

EPIDEMIOLOGY MODELING OF THE COVID-19 PANDEMIC

June 30, 2020

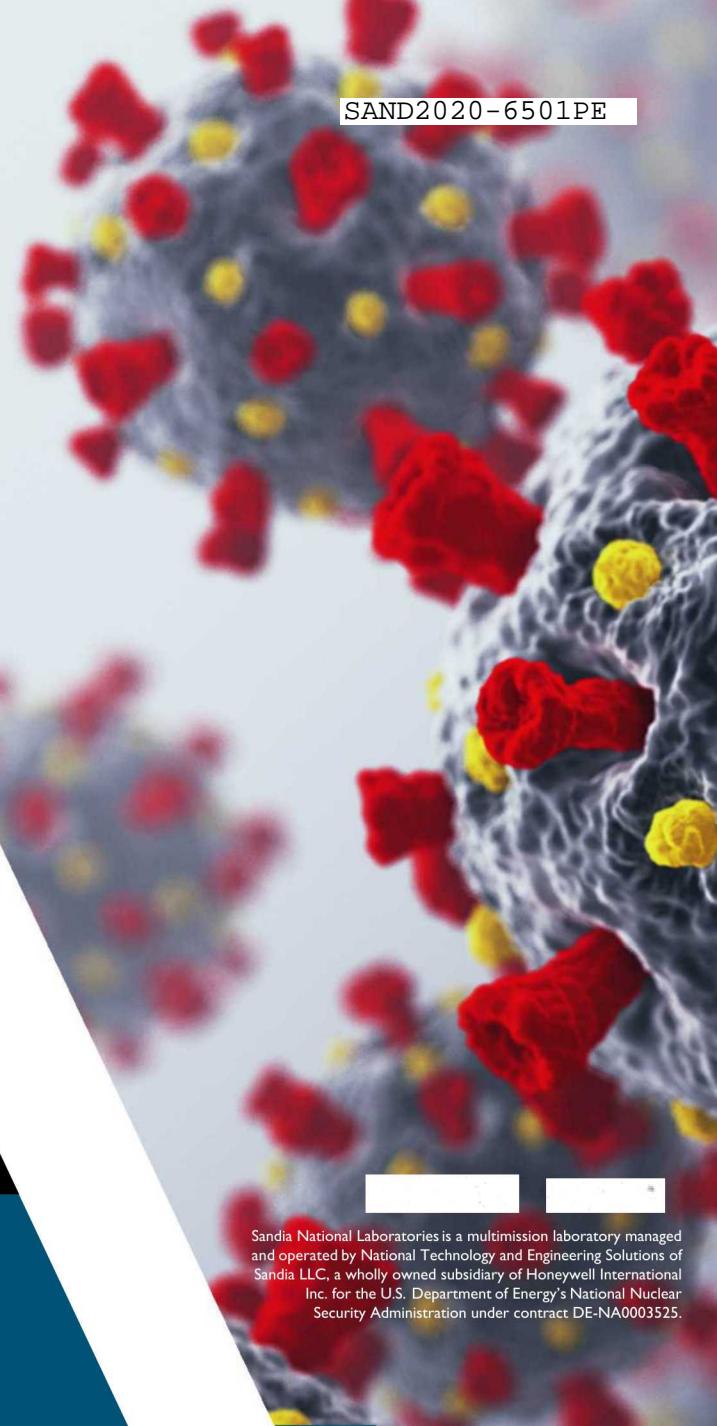
Erin Acuesta

In collaboration with Pat Finley, Walt Beyeler, Monear Makvandi, Kate Klise, Danny Rintoul, Laura Swiler, Teresa Portone, Cosmin Safta, Jaideep Ray, and many, many others.

With the support from Sean DeRosa, Courtney Dornburg, and the rest of the management teams.

SAND2020-***

SAND2020-6501PE



Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

COVID-19 IN THE NEWS AND PUBLICATIONS

Forecast (reported on March 16) : Imperial College COVID-19 Response Team Published [Ferguson, 2020]

- An unmitigated epidemic is forecasted to result in 2.2M deaths in the U.S.

Stay-at-Home Orders

Forecast (reported on March 31) : White House Briefing

<https://www.whitehouse.gov/briefings-statements/remarks-president-trump-vice-president-pence-members-coronavirus-task-force-press-briefing-15/> [Dr. Birx]

- With social distancing in place the forecasted death toll in the U.S. will be 100—200K

Mandated Facial Masks in Public

June 20 : CDC Daily Updates of Totals by Week and State

(Provisional Death Counts for Coronavirus Disease 2019 (COVID-19))

<https://www.cdc.gov/nchs/nvss/vsrr/covid19/index.htm>

- The reported number of COVID-19 deaths is ~106K in the U.S.

States Start Opening Back Up

Forecast for October 1 (reported on June 23) :

Institute for Health Metrics and Evaluation (IHME) at University of Washington

<https://covid19.healthdata.org/united-states-of-america>

- Assuming social distancing is relaxed, there will be 170K-270K deaths in the U.S.

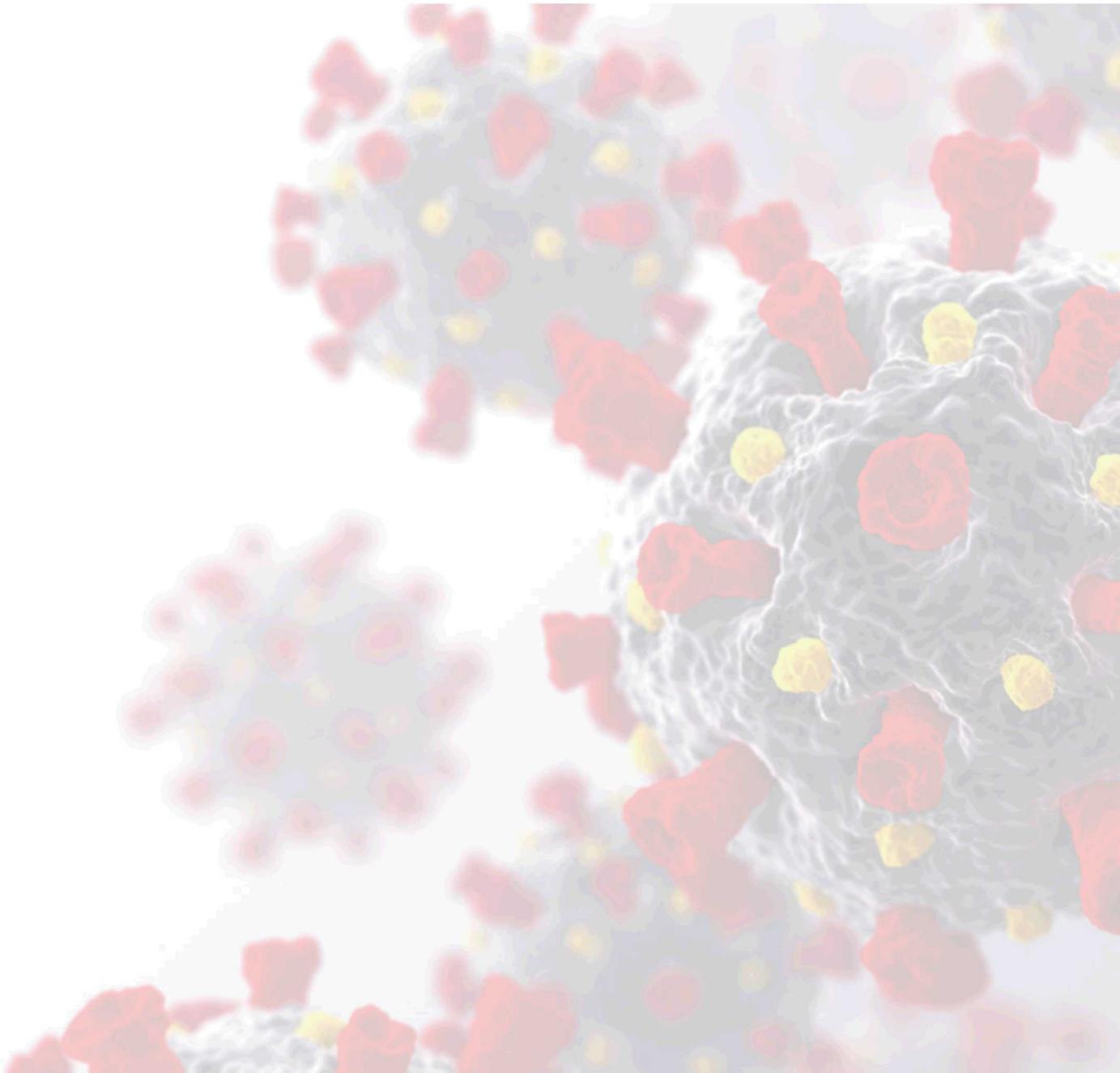
OUTLINE

INTRO TO EPIDEMIOLOGY

MEDICAL RESOURCE UTILIZATION

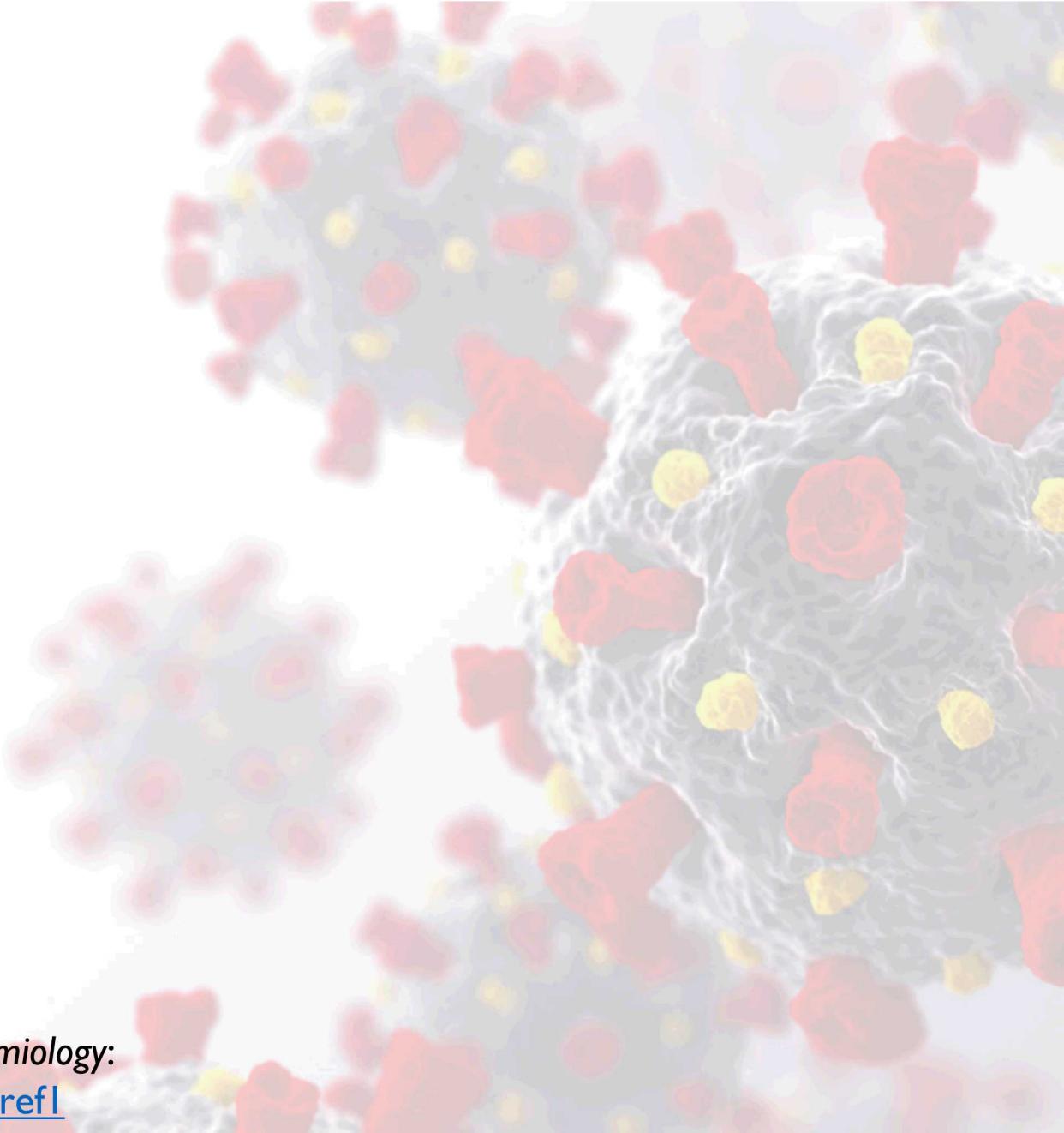
EPI MODELING PARADIGMS

MODELING MITIGATION STRATEGIES



EPIDEMIOLOGY

The **study of the distribution and determinants of health-related states or events in specified populations, and the application of this study to the control of health problems** [Last, 2001]



For more details, please reference the CDC's *Introduction to Epidemiology*:
https://www.cdc.gov/cse/csepd/ss1978/Lesson1/Section1.html#_ref1

EPIDEMIOLOGY NOMENCLATURE

Basic Reproduction Number, R_0

The expected number of infections from one infected individual introduced into a population of 100% susceptible individuals.

