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COVID- I 9 IN THE NEWS AND PUBLICATIONS

Forecast (reported on March 16) : Imperial College COVID- I 9 Response Team Published
[Ferguson, 2020]

• An unmitigated epidemic is forecasted to result in 2.2M deaths in the U.S.

1
L

Stay-at-
Home
Orders

I

Forecast (reported on March 31) : White House Briefing
https://www.whitehouse.gov/briefings-statements/remarks-president-trump-vice-president-pence-members-coronavirus-
task-force-press-briefing-I5/ [Dr. Birx]

• With social distancing in place the forecasted death toll in the U.S. will be 100 200K

I
Mandated

Facial
Masks in
Public

June 20 : CDC Daily Updates ofTotals byWeek and State
(Provisional Death Counts for Coronavirus Disease 2019 (COVID-19))
https://www.cdc.gov/nchs/nvss/vsrr/covid19/index.htm 

• The reported number of COVID-I9 deaths is —106K in the U.S.

States
Start

Opening
Back Up

Forecast for October I (reported on June 23) :
Institute for Heath Metrics and Evaluation (IHME) at University ofWashington
https://covid19.healthdata.org/united-states-of-america 

• Assuming social distancing is relaxed, there will be 170K-270K deaths in the U.S.
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EPIDEMIOLOGY

The study of the distribution and
determinants of health-related states or
events in specified populations, and the
application of this study to the control of
health problems [Last, 2001]

For more details, please reference the CDC's Introduction to Epidemiology:
https://www.cdc.gov/csels/dsepd/ss l 978/Lesson l /Section I .html# ref i
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EPIDEMIOLOGY NOMENCLATURE

Basic Reproduction Number, Ro
The expected number of infections from one infected individual introduced into
a population of 100% susceptible individuals.

Doubling Time, Td
The expected amount of time for the number of cumulative infections to double.

Replacement Number, R
After the early stages of an epidemic has passed, the number of secondary
infections is expected to go down as the number of susceptible individuals goes
down.

Herd Immunity
Implies the susceptible population is small enough, either through vaccination or
immunity due to infection and recovery, that the effective secondary infection
rate tends toward O.

Non-Medical Interventions (NMI)
Social distancing, business & school closures, face masks, isolation, and
quarantine.
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THE COVID- I 9 PANDEMIC NOMENCLATURE
[WHO, https://www.who.int/emergencies/diseases/novel-coronavirus-20 I 9/technical-
guidance/naming-the-coronavirus-disease-(covid-20 I 9)-and-the-virus-that-causes-it ]

Virus:

Severe Acute Respiratory Syndrome Coronavirus 2
(SARS-CoV-2)

Viruses are named based on their genetic structure to
facilitate the development of diagnostic tests, vaccines
and medicines.

Pathology

Disease:

COronaVlrus Disease, 20 I 9 (COVID- 1 9)

Diseases are named to enable discussion on disease
prevent, spread, transmissibility, severity and treatment.

Epidemiology
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TIMELINE OF INFECTION AND TERMINOLOGY
[Childs, 2020]
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UNIVERSITY OF WASHINGTON: INSTITUTE FOR HEALTH METRICS AND EVALUATION
https://covid19.healthdata.org/united-states-of-america (June 24, 2020)

Cumulative COVID- I 9 Deaths
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DETAILED SURGE MODELING OF MEDICAL RESOURCE DEMANDS

Goal

• Calculate resource demands for treating COVID- 19 patients based on disease spread projections from epi models

• Anticipate possible times and locations of medical resource shortfalls throughout the pandemic

Approach

• Use discrete event mathematical model to track patient progress through a hospital treatment system

• Incorporate uncertainty in patient treatment pathways and ranges of resource use per patient to provide risk indicators

• inputs are patient arrival stream projections from epidemiological models at varying spatial or temporal scales

Results
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DETAILED ANALYSIS FOR INDIVIDUAL LOCATIONS

Compare maximum resource demand across different epi models and different scenarios

Inputs

Local
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Bed
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• Mean 1,269 972 350 87 40 154
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VARIETY OF MODELING PARADIGMS

Limited Range Forecasts:

• Exponential Growth
• Bayesian Methods

Mid-Late Stage:

• Compartmental Models
(SIR, SEIR, ect.)

Early-Late Stage:

• Self-Exciting Point Process
(Branching-Process)



SANDIA NATIONAL LABORATORIES 14

EXPONENTIAL G ROWTH
[Bertozzi, 2020]

As an early stage model, these models are typically used to derive the secondary infection rate, Ro, for an emerging
epidemic.

I (t) = eRo t
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BAYESIAN MODEL: COVID- 19 MODELING AND BAYESIAN FORECAST (COMBO)
[Safta, 2011]

From observable reported new cases, Bayesian models infer the infection rate curve then push forward a predictive

epidemic curve.

Teo le
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rate
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 Ilft•

ti.Tne

Infection Rate curve modeled as a Gamma distribution
with unknown shape (k) and scale (0) parameters

InfR(t to) r•-) F(k, 1/0)

The incubation rate is modeled using a log-normal
distribution with parameters based on published results
[Lauer, 2020]

IncR (-N-) Lognormal(p,(6_), o-( 2)2)

= 1.504 ... 1.755
= 0.271 ... 0.542
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BAYESIAN MODEL: COVID- I 9 MODELING AND BAYESIAN FORECAST (COMBO)
[Safta, 2011]

U.S. Forecasts over time, learning the bend in the curve
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• Black symbols show data used for model inference and to generate forecasts
• Red symbols display data observed after the forecast was produced
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COMPARTMENTAL MODELS
[Hethcote, 2000]

Susceptible-Exposed-Infected-Recovered

System of ordinary differential equations (ODEs):

I
..=—fil—

N
S

I
E=f3—

N
S—U'

i=U.—yI

i? = y/

/
Force of Infection Function: /3—N

Average Incubation Period: 
1 
—

.

