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Abstract. Many factors that influence the effect of leading edge erosion on annual energy
production are uncertain, such as the time to initiation, damage growth rate, the blade design,
operational conditions, and atmospheric conditions. In this work, we explore how the uncertain
parameters that drive leading edge erosion impact wind turbine power performance using a
combination of uncertainty quantification and wind turbine modelling tools, at both low and
medium fidelity. Results will include the predicted effect of erosion on several example wind
plant sites for representative ranges of wind turbine designs, with a goal of helping wind plant
operators better decide mitigation strategies.

1. Introduction
Leading edge erosion (LEE) is a prominent issue in wind turbine blade reliability, causing gradual
performance decreases and persistent maintenance costs. It is generally understood that the main driver
of erosion is the impact of rain droplets on the leading edge. The erosion rate is a function of the joint
probability of rainfall frequency, droplet size, wind speed, rotor speed, blade skin construction, and other
parameters. The repeat impact on the blade skin does not initially cause any damage until a certain
threshold is reached. Once this incubation period has elapsed, the leading-edge erosion generally makes
the leading edge a bit rough, similar to a dirty or pitted surface. The initial damage category is commonly
labeled 1 or 2 and generally considered cosmetic in its nature. The aerodynamic impact of such
conditions have been studied elaborately in numerous wind tunnel studies [1-12], and the annual energy
loss can be quantified using such data. The AEP loss is up to 2% for this light level of erosion. Such
losses are generally, very difficult to detect in ordinary power curve measurements or production
numbers, so these types of damages are generally not repaired.

As the repeat rain drop impact penetrates the outer coating, minor structural damage occurs as the
underlying fiber glass matrix is gradually exposed. These damages start as category 3 damage and
transition into category 4. Depending on the repair priorities, these two categories generally result in
repair efforts based on visual inspections. An example of a category 4 damage is shown in figure 1, from
which an imprint was tested in the wind tunnel [ 9,12]. The AEP impact is significant, but also not easily
detectable in a measured power curve, especially considering that the degradation occurs over many
years. Results of an in-depth study indicated that a heavily eroded wind turbine blade can reduce annual
energy production by up to 5% for a utility scale wind turbine based on the NREL 5-MW turbine model,
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see [7]. Ultimately, the damage reaches a category 5, where the hollow of the blade is exposed and
severe structural damage becomes eminent and the turbine must be stopped and repaired urgently.

Figure 1. Category 4 damage from which an imprint reproduction of the eroded leading edge was
tested in the wind tunnel [9, 12].

2. Industry-level Analysis
In order to illustrate the importance of leading-edge erosion across a broad fleet, the USGS wind turbine
database was used [13], including only turbines in larger wind farms constructed after year 2000. The
fleet of 48,536 turbines in 925 wind farms is made up almost of 100 different turbine models and a total
capacity of 92 GW. The database does not include RPM data, so this input has been manually entered
for the 100 turbine models from their data sheets. For simplicity, it is assumed that all turbines within
each state experience the state average rain rate. The average annual windspeed is scaled with the hub
height relative to 7.5 m/s and 80m of each turbine with a wind shear exponent of 0.14,

Uavg = 7.5 • (hh / 80)0'. These data sources and assumptions result in raw capacity factors ranging

from 36 to 47%. During the period shown in figure 2, the average rotor diameter has increased steadily
from 70 to 119 meters; whereas, the average turbine tip speed remained in the 76-78 m/s range until
2010, after which new turbines have significantly increased in tip speed.
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Figure 2. Number of turbines constructed and the average US fleetwide tip speed extracted from [13],
supplemented with RPM information.



The predominant driver of leading-edge erosion is the local speed of rain drops relative to the blade
speed, so in part driven by the terminal velocity of the drops and in part by the turbine rotational speed.
The rate of erosion is suggested to be proportional to V6 7, where V is the local velocity as defined in
[14] and proportional to the rain rate or volume of rain to the power of 2/3. Using this sensitivity to
erosion rates, we can compute the relative erosion rate with reference to the year 2000's average tip
velocity. This illustrates an increased risk of erosion by a factor 2.5 over the period considered, see
figure 3. Obviously, this is under the assumption that no turbine leading edge has been reinforced or
equipped with leading edge protection.
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Figure 3. Average erosion rate of the US fleet newer than year 2000, computed based on tip velocity
and state-wide average rain rate using the sensitivity suggested in [14].