Doubling Time, T_d

The expected amount of time for the number of cumulative infections to double.

Replacement Number, R

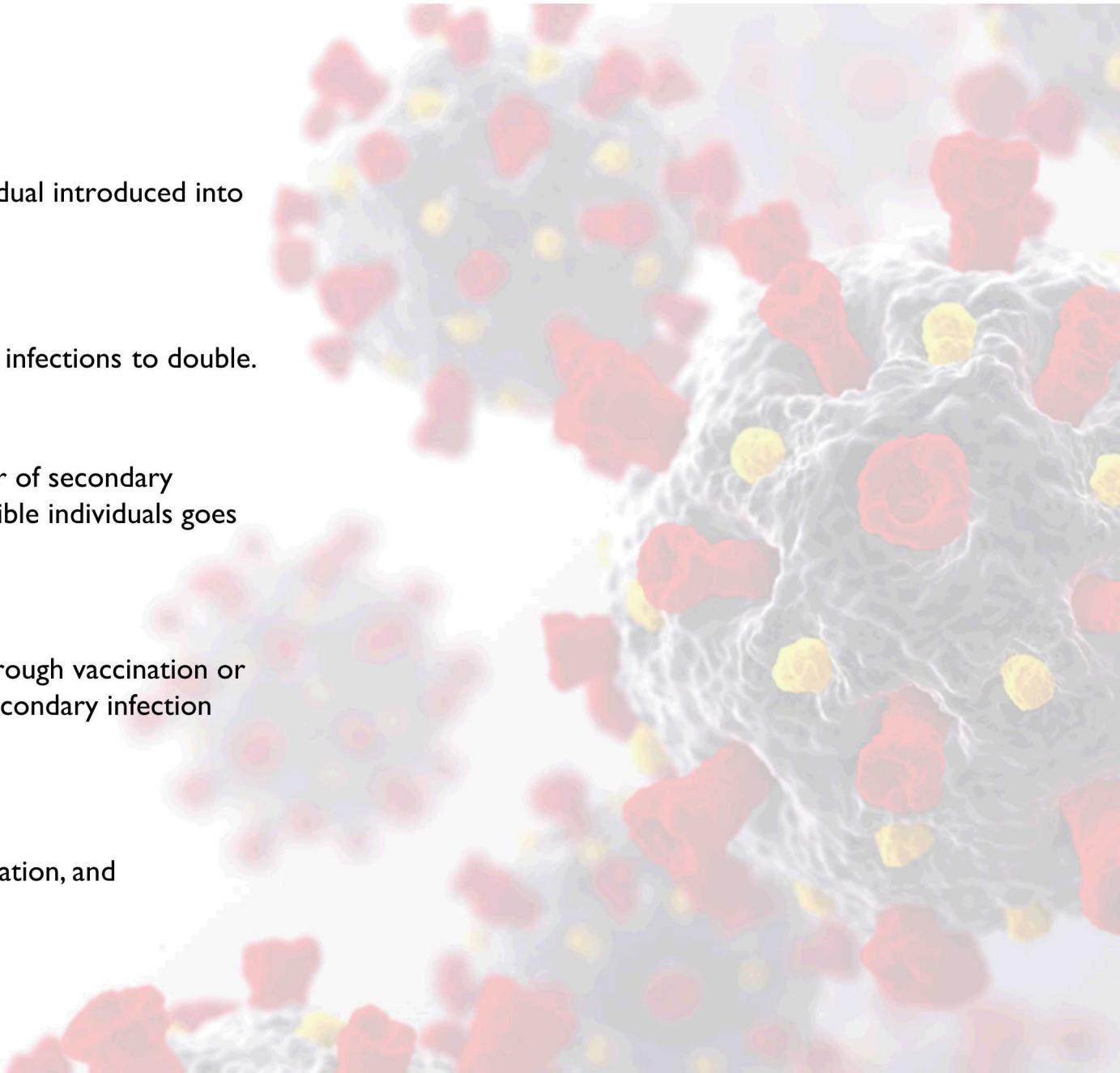
After the early stages of an epidemic has passed, the number of secondary infections is expected to go down as the number of susceptible individuals goes down.

Herd Immunity

Implies the susceptible population is small enough, either through vaccination or immunity due to infection and recovery, that the effective secondary infection rate tends toward 0.

Non-Medical Interventions (NMI)

Social distancing, business & school closures, face masks, isolation, and quarantine.



THE COVID-19 PANDEMIC NOMENCLATURE

[WHO, [https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-\(covid-2019\)-and-the-virus-that-causes-it](https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it)]

Virus:

Severe Acute Respiratory Syndrome Coronavirus 2
(SARS-CoV-2)

Viruses are named based on their genetic structure to facilitate the development of diagnostic tests, vaccines and medicines.

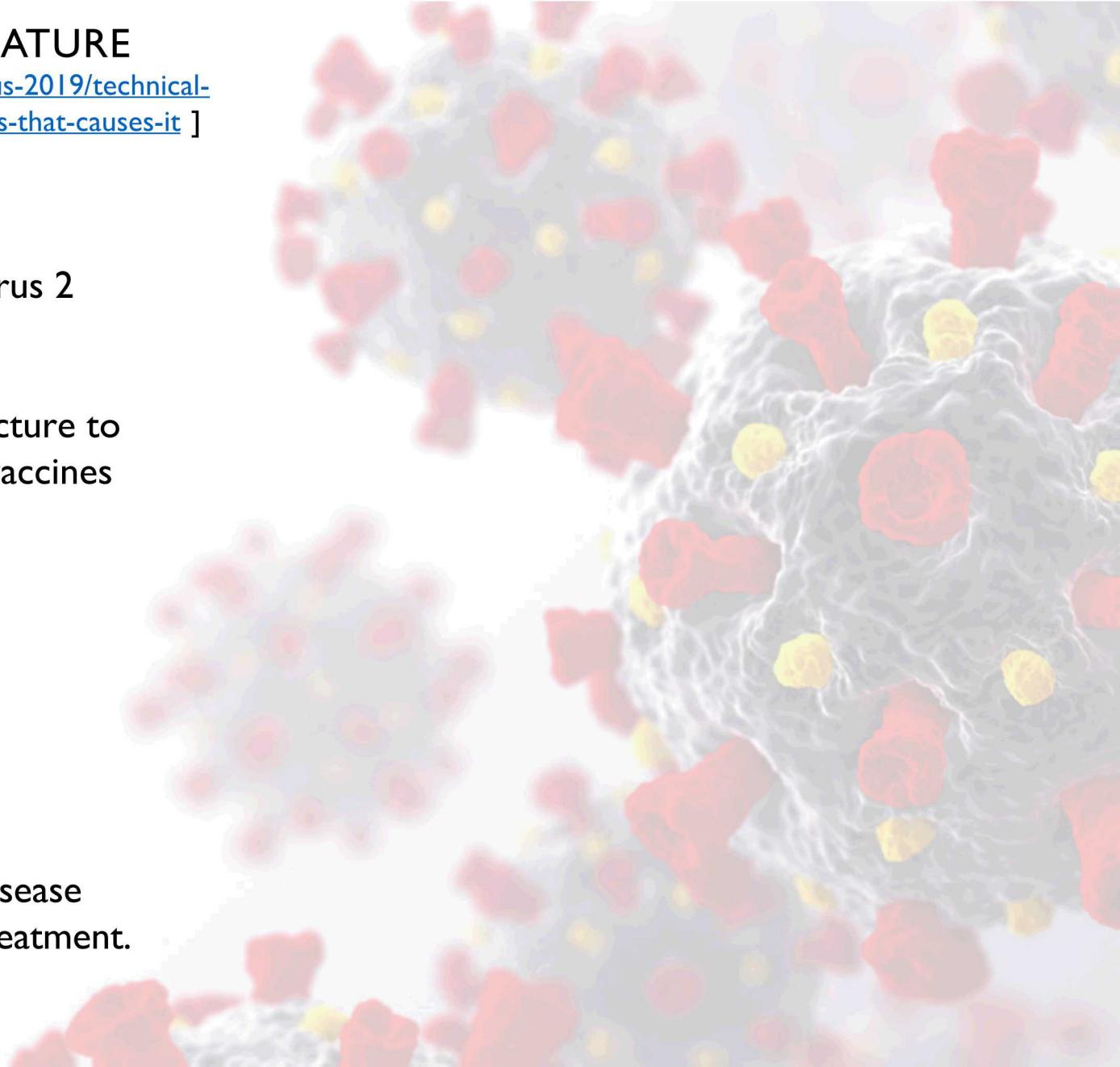
Pathology

Disease:

CoronaVirus Disease, 2019 (COVID-19)

Diseases are named to enable discussion on disease prevent, spread, transmissibility, severity and treatment.

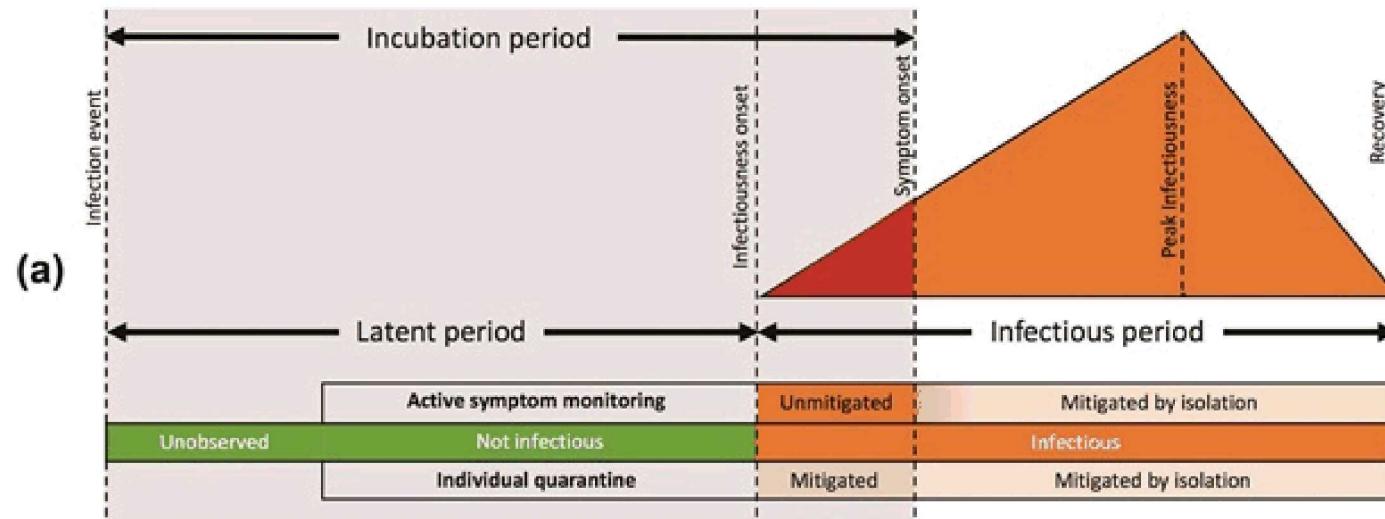
Epidemiology



TIMELINE OF INFECTION AND TERMINOLOGY

[Childs, 2020]

Symptoms *after* infectiousness



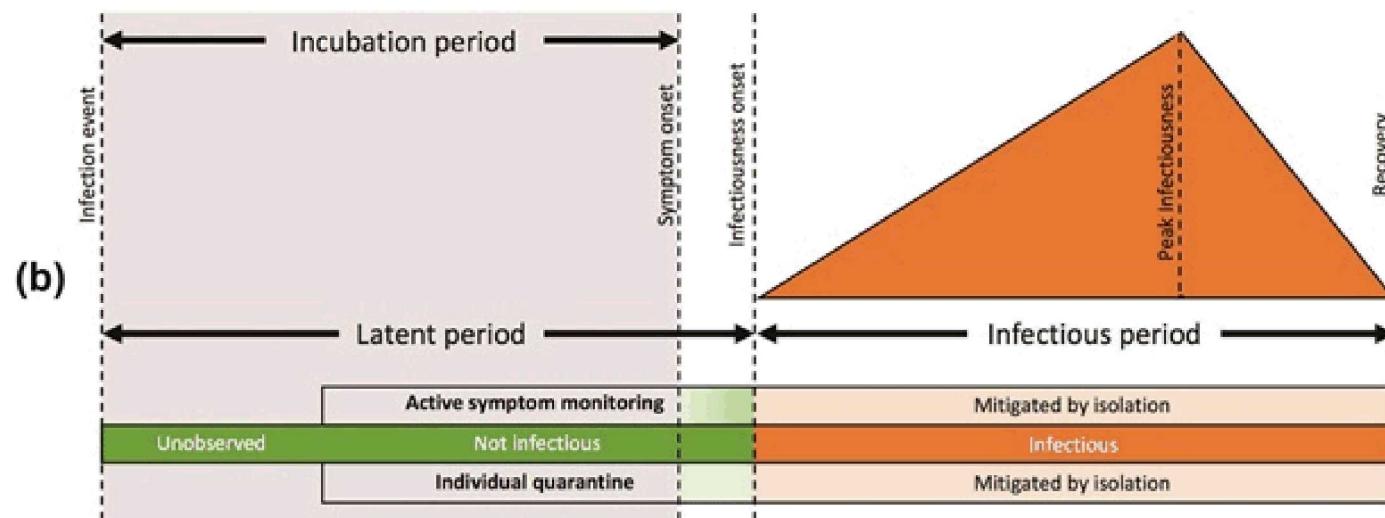
COVID-19

Follows timeline (a)

Infectiousness onset occurring 2-3 days before Symptom onset.