Average Infectious Period: 
1 
—
Y

Model Ro = /3

E

R

N=S+E+I+R
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COMPARTMENTAL MODELS
[Hethcote, 2000]

Suscepti ble-Exposed-1 nfected-Recovered

Explicitly add a parameter for average number of contacts.

System of ordinary differential equations (ODEs):

I
.. = —f3c—

N
S

I
E = f3c —

N
S — U.

i = U. —yI

= yI

I
Force of Infection Function: f3c—N

Average Incubation Period: 
1 
—

.

Average Infectious Period: 
1 
—
Y

Model Ro = f3c— 
1
Y

E

R

N=S+E+I+R
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COMPARTMENTAL MODELS
[Hethcote, 2000]

Susceptible-Exposed-Infected(Asymptomatic)-Infected(Symptomatic)-Recovered

Explicitly add a parameter for average number of contacts.

System of ordinary differential equations (ODEs):

A+ I
= —f3c 

N 
S

A+ I
t = f3c S — U'

N
A = fgE —YAA

1 = (1— fagE —yiI

= YAA+YII
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Average Incubation Period: 
1 
-

.

Average Infectious Period: Y2 (-
1 
+ —
1)

YA YI

Proportion of infections that are Asymptomatic: fa

Model Ro = [3c(Y2(I- + 1))
YA Y/

1 _flcA+ I
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N=S+E+A+I+R
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COMPARTMENTAL MODELS
[Hethcote, 2000]

Susceptible-Exposed-Infected(Asymptomatic)-Infected(Symptomatic)-Recovered

Explicitly add a parameter for average number of contacts & loss of immunity.

System of ordinary differential equations (ODEs):

A + I
= —f3c 

N 
S + (R

A + I
k = [3c S — U'

N

A = fE — YAA

i = (1 — fagE — yil

IZ = YAA + yil — l'?

For COVID- I 9 secondary infections are
possible. Accounting for the potential loss on
immunity has been deemed important.

1 _flc A + I
 S
N

R
(R

N=S+E+A+I+R
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COMPARTMENTAL MODELS
[Hethcote, 2000]

Susceptible-Exposed-Infected(Asymptomatic)-Infected(Symptomatic)-Recovered

Explicitly add a parameter for average number of contacts with loss of immunity,
and disease related deaths.

System of ordinary differential equations (ODEs):

A + 1
= — f3c S “R

N
A + 1

k = igc S — U'
N

A = kgE — YAA
i = (1 — fagE — yil — 61

f? = YAA + yll —
to = 61

For COVID-I9 Compartmental Epi Modeling:
the death state, D, is essential to calibration of
the model parameters.
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COMPARTMENTAL MODEL: QUARANTINE STATES
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FORCE OF INFECTION
ACCOUNTING FOR FACE MASKS AND EFFECTIVENESS OF QUARANTINE

A.(t) =
N

f3A.(t)S,

K(1— EP)(11EEu +11,4Au + Iu + (1— Oq)(11EEq + nAllq + lq + 7101))

N=Su+Sq +Eu+Eq +Au+Aq +lu +lq +H+R

K Average number of contacts

E Effectiveness of face masks

p Probability an interaction is protected by a face mask

11* Relative infectivity of individual in disease state *

Oq Effectiveness of Quarantine
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COMPARTMENTAL MODEL:
RANDOM TESTING AND CONTACT TRACING INITIATES N EW CONTACTS TO TRACE

C.'
—min(C, Ntrace) , r

1- unew
Ttrace

Eq

A,

Aq

1
I q

CCnew — [clOKKTI[1 — TI11

* [I- EqEq + cirA(t) + W1(0 + qtA(t) + ch1(t) + TruHlu.]

K Average number of contacts

d Dispersion of contact

OK Likelihood a contact is recalled

T1 Average amount of infectious time
before identified as COVID-I9 positive

r* Rate of transmission out of population *

qr* Rate of random testing

qt* Rate of contact tracing

Ntrace Maximum number of concurrent
contact tracing

Ttrace Time for contact tracing system to
engage each contact
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Thal*You!

Any Questions?
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BACKUP
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EPIDEMIC VS ENDEMIC COMPARTMENTAL MODELS

Epidemic Endemic

dS _ cl dS cl

dt  
—13 v S —

dt 
= bS — f3 —

N
S — dS

dE  cl

dt — 
13 
N
S — -E

dE cl

dt -13VS— g
-+d)E

dl

d
E — (y + d)I

d

I

t —dt — -E'  Yi

dR dR

Tt = yl dt — 
yl — dR

b: birth rate
d: non-disease related death rate,
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AGE STRUCTURED COMPARTMENTAL MODELS

Homogeneous SEIR (endemic ODE) Heterogeneous SEIR (age structured endemic PDE)

dS cl

dt 
= bS — )6 —

N
S — dS

dE cl

dt — I6NS— g
-+d)E

dl

dt — -E — (Y + c1)1

dR

dt
— yl — dR

as as

aa
+ 

,Tt 
= —(A(a,t) + d(a))S

aE aE

aa 
+ Tt = A(a,t)S — g. + d(a))E

al al

aa
+ 

t 
= -

E 
— (y + d(a))1

aR aR
aa+ at = yl — d(a)R

b: birth rate, /3: infectivity, c: # of contacts, d: non-disease related death rate,
: reciprocal incubation window, y: reciprocal infectious window

With:

A(a, 0
_ fo b(a) 6 COI (Et, Odd

f0 II (Et, Oda

U(a,t): age distribution of the total

population

d(a): age-specific non-disease related

death rate