The turbine suppliers and leading-edge protection (LEP) suppliers have in recent years adapted the
ASTM G73-10 whirling arm rain erosion test, where blade sections are tested with an accelerated rate
of speeds up to 160 m/s, rain rates up to 35 mm/hour and droplets sizes between 1 to 2 mm. In
principle, this can be correlated to the real-life turbine experience with tip speeds between 80 to 110
m/s, rain rates up to 4500 mm/year and droplets exceeding the test droplet diameter [15,16]. While
velocity and rain intensity are relatively easily translated between test and experiment, the sensitivity
to droplet size is more difficult to quantify because of the lack of site-specific droplet information
combined with actual turbine operational speeds. The sensitivity to droplet size is high; and, it has
been suggested [15] that rather than implementing LEP to reduce rain impact, the turbine can be de-
rated with a reduced tip speed during events when the rain drop distribution include large droplets.
Both methods are likely to reduce annual energy production up to a few percentage points.
Since we do not have an accurate translation between the tested resilience and the real world LE

durability, we can explore a more pragmatic approach to derive erosion impact on the US fleet. Firstly,
it would be reasonable to assume that the time to reach the point of repair is inversely proportional to
the relative erosion rate. Further, based on the experience that older turbines generally need repair after
10 to 15 years of operation, we can compute how many turbines in the fleet need repair relative to
their construction year using the theoretical growth rate computed for each individual turbine in each
individual wind farm. Regardless of the accuracy of these simple assumptions, figure 4 illustrates the
increased interest in LEE for the US fleet. If the trigger point for repair is significant LEE detected by
visual inspection, the associated annual energy losses are significant and increasing. The number of
repairs tapers off because future turbine construction is unknown and thus not added. One could
speculate, that perhaps new leading-edge systems or operational modifications could also reduce the
future efforts on LE repairs.
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Figure 4. Number of turbines in the existing US fleet needing LEE repair, assuming 10 (solid) to 15
years (dash) offset time to repair, scaled with the relative erosion rate described in figure 3.

Another risk aspect of new turbines entering the market is simply that new turbines with larger rotor
diameters, generally have a higher capacity factor [17] and therefore spend more operating hours at full
rated RPM and tip-speed. In figure 5, we have shown an older US turbine compared to a newer class III
turbine, compared with Uavg=7.5 m/s wind Rayleigh distribution. The difference in rated wind speed is
1.0 m/s. While that may not seem like much, the new turbine will spend 710 hours more per year at rate
power than the older one. Everything else even, this increases the risk of the turbine being at a high tip
speed though rain weather, thus increase the amount of leading-edge erosion. However, while the rate
of erosion may be higher, the effect on performance is mitigated to some extent, as more time is spent
in region III vs. region II operation.
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Figure 5. Power curves of a typical turbine constructed in year 2004 to 2011 and an example of a new
high capacity factor IEC class III new turbine, which has not entered the market yet, shown with a

Rayleigh distribution Uavg=7.5m/s.

Understanding the range of impact of erosion on performance will help wind plant operators decide
when to mitigate the effects of this erosion through repairs, modifications, or changes in operation.
Some of the assumptions of the preceding high-level analysis include the effect of erosion on airfoil
performance, the effect of the spanwise distribution of erosion on turbine power, and the influence of
the turbine controller on the performance of an eroded turbine. In the remainder of this work, these
parameters will be estimated in greater detail for several categories of blade erosion and their impact on
performance will be explored using a standard static power curve and a probabilistic power curve cloud
analysis.



3. Detailed Analysis - Power Curve Uncertainty
As previously discussed, erosion is dependent on a variety of weather and turbine design parameters.
While there remains much research to do in producing validated, physics-based models of erosion, there
are already a number of coating solutions available. Thus, a current uncertainty that exists in industry is
the economics, specifically in how and when to repair blades and the extent to which de-rating should
be employed. This will be of larger concern in the future as blade designs will likely be lighter and
operate at higher tip speeds, while markets will move from power-purchase agreements to merchant
operation, incentivizing plant owners to better understand real-time performance and costs.

To more thoroughly understand one part of this problem, a probabilistic analysis of the impact on
aerodynamic power performance from leading edge erosion was undertaken. The main focus of this
analysis is to estimate the AEP loss that can be expected from erosion from a realistic power curve,
which feeds into the high-level analysis used to make operational decisions to mitigate erosion through
control or repair. This analysis will also serve to predict the level of erosion that can be detected within
the limits of power curve uncertainty.

There are several important components to predicting loss in power and AEP from leading edge
erosion for a given erosion level. The first is creating a map from the rate of erosion at each spanwise
station to the tested erosion of the wind turbine blades' airfoils. A method was also created to estimate
how the erosion progresses along the span of the wind turbine blade as the erosion level increases. These
methods were then used to generate simulated eroded blades, whose power loss was modelled using a
standard static power curve analysis. A probabilistic analysis was then undertaken to produce a power
curve cloud, simulating the uncertainty in measuring changes to a power curve on an operational wind
turbine.

3.1. Eroded Airfoil Performance Modeling
Modeling the impacts of erosion on power in more detail for a specific turbine requires detailed clean
and eroded airfoil polar (lift and drag) data, as well as details of the complete turbine design and control
system. For the example analysis in the present study, the National Rotor Testbed (NRT) turbine was
selected, as its design information is publicly available and field test data will be as well [18]. Further,
the NRT rotors were designed to reproduce the wake and performance characteristics of 2000's era
utility wind turbines, and thus currently represent some of the most prevalent in operation today.