The Peak Infectiousness occurring more closely aligned with the Infectiousness onset

Symptoms *before* infectiousness



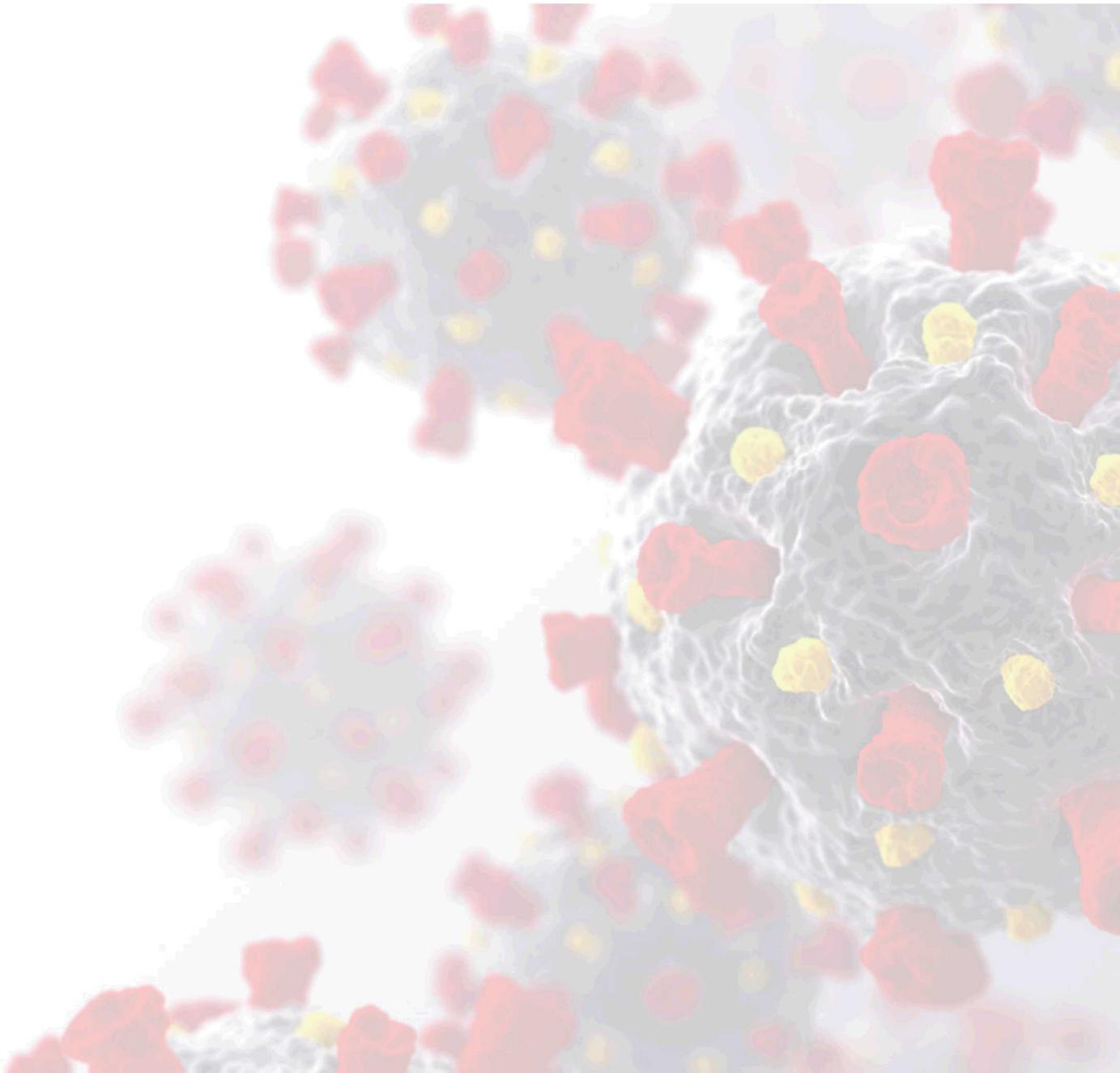
OUTLINE

INTRO TO EPIDEMIOLOGY

MEDICAL RESOURCE UTILIZATION

EPI MODELING PARADIGMS

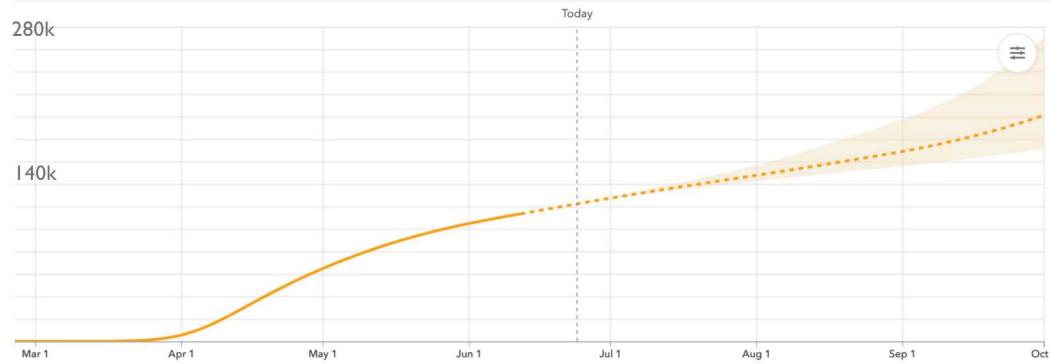
MODELING MITIGATION STRATEGIES



UNIVERSITY OF WASHINGTON: INSTITUTE FOR HEALTH METRICS AND EVALUATION

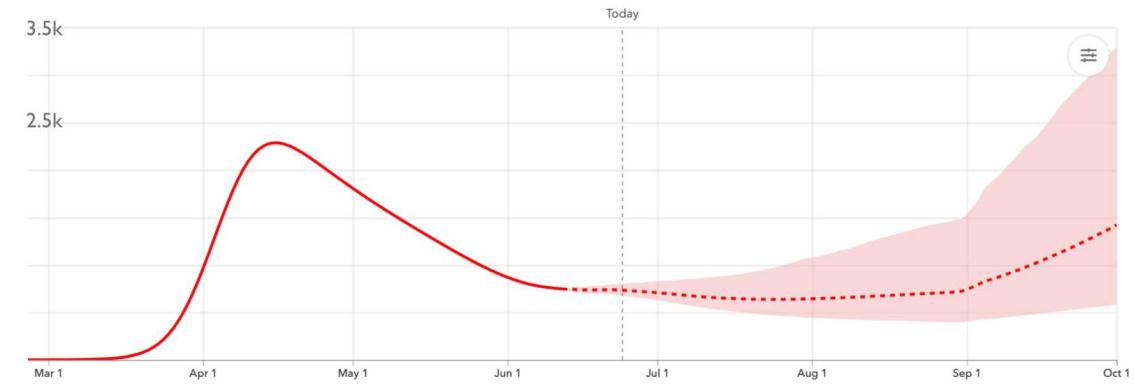
<https://covid19.healthdata.org/united-states-of-america> (June 24, 2020)

Cumulative COVID-19 Deaths

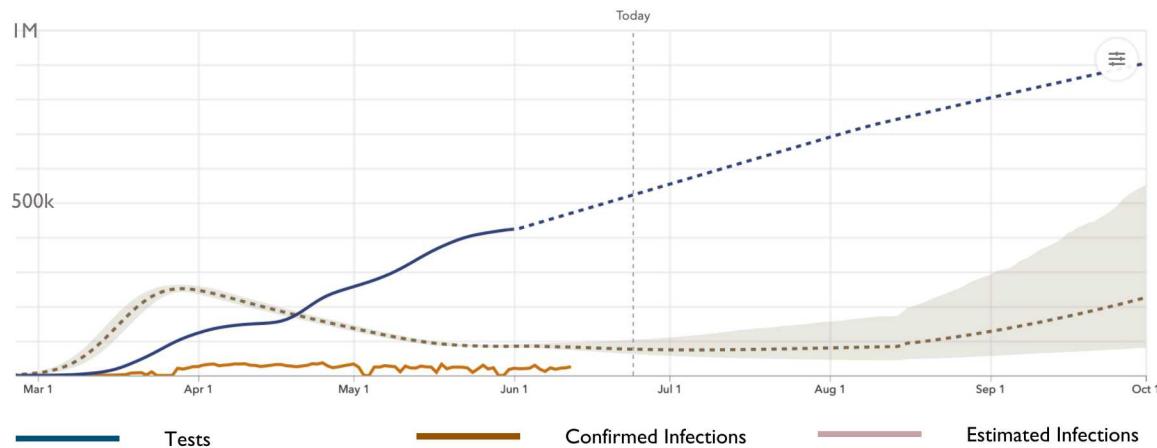


United States Forecasts

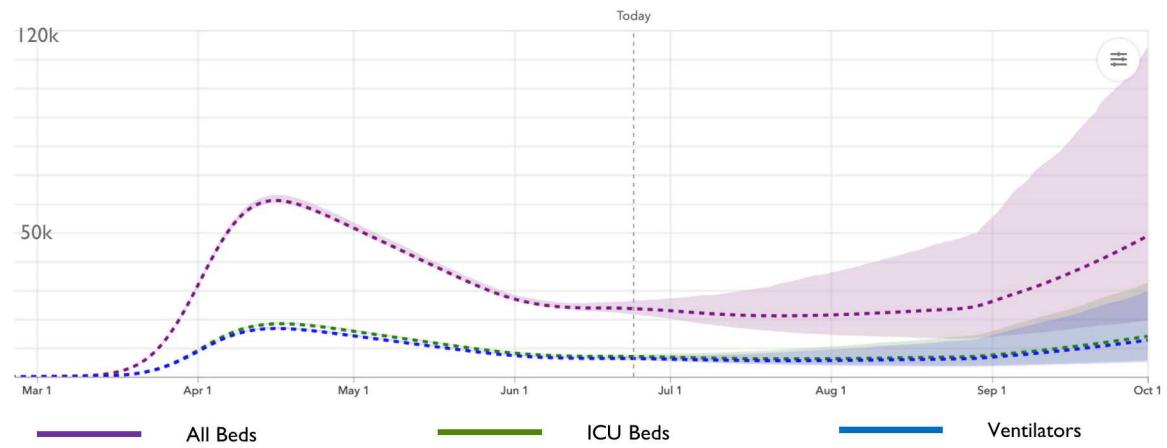
Daily COVID-19 Deaths



Daily Testing and New Cases



Medical Resource Utilization



DETAILED SURGE MODELING OF MEDICAL RESOURCE DEMANDS

Goal

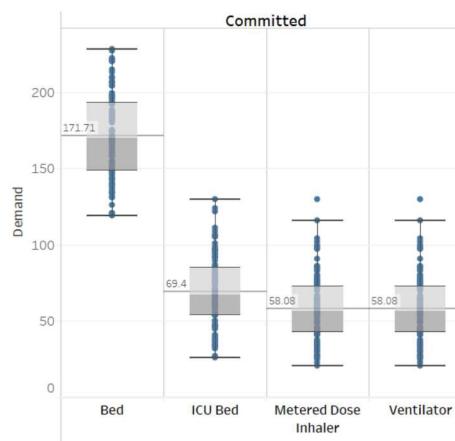
- Calculate resource demands for treating COVID-19 patients based on disease spread projections from epi models
- Anticipate possible times and locations of medical resource shortfalls throughout the pandemic

Approach

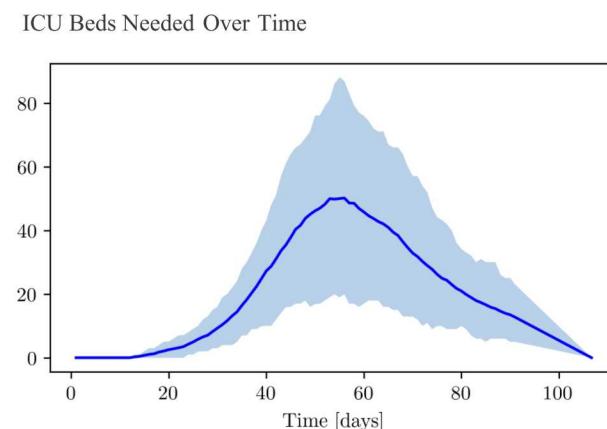
- Use **discrete event mathematical model** to track patient progress through a hospital treatment system
- Incorporate uncertainty in patient treatment pathways and ranges of resource use per patient to provide risk indicators
- Inputs are **patient arrival stream projections from epidemiological models** at varying spatial or temporal scales

Results

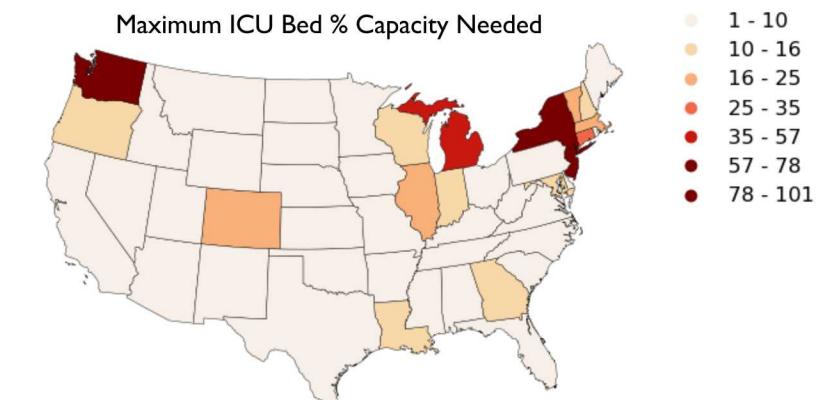
Maximum number of resource needs
with a range of **uncertainty**



Resource needs **over time** with a range of uncertainty



State or county **risk** indicators

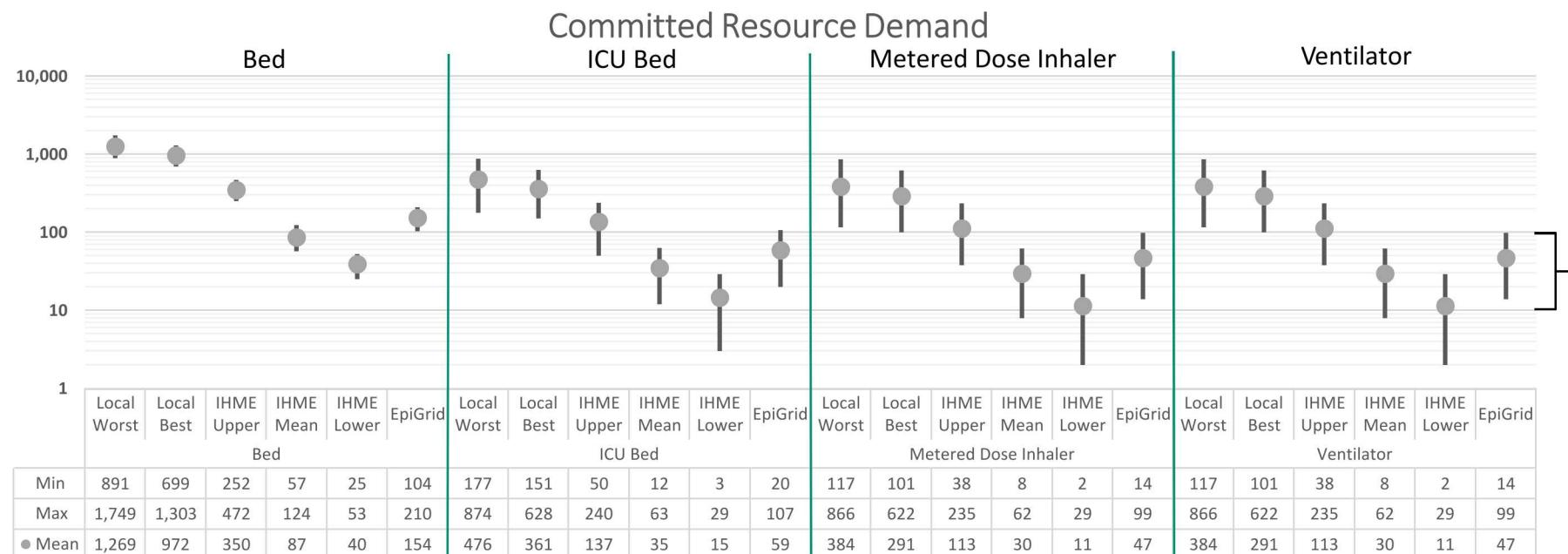


DETAILED ANALYSIS FOR INDIVIDUAL LOCATIONS

Compare maximum resource demand across different epi models and different scenarios

Inputs

Outputs



Ranges in demand are dictated by **uncertainties in parameters** (e.g., probability the patient goes into the ICU, needs a ventilator, length of stay)

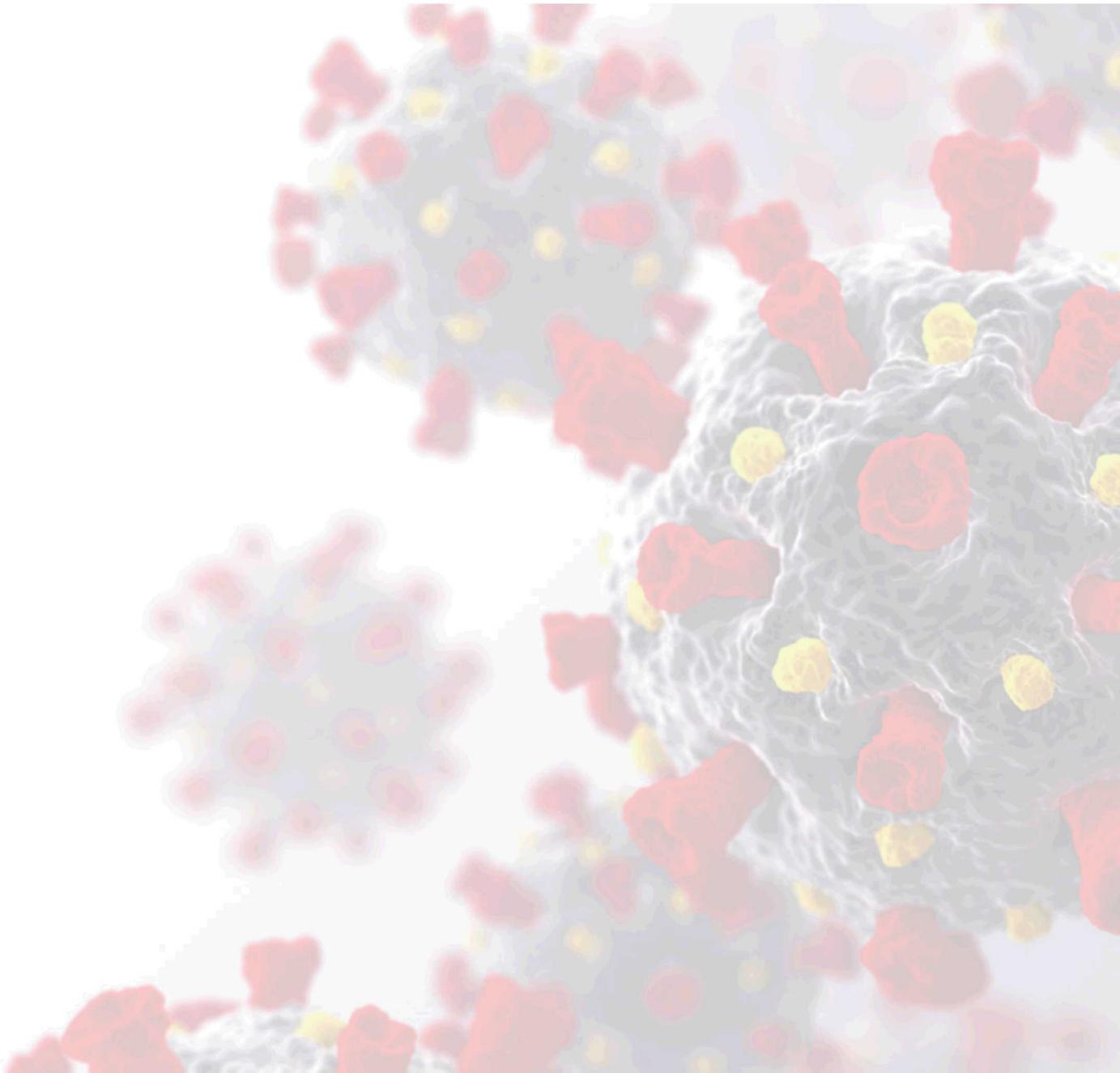
OUTLINE

INTRO TO EPIDEMIOLOGY

MEDICAL RESOURCE UTILIZATION

EPI MODELING PARADIGMS

MODELING MITIGATION STRATEGIES



VARIETY OF MODELING PARADIGMS

Limited Range Forecasts:

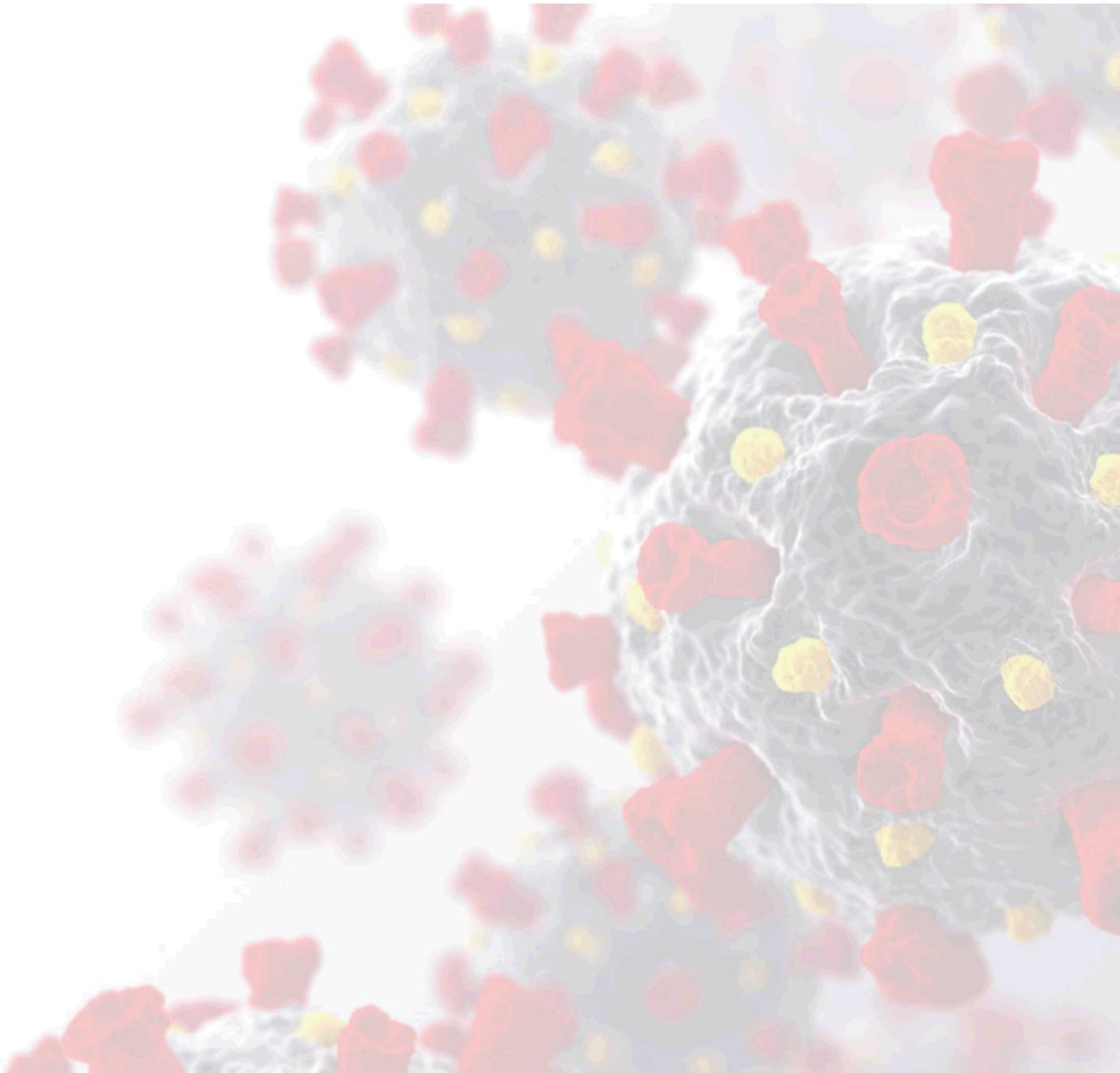
- Exponential Growth
- Bayesian Methods

Mid-Late Stage:

- Compartmental Models
(SIR, SEIR, ect.)

