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Future Power Grid Challenges
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Separation between the renewable sources
and demand [1]

Challenges:
• Unpredictable and unreliable
• Distance between demand and renewable sources

Solutions:
• Superconductors and AC/DC converters
• Battery energy storage system

The proposed DC superconductor electricity pipeline for
carrying large amounts of renewable energy [1]

— Superconductor Electricity Pipeline

O AC/DC Converter Stations

Wind Quality
Marginal
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Good
Excellent
Outstanding
Superb

[1] "Integrating Renewable Electricity on the Grid", A Report by the American Physical Society (APS)
Panel on Public Affairs CLEMSON
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Large-Scale Battery in Power System

By implementing a proper control strategy, Battery can provide various functionality in the

power grid based on power system requirements:

❑ Load frequency support;

❑ Voltage control and regulation at the local terminals

of the BESS; and

❑ Power oscillation damping and transient stability of

the power system.
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BESS Four quadrant control and operation diagram
(adapted from [2])

[2] P. Pourbeik, S. E. Williams, J. Weber, J. Sanchez-Gasca, J. Senthill, S. Huang, and K. Bolton, "Modeling and Dynamic Behavior of Battery Energy

Storage," IEEE Electrification Magazine, pp. 47-51, Sept. 2015 CLEMSON
IQ I V E R. S I "I' Y



Oscillations (modes) in Power Systems

Local modes

• Generally observed at frequencies > 2 Hz

• Oscillations associated with local "electrically close" groups of generators.

• Sometimes caused by inadequate tuning of control systems (exciters, HVDC converters, SVCs, and PSS)

Inter-area modes

• Generally observed at frequencies between 0.1-2 Hz

• Oscillations associated with the flow of power; they involve "electrically far" areas

• Groups of generators in one area swinging against another group of generators in another area

• Occur across weak or heavily loaded transmission paths over long corridors

Local and inter-area modes are small-signal stability issues

CLEMSON
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Power System Network Model

Power system model is represented as

[Ybus]Avt = DIc — AIL — AIs + A/B
Excitation
Controller

Stator Equations

Rotor Electric
Equations

Rotor Mechanical
Equations

Speed Governor

thI generator

We need dynamic mode for stability analys
i
s 

fic = Ax + Bu
y = Cx + Du

N etwo rk

Ybus

Vk

k

V.1

Battery

Power system Structure

Load
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Power System Component Model

Generator Model

Alcg = [AgMag + [Bg]Al7g + [E JAIL cg

Alg = [C g]Aocg + [MAV9

AI = [A1c19 1 and AV = [AVggl
g [A/ 9 [AVd9qg 

Network Model

[Ybits]Avt = DIG — DIL — DIs + AIB

).( = [At]X + [E]t c

Load Model

A±l = [A1]Ax1 + [B1MV1 + [E 1]Aucl

= [C 1]Ax1 + [DnA171

A11 = [D1]OV1= 7 116,171

Battery Model

A ± b [A b] A b [B b] AV b + [E b]Aucb

Olb = [Cb]Axb [Db]AVb

1-1
At = [A] + [B][P]t [YZIuspd [P][C]

[YLSDQ] AV QD = [13 c][C c][X G] + [Pd[C d[X + [Ps][Cs][Xs] + [PB][C B][X B]

CLEMSCD•iv'
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Existing Battery Models

• Active power model of the battery

• WECC battery storage dynamic model

Vref/Vreg or Qref/Qgen

f/f_ref and Pgen/Pplant_ref

Qref
(or Qext)

Qgen

Pref  

Q Control

P Control

vt

REEC_C •
•
•

:qcmd' Igcmd

pcmd'

Current
Limit
Logic

A

I perod

Pqflag
= 1 (P priority)
= 0 (Q priority)

REGC_A

Generator/
Converter
Model

lq

Pgen

Ip

Diagram Representation of the BESS Model with the Plant

Controller [3]
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Battery

Active power model of the battery

[3]https://www.wecc.org/Reliability/WECC%20Approved%20Energy%20Storage%20Systern%20Model%20-
%20Phase%20II.pdf
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Battery Model (Charging Scenario)

nt
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Battery and inverter circuit model vt

3
VBT = Vt COS(aR) — -Th..xCOIBES

3VT• 1 1
ThIBES =
a

vt cos(aR) — AR v 
, 

B0C AR 
VB1

3
= 1 + — xco, and R = RBS RBTTER

The discharge scenario is very similar to the charging
scenario (see the paper for details)
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Battery and inverter dynamic model in the charging mode
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State Space Model (Charging Scenario)

rAVBOC

= Ab 63/431 + Bb Av + EbAucb

AaR

rwbdi[Albq,—
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Cb AVB1 + Db Av
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For more details on battery state space model see the paper
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Linearization Results (Charging Scenario)
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• We have accurate model for stability analysis especially for transient analysis.
• Since we have battery's states, we will be able to evaluate battery integration to the power system.
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Two-Area Case Study Model

• A large-scale battery in connected to the two-area case study model
• we assume that we have access to all states' measurements
• The only control input is the battery's firing angle

= [At]X + [E]UcB

1-1
At = [A] + [B][P]t [I/Ls D Qi [P][C]

1 5

8 

Aa

- - -
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AP andAQ

BESS
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_ Controlii :
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4

Battery integration to the two-area case study model

[YZ•us i 0 Q] AliQD = [13 c][C c][X G] + [Pd[C il[X L] + [Ps][Cs][Xs] + [Pid[Cid[X B]
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Battery Integration Result
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First and second generators in the first area are
oscillating against the third and forth generators in the
second area with the frequency of 2.37 hz.

Battery integration to two-area model eigenvalues

x Two-area case study with Battery Integration
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Battery Control Design Approaches

System state space model

Charging mode

Discharging mode

ii = Acx + Bucbc
tyc = Cx

i. = Adx + Bucbd

yd = Cx

Switching policy

F fc = fttkk 1(xT Qc x + ucTb cR c — u c ) dr—b cJ -

_Id = fttkk l(XT Qd X + UcTb d Rd Ucb d) dr

U ref

 • 1ls
x

_.4-1 A c I.—

Power Grid

Control Signal id Ad
Voltage/Frequency measurements

I
r

Control
System

Control design approach based on charge
and discharge of the battery

A switching policy will be considered to shift between charging and discharging
conditions to minimize the cost function in each time interval of (tk_1, tk).

.10,100_ 
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LQR State Feedback
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• Using the LQR state feedback for charging and discharging scenarios, and switching between them,
the frequency oscillations are damped in less than 5 seconds.

• Switching between charging and discharging occurs based on cost functions.
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Conclusion and Future Work

Conclusion

• State space model of the battery has been represented in d-q structure, which is well suited for
stability analysis in power systems

• Inverter firing angle is considered as an input enabling control of the battery's power factor

• Hybrid control algorithm is designed to minimize frequent switching between charging and
discharging modes of the battery

Future Work

• Suboptimal pole placement to move some critical poles to reduce the frequency deviation

• Decentralized output control design using distributed battery sites considering considering the limited
availability of information
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