The rotor blades use two primary airfoils along the blade span: the 24% thick S814 airfoil on the
inner part of the blade and the 17% thick S825 airfoil on the outer part [18]. These airfoils were designed
as part of a family for a variable speed, pitch regulated turbine, and include more modern wind turbine
airfoil design considerations such as roughness insensitivity and high lift coefficient design [19]. The
S825 airfoil is used along the outer half of the NRT blades, and has been tested under clean, transition
fixed, and standard roughness conditions at the NASA Low Turbulence Pressure Tunnel [19]. The clean
S825 airfoil wind tunnel data from the NASA tests were used in this study.

Erosion starts near the blade tip at regions of the highest impact velocity and progresses inboard.
Simulating eroded blades only requires the airfoil polar data for the eroded surface conditions in the
outer blade sections to be modified. Unfortunately, detailed eroded experimental data is not available
for the S825 airfoil; however, data is available from previous work for a similar airfoil, the
NACA 633-418, which is also widely used in the industry for this generation of turbines.

During the wind tunnel testing at Texas A&M, the NACA 633-418 airfoil was tested with a range
of roughness levels and a reproduction of severe erosion from an operational wind turbine [1,3,5]. The
results from severe erosion were termed the eroded leading edge (ELE) and are equivalent to the higher
erosion level considered in the performance analysis in this paper (category 4), see figure 1. The ELE
results from Texas A&M show drag lower than fixed transition for low lift, but much higher than fixed
transition at higher lift where wind turbines operate in Region 2 operation. Since the eroded leading
edge shows unique performance characteristics not tested on the S825 airfoil, the modified performance
characteristics of this NACA airfoil were applied to the clean S825 wind tunnel data as an offset in drag
and lift coefficients for a given zero-lift corrected angle of attack, as shown in figure 6. This simple



method was deemed appropriate since the clean drag polars of these airfoils are similar in the design
conditions of a wind turbine blade (lift coefficient —1.0-1.2). Additionally, this modified ELE polar is
bounded by the NASA S825 wind tunnel data transition fixed and standard roughness test cases until
higher lift is reached, where it shows higher drag than even the rough test conditions. The effect of
category 1-3 levels of erosion on the S825 airfoil were then estimated from linear interpolation between
the clean airfoil polar and the category 4 ELE polar.
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Figure 6. (a) Lift and drag polars from NASA wind tunnel tests of the S825 airfoil and of the NACA
633-418 airfoil from Texas A&M. (b) Modified S825 eroded airfoil polars based on the eroded
leading edge wind tunnel tests at Texas A&M of the NACA 633-418 airfoil.
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3.2. Blade Erosion Modeling
Leading edge erosion is caused primarily by fatigue induced by the impact of rain or hail on the leading
edge surface material, making it a strong function of the impact velocity that is in turn a function of the
tip speed and spanwise location along the blade. Erosion is most severe near the blade tip, and decreases
toward blade mid-span. The erosion rate was made proportional to the incoming velocity on a blade
section to an exponent of 6.7 [14]. This estimate ignores the effect of the reduction in particle impacts
near the airfoil surface due to stagnation and flow around the airfoil surface, which would act to reduce
the impact velocity [2,9]. In this work we have chosen not to include such secondary effects and rely on
the 6.7 exponent to represent all accumulated effects. Categories of blade erosion were defined by the
airfoil erosion category over the outer 5% of the blade. The erosion level then declines inboard based
on the impact velocity exponent, resulting in the blade spanwise erosion distributions in figure 7.
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Figure 7. Spanwise location of erosion along each blade for three categories of blade erosion.
The blade categories correspond to the level of airfoil section erosion on the outer 5% of the
blade and progress inboard based on the computed local erosion rate.

For a steady state analysis, the power curve of the NRT turbine was computed using the clean and
three eroded blade models in the OpenFAST code suite with the AeroDYN subroutine and uniform wind
inflow [20]. The mean generator power of thirty second simulations were used in 1 m/s increments from
3 m/s to 14 m/s to construct the power curve in figure 8; 0.25 m/s increments were used between 1 1 m/s
and 14 m/s for higher resolution of the region right before rated power. It was assumed that the power
is the same during region III operation regardless of erosion level. As the erosion level increases, power
production decreases and the transition to rated power operation becomes more gradual. The power
relative to the non-eroded blade is shown in figure 9, with category 4 erosion producing approximately
a 3% loss in power prior to rated power.
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3.3. Power Curve Uncertainty Analysis Method
For the dynamic forward propagation uncertainty quantification (UQ) study, TurbSim [21] was used to
generate the unsteady atmospheric inflow and the OpenFