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Dames, Chris. (2005) Measuring the Thermal Conductivity of Thin Films: 3 Omega and Related Methods.
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Schmidt, Aaron. (2009) A frequency-domain thermoreflectance method for the characterization of thermal properties.
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Sensing Lengths - SiO218

Transducer layer causes 
increased radial heat spreading
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Transducer layer causes 
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Sensing Lengths - Silicon20

𝛼𝑇𝑟𝑎𝑛𝑠𝑑𝑢𝑐𝑒𝑟~ 𝛼𝑆𝑖



Experimental Results – YAG film21

YAG → Yttrium Aluminum Garnet, Y3Al5O12



Experimental Results – YAG film thickness fitting22

33.8 ± 29.0 μm 

15.4 ± 1.9 μm 

k = 1.38 ± 0.15 W/m-K 

YAG → Yttrium Aluminum Garnet, Y3Al5O12



Conclusions23

o Thermal penetration depth, temperature decay depth and sensing length are distinct concepts

o Sensing lengths in FDTR scales with thermal penetration depth at high frequency

o Lowering noise floor increases sensing length at low frequency

o Measurement of  films thicker than sensing depth results in higher uncertainty, matching predictions