Early-Late Stage:

- Self-Exciting Point Process
(Branching-Process)



EXPONENTIAL GROWTH

[Bertozzi, 2020]

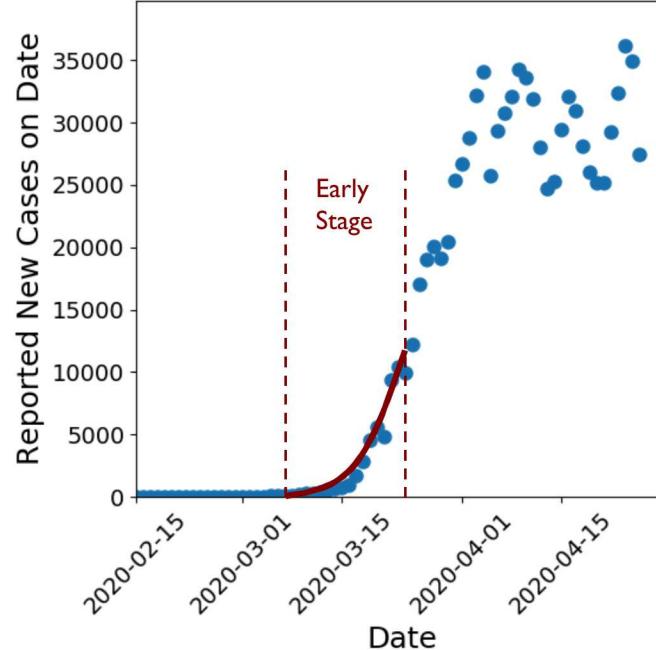
As an early stage model, these models are typically used to derive the secondary infection rate, R_0 , for an emerging epidemic.

$$I(t) = I_0 e^{R_0 t}$$

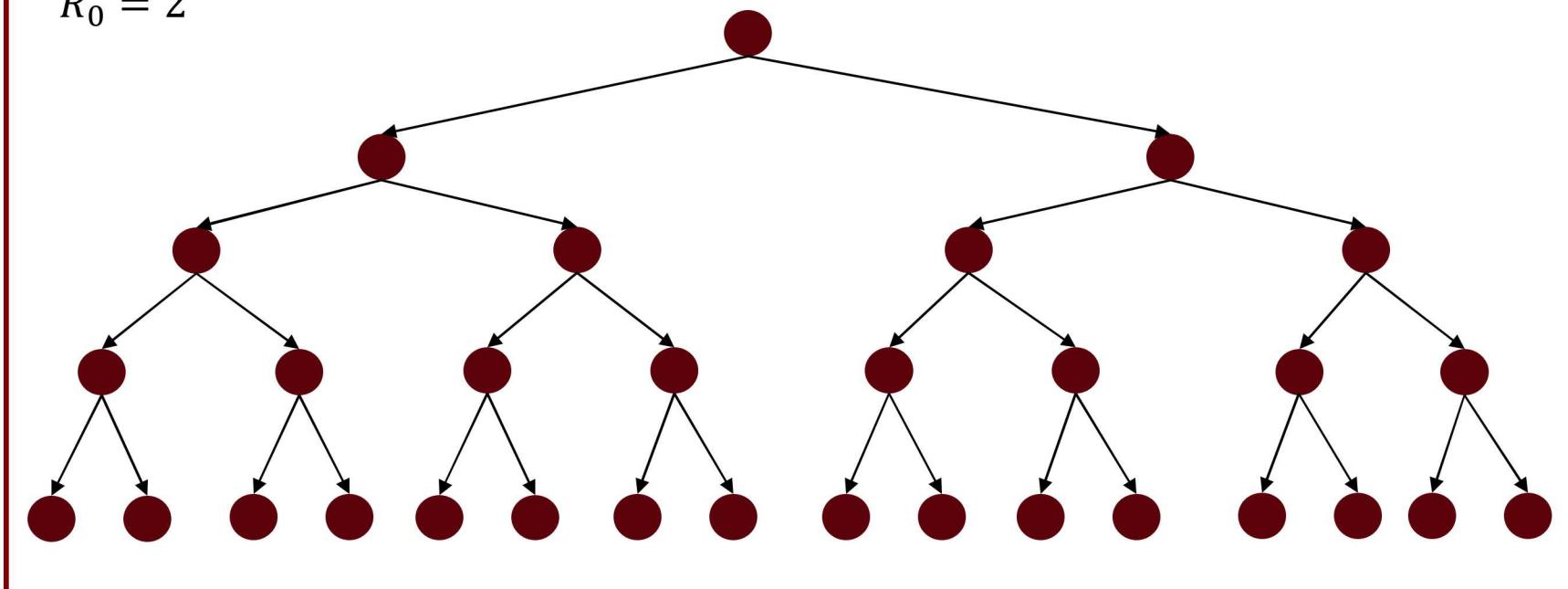
$$T_d = \ln(2) / R_0$$

$$R_0 = \ln(2) / T_d$$

United States



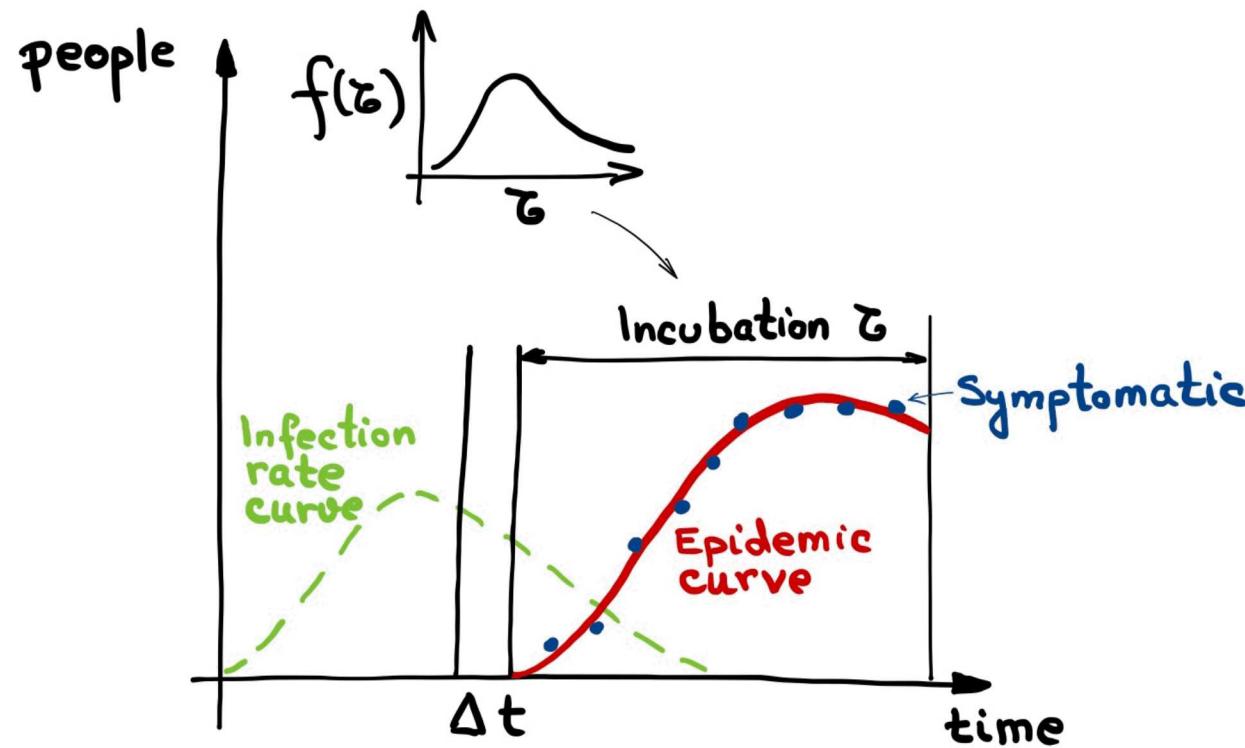
$$R_0 = 2$$



BAYESIAN MODEL: COVID-19 MODELING AND BAYESIAN FORECAST (COMBO)

[Safta, 2011]

From observable reported new cases, Bayesian models infer the infection rate curve then push forward a predictive epidemic curve.



- Infection Rate curve modeled as a Gamma distribution with unknown shape (k) and scale (θ) parameters

$$\text{InfR}(t - t_0) \sim \Gamma(k, 1/\theta)$$

- The incubation rate is modeled using a log-normal distribution with parameters based on published results [Lauer, 2020]

$$\text{IncR} \sim \text{Lognormal}(\mu(\xi_1), \sigma(\xi_2)^2)$$

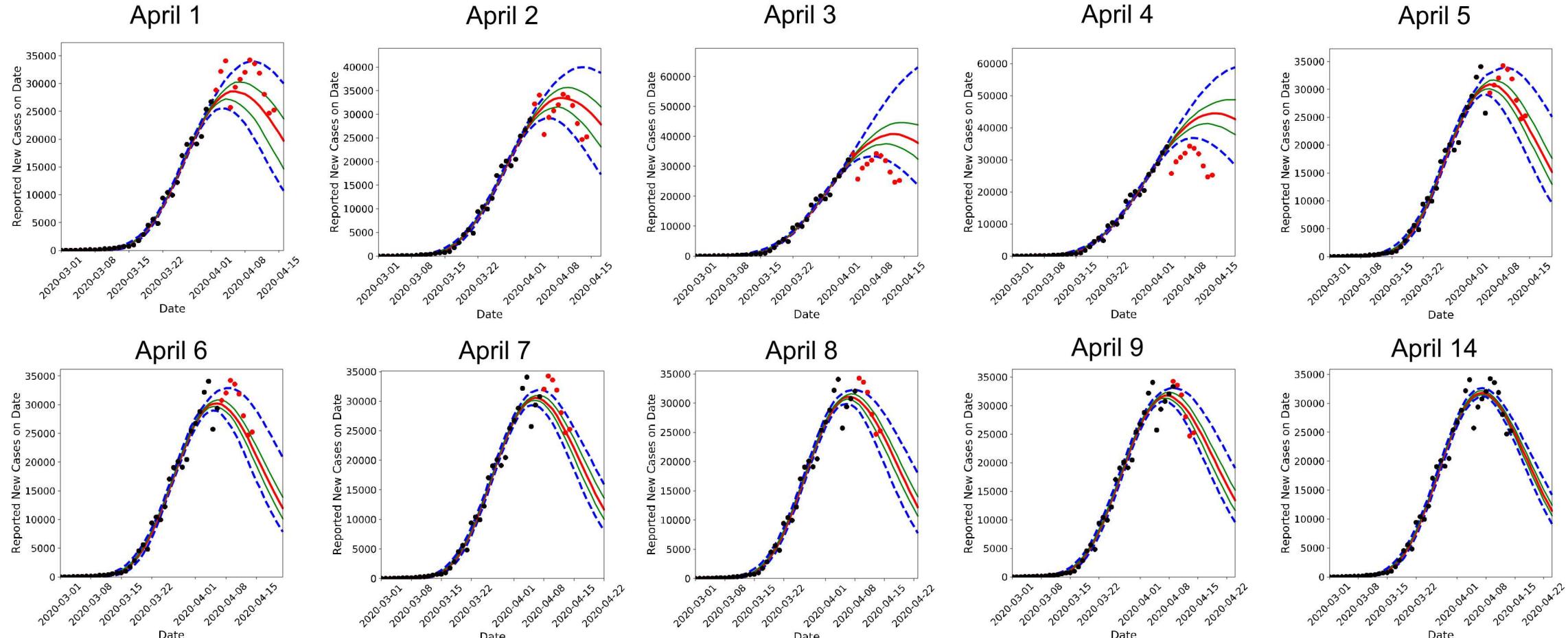
$$\mu = 1.504 \dots 1.755$$

$$\sigma = 0.271 \dots 0.542$$

BAYESIAN MODEL: COVID-19 MODELING AND BAYESIAN FORECAST (COMBO)

[Safta, 2011]

U.S. Forecasts over time, learning the bend in the curve



- Black symbols show data used for model inference and to generate forecasts
- Red symbols display data observed after the forecast was produced

COMPARTMENTAL MODELS

[Hethcote, 2000]

Susceptible-Exposed-Infected-Recovered

System of ordinary differential equations (ODEs):

$$\dot{S} = -\beta \frac{I}{N} S$$

$$\dot{E} = \beta \frac{I}{N} S - \xi E$$

$$\dot{I} = \xi E - \gamma I$$

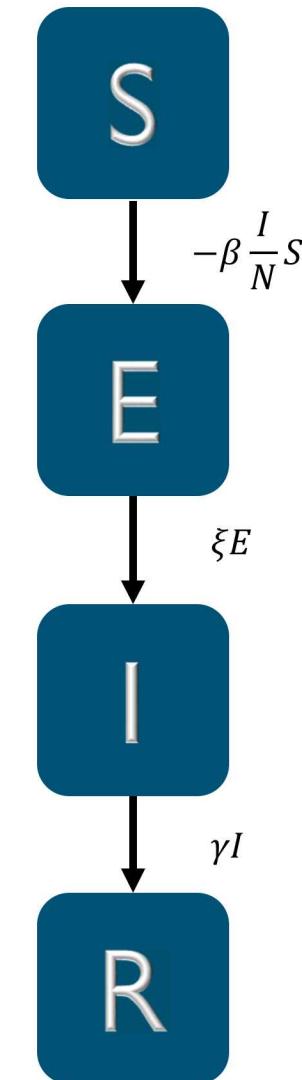
$$\dot{R} = \gamma I$$

Force of Infection Function: $\beta \frac{I}{N}$

Average Incubation Period: $\frac{1}{\xi}$

Average Infectious Period: $\frac{1}{\gamma}$

Model $R_0 = \beta \frac{1}{\gamma}$



$$N = S + E + I + R$$

COMPARTMENTAL MODELS

[Hethcote, 2000]

Susceptible-Exposed-Infected-Recovered

Explicitly add a parameter for average number of contacts.

System of ordinary differential equations (ODEs):

$$\dot{S} = -\beta c \frac{I}{N} S$$

$$\dot{E} = \beta c \frac{I}{N} S - \xi E$$

$$\dot{I} = \xi E - \gamma I$$

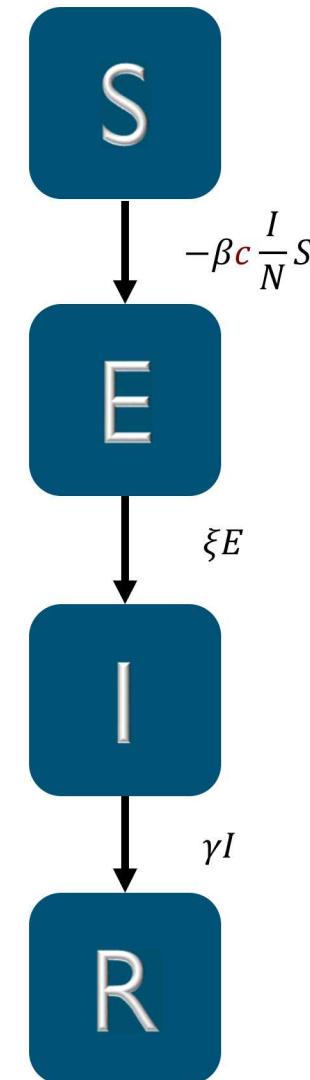
$$\dot{R} = \gamma I$$

Force of Infection Function: $\beta c \frac{I}{N}$

Average Incubation Period: $\frac{1}{\xi}$

Average Infectious Period: $\frac{1}{\gamma}$

Model $R_0 = \beta c \frac{1}{\gamma}$



$$N = S + E + I + R$$

COMPARTMENTAL MODELS

[Hethcote, 2000]

Susceptible-Exposed-Infected(Asymptomatic)-Infected(Symptomatic)-Recovered
Explicitly add a parameter for average number of contacts.

System of ordinary differential equations (ODEs):

$$\dot{S} = -\beta c \frac{A + I}{N} S$$

$$\dot{E} = \beta c \frac{A + I}{N} S - \xi E$$

$$\dot{A} = f_a \xi E - \gamma_A A$$

$$\dot{I} = (1 - f_a) \xi E - \gamma_I I$$

$$\dot{R} = \gamma_A A + \gamma_I I$$

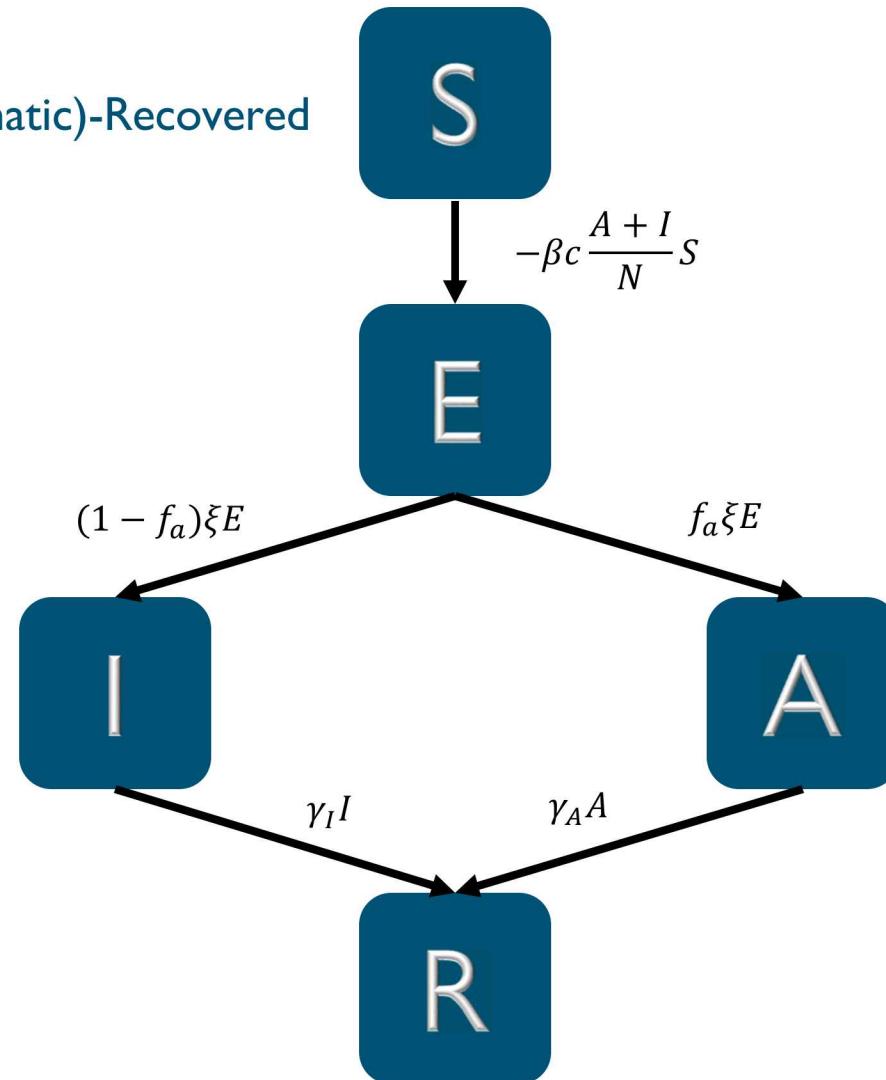
Force of Infection Function: $\beta c \frac{A + I}{N}$

Average Incubation Period: $\frac{1}{\xi}$

Average Infectious Period: $\frac{1}{2} \left(\frac{1}{\gamma_A} + \frac{1}{\gamma_I} \right)$

Proportion of infections that are Asymptomatic: f_a

Model $R_0 = \beta c \left(\frac{1}{2} \left(\frac{1}{\gamma_A} + \frac{1}{\gamma_I} \right) \right)$



$$N = S + E + A + I + R$$

COMPARTMENTAL MODELS

[Hethcote, 2000]

Susceptible-Exposed-Infected(Asymptomatic)-Infected(Symptomatic)-Recovered
Explicitly add a parameter for average number of contacts & loss of immunity.

System of ordinary differential equations (ODEs):

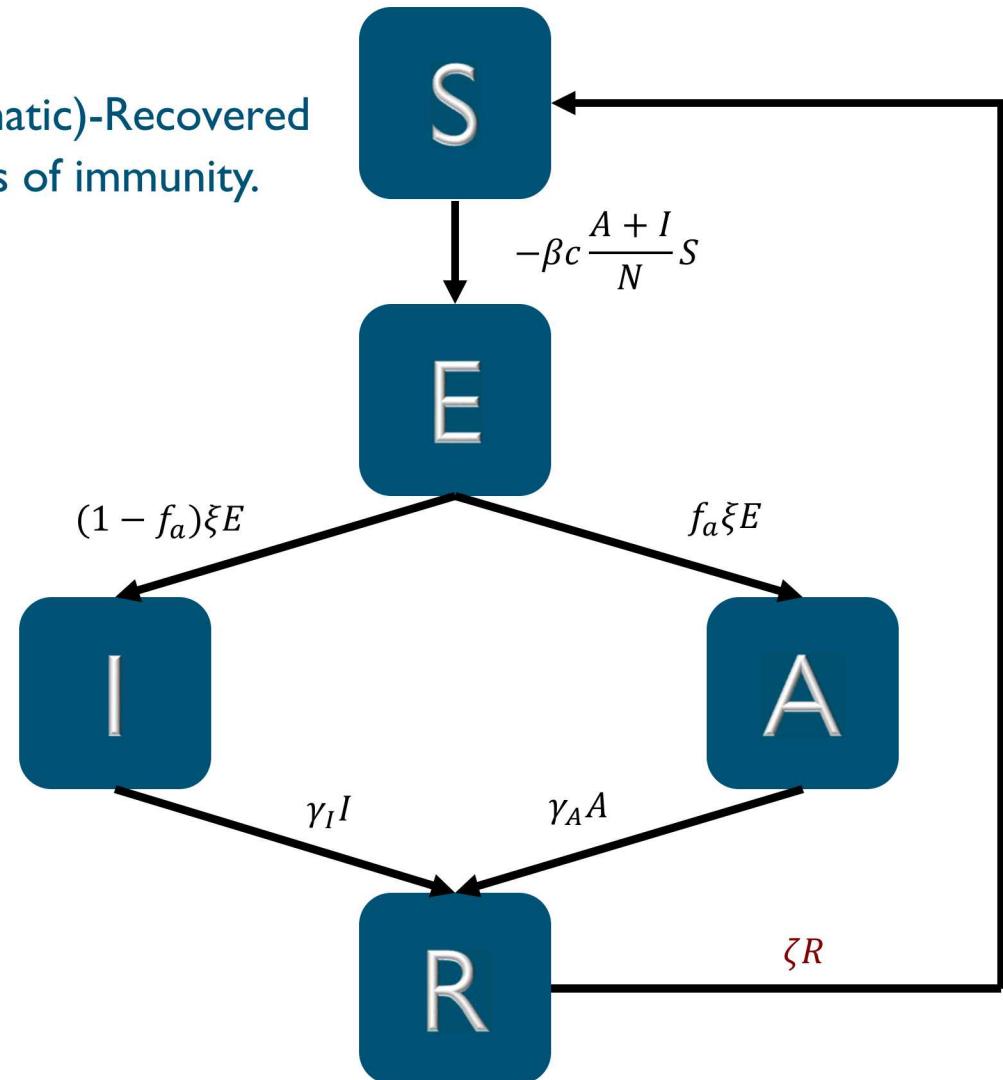
$$\dot{S} = -\beta c \frac{A + I}{N} S + \zeta R$$

$$\dot{E} = \beta c \frac{A + I}{N} S - \xi E$$

$$\dot{A} = f_a \xi E - \gamma_A A$$

$$\dot{I} = (1 - f_a) \xi E - \gamma_I I$$

$$\dot{R} = \gamma_A A + \gamma_I I - \zeta R$$



For COVID-19 secondary infections are possible. Accounting for the potential loss on immunity has been deemed important.

$$N = S + E + A + I + R$$

COMPARTMENTAL MODELS

[Hethcote, 2000]

Susceptible-Exposed-Infected(Asymptomatic)-Infected(Symptomatic)-Recovered

Explicitly add a parameter for average number of contacts with loss of immunity, and disease related deaths.

System of ordinary differential equations (ODEs):

$$\dot{S} = -\beta c \frac{A + I}{N} S + \zeta R$$

$$\dot{E} = \beta c \frac{A + I}{N} S - \xi E$$

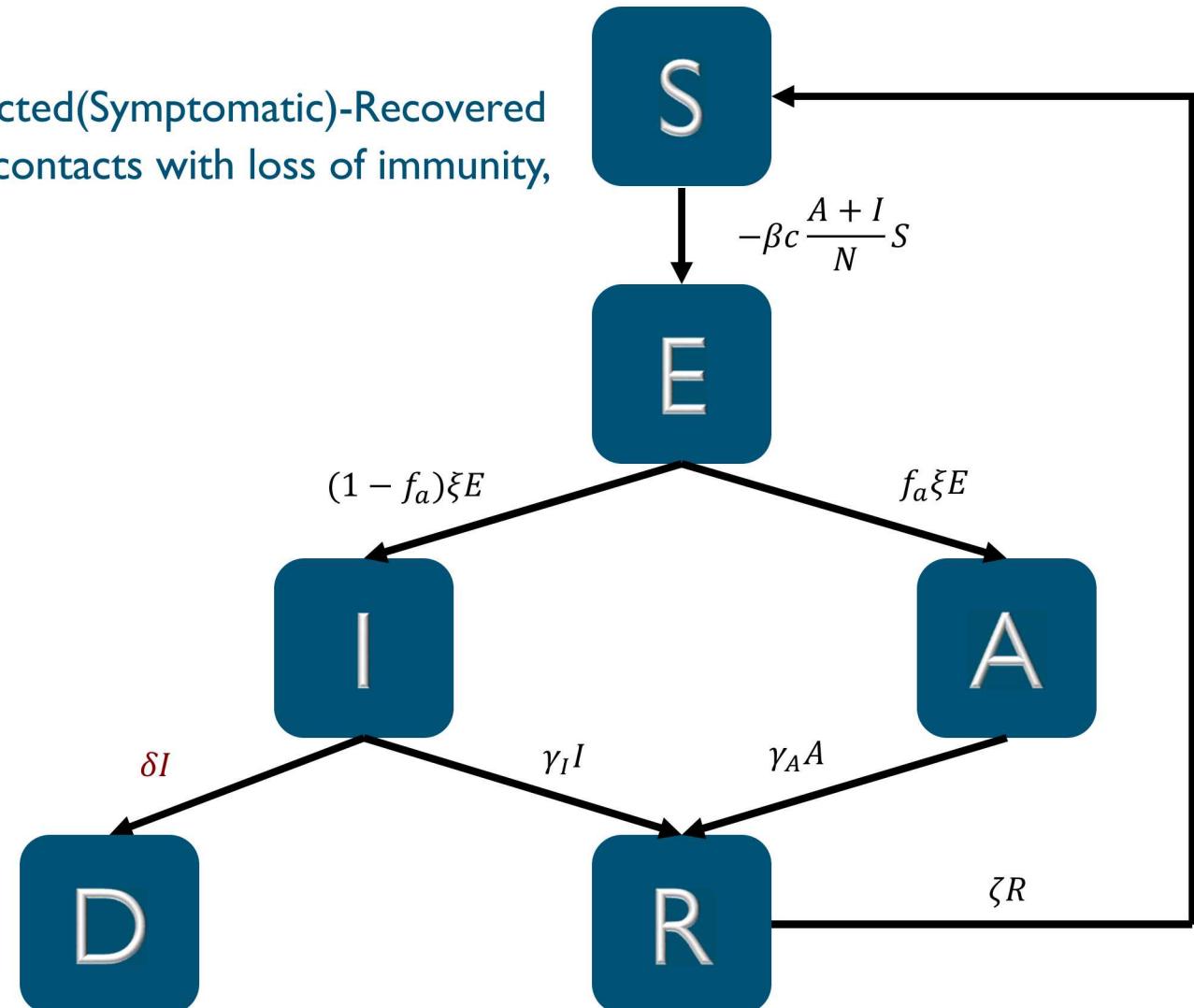
$$\dot{A} = f_a \xi E - \gamma_A A$$

$$\dot{I} = (1 - f_a) \xi E - \gamma_I I - \delta I$$

$$\dot{R} = \gamma_A A + \gamma_I I - \zeta R$$

$$\dot{D} = \delta I$$

For COVID-19 Compartmental Epi Modeling:
the death state, D , is essential to calibration of
the model parameters.



$$N = S + E + A + I + R$$

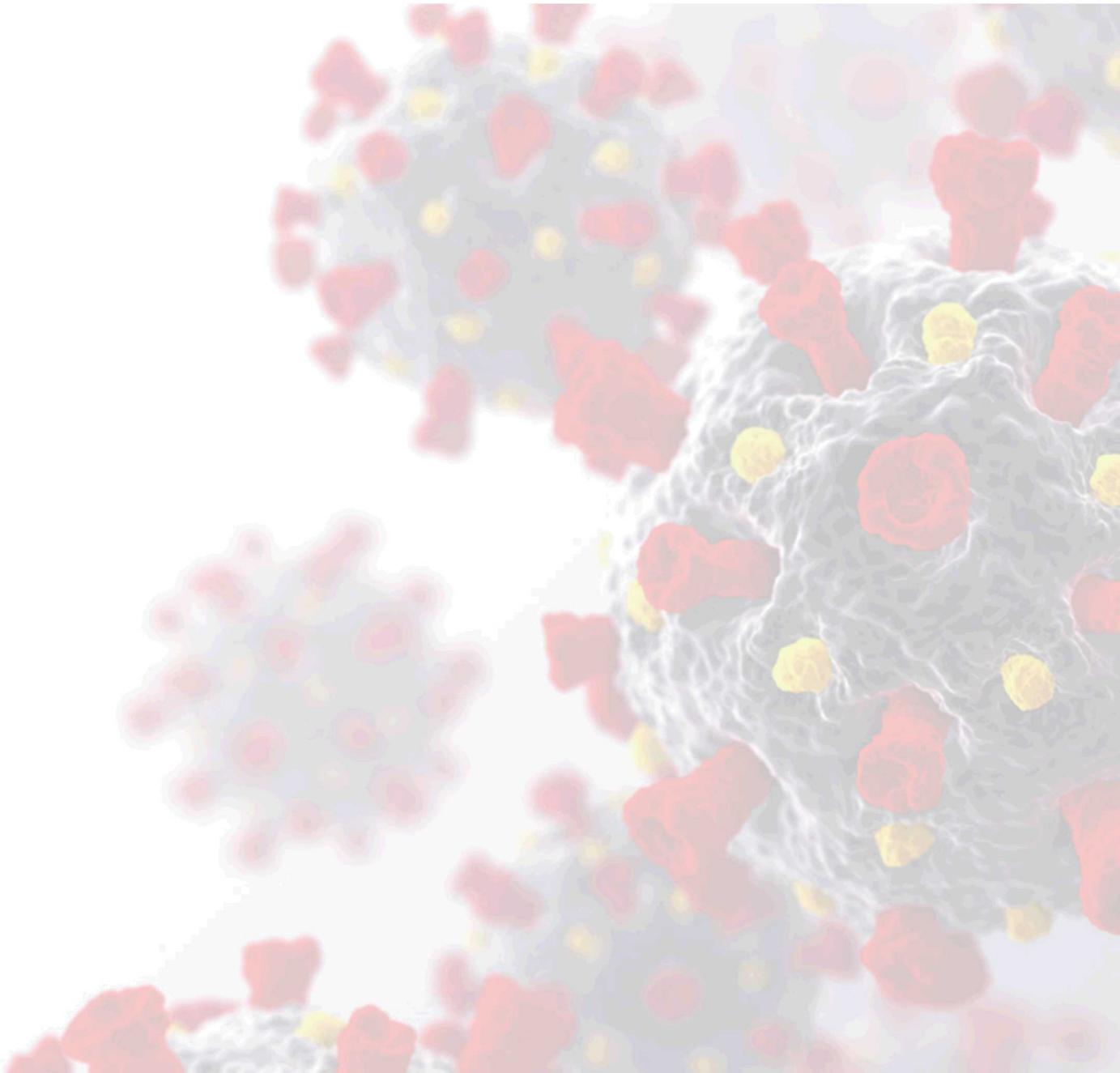
OUTLINE

INTRO TO EPIDEMIOLOGY

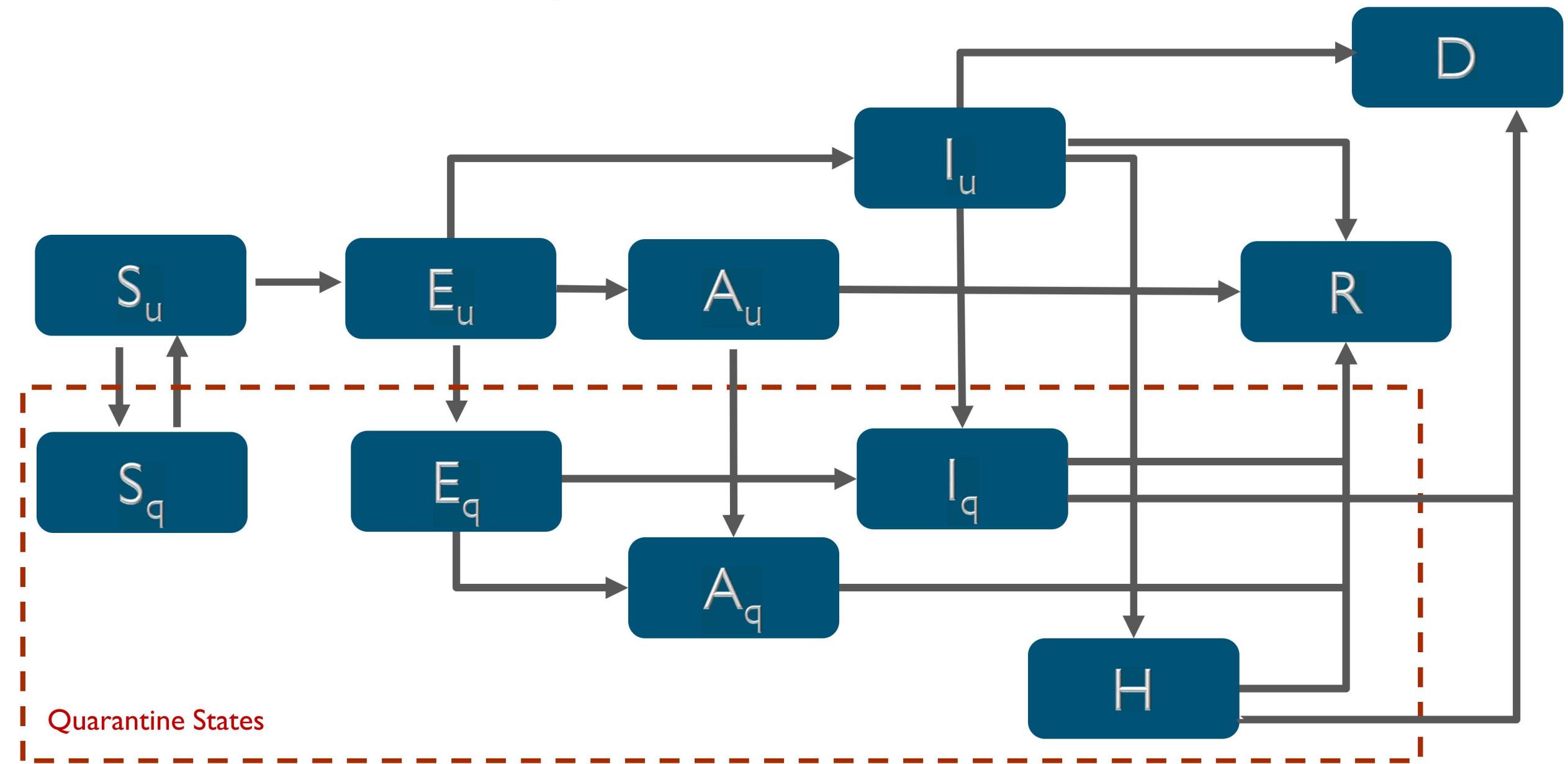
EPI MODELING PARADIGMS

MEDICAL RESOURCE UTILIZATION

MODELING MITIGATION STRATEGIES

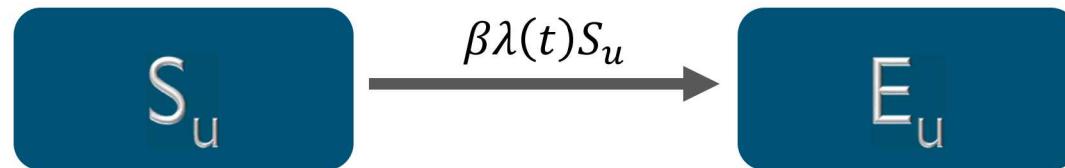


COMPARTMENTAL MODEL: QUARANTINE STATES



FORCE OF INFECTION

ACCOUNTING FOR FACE MASKS AND EFFECTIVENESS OF QUARANTINE



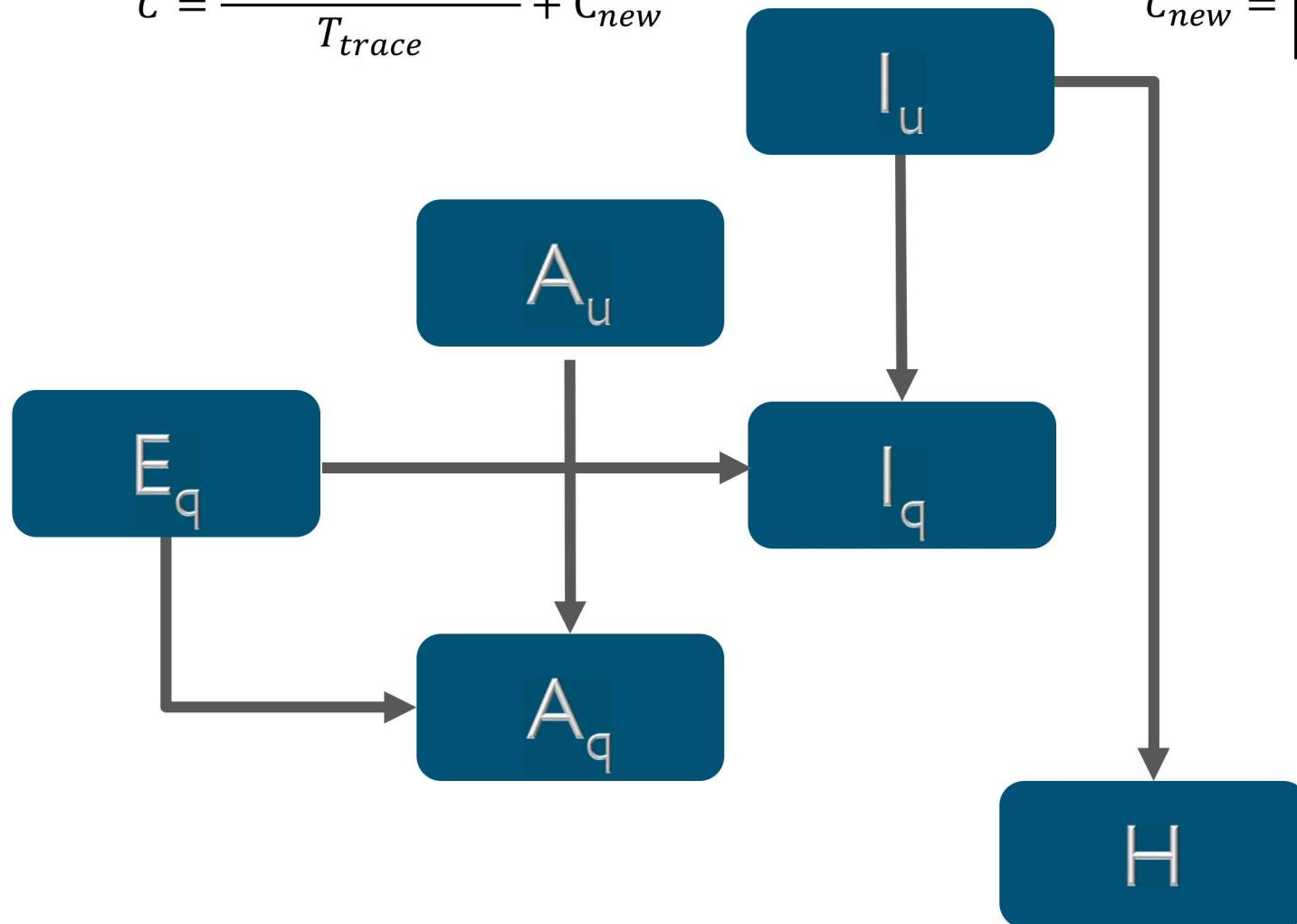
$$\lambda(t) = \frac{\kappa(1 - \varepsilon p)(\eta_E E_u + \eta_A A_u + I_u + (1 - \theta_q)(\eta_E E_q + \eta_A A_q + I_q + \eta_H H))}{N}$$

$$N = S_u + S_q + E_u + E_q + A_u + A_q + I_u + I_q + H + R$$

κ	Average number of contacts
ε	Effectiveness of face masks
p	Probability an interaction is protected by a face mask
η_*	Relative infectivity of individual in disease state *
θ_q	Effectiveness of Quarantine

COMPARTMENTAL MODEL: RANDOM TESTING AND CONTACT TRACING INITIATES NEW CONTACTS TO TRACE

$$\dot{C} = \frac{-\min(C, N_{trace})}{T_{trace}} + C_{new}$$

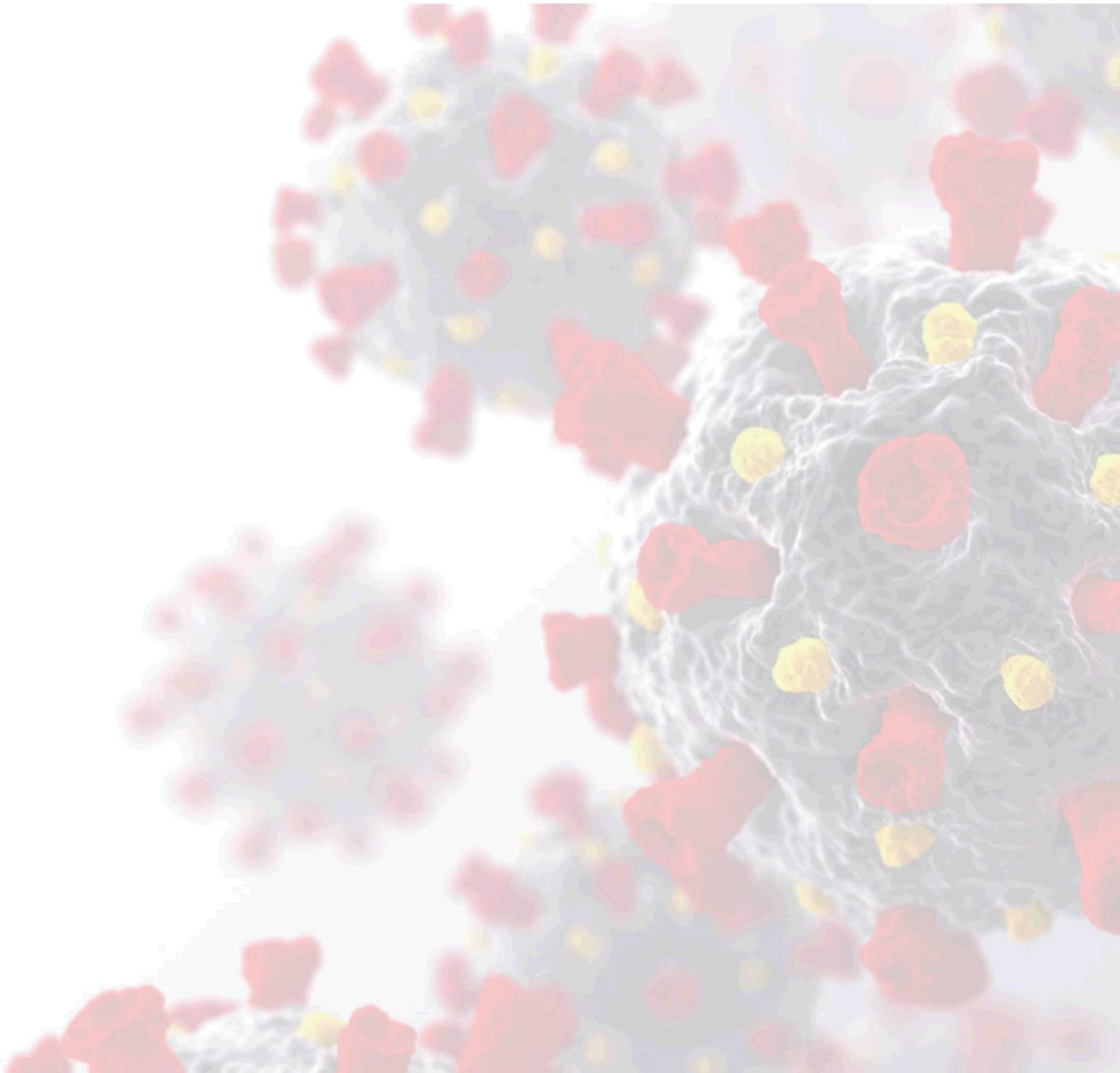


$$C_{new} = \left[d\phi_{\kappa} \kappa T_I \left[1 - \frac{C}{N} \right] \right] * [\tau_{E_q} E_q + q_{rA}(t) + q_{rI}(t) + q_{tA}(t) + q_{tI}(t) + \tau_{I_u H} I_u]$$

κ	Average number of contacts
d	Dispersion of contact
ϕ_{κ}	Likelihood a contact is recalled
T_I	Average amount of infectious time before identified as COVID-19 positive
τ_*	Rate of transmission out of population *
q_{r*}	Rate of random testing
q_{t*}	Rate of contact tracing
N_{trace}	Maximum number of concurrent contact tracing
T_{trace}	Time for contact tracing system to engage each contact

Thank You!

Any Questions?



REFERENCES

Bertozzi, Andrea L., et al. "The challenges of modeling and forecasting the spread of COVID-19." *arXiv preprint arXiv:2004.04741* (2020).

Childs, Lauren M., "Choosing Intervention Strategies During an Emerging Epidemic." *SIAM News*. Vol 53, number 4. (2020).

Ferguson, Neil, et al. "Report 9: Impact of non-pharmaceutical interventions (NPIs) to reduce COVID19 mortality and healthcare demand." (2020).

Hethcote, Herbert W. "The mathematics of infectious diseases." *SIAM review* 42.4 (2000): 599-653.

Last JM, editor. *Dictionary of epidemiology*. 4th ed. New York: Oxford University Press; p. 61. (2001)

Lauer et al, "The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application" *Annals of Internal Medicine*, (2020).

C. Safta, J. Ray, S. Lefantzi, D. Crary, K. Sargsyan, and K. Cheng, "Real- time Characterization of Partially Observed Epidemics using Surrogate Models," Technical Report SAND2011-6776 (2011).

BACKUP

EPIDEMIC VS ENDEMIC COMPARTMENTAL MODELS

Epidemic

$$\frac{dS}{dt} = -\beta \frac{cI}{N} S$$

$$\frac{dE}{dt} = \beta \frac{cI}{N} S - \xi E$$

$$\frac{dI}{dt} = \xi E - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

Endemic

$$\frac{dS}{dt} = bS - \beta \frac{cI}{N} S - dS$$

$$\frac{dE}{dt} = \beta \frac{cI}{N} S - (\xi + d)E$$

$$\frac{dI}{dt} = \xi E - (\gamma + d)I$$

$$\frac{dR}{dt} = \gamma I - dR$$

b: birth rate

d: non-disease related death rate,

AGE STRUCTURED COMPARTMENTAL MODELS

Homogeneous SEIR (endemic ODE)

$$\frac{dS}{dt} = bS - \beta \frac{cI}{N}S - dS$$

$$\frac{dE}{dt} = \beta \frac{cI}{N}S - (\xi + d)E$$

$$\frac{dI}{dt} = \xi E - (\gamma + d)I$$

$$\frac{dR}{dt} = \gamma I - dR$$

Heterogeneous SEIR (age structured endemic PDE)

$$\frac{\partial S}{\partial a} + \frac{\partial S}{\partial t} = -(\lambda(a, t) + d(a))S$$

$$\frac{\partial E}{\partial a} + \frac{\partial E}{\partial t} = \lambda(a, t)S - (\xi + d(a))E$$

$$\frac{\partial I}{\partial a} + \frac{\partial I}{\partial t} = \xi E - (\gamma + d(a))I$$

$$\frac{\partial R}{\partial a} + \frac{\partial R}{\partial t} = \gamma I - d(a)R$$

With:

$$\lambda(a, t) = \frac{\int_0^\infty b(a) \tilde{b}(\tilde{a})I(\tilde{a}, t)d\tilde{a}}{\int_0^\infty U(\tilde{a}, t)d\tilde{a}}$$

$U(a, t)$: age distribution of the total population

$d(a)$: age-specific non-disease related death rate

b : birth rate, β : infectivity, c : # of contacts, d : non-disease related death rate,
 ξ : reciprocal incubation window, γ : reciprocal infectious window