), equivalent to following pure proportional navigation,
is provided in green for comparison.

The initial conditions (including fovea position) are identical to
those at the top of Figure 2, and the model dragonfly initially chases
using classical pursuit (compare the dragonfly's early locations to
the blue trajectory). However, as the dragonfly uses the feedback
signal generated by the motor outputs to adjust the location of the
fovea, the dragonfly's trajectory becomes more like proportional
navigation (compare later dragonfly trajectory with green trajec-
tory). This behavior is very similar to the previous version of the
dragonfly model (see presentation by Chance at ICONS2019) in
which required turns were analytically calculated.

It should be noted that proportional navigation generates the
geometrically shortest trajectory to interception. If the prey does
not turn, as in the top panel of Figure 3, the resulting trajectory is a
straight line. If the fovea is at an appropriate location such that the
dragonfly is is following proportional navigation while maintaining
the prey image on the fovea, the prey image will remain aligned
with the fovea for the remainder of the engagement until the prey is
captured or turns. Thus, prey-image slippage away from the fovea
is an appropriate "erroe signal that could be used to search for a
more optimal trajectory. It is likely that the feedback gain, Q, could
be adjusted for more optimal trajectory calculation, in particular
for engagements where the prey is turning or actively evading.

3 CONCLUSION

I have presented a model of dragonfly prey interception that cal-
culates motor commands for prey-interception trajectories using
a simple neural network. Specifically, the model uses visual and
a proxy for proprioceptive input to determine turning commands
that will align the prey image with the eye's fovea. The model
also uses a feedback error signal to adjust approach trajectories to
be more like proportional navigation (following the geometrically
shortest path to capture). The feedback signal is a forward model of
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Figure 3: The model dragonfly follows trajectories closer to
proportional navigation when an internal forward model
of motor commands is used as a feedback signal to adjust
fovea location. Red and black circles indicate positions of
prey and dragonfly, respectively, for each time step. Large
red and black circles indicate starting positions of prey and
dragonfly. Blue trajectory is classical pursuit and green tra-
jectory is proportional navigation. The initial conditions are
identical to the top panel of Figure 2. The prey follows the
same straight-line trajectory as in Figure 2 but here the prey
is captured at approximately 5.6 seconds.

prey-image translation resulting from dragonfly turning generated
from the model's motor outputs.

Because informing future neuromorphic systems is a priority
for this line of research, certain simplifications were made to the
dragonfly model to make the model more amenable to translation
to a nonbiological system. For example, the dragonfly eyes are
approximated as single two-dimensional screen, and a moving fovea
is used in place of a pivotable head. Research is currently in progress
to further develop the dragonfly model, in particular to develop
methods for directly comparing the dragonfly model to data from
the biological dragonfly.
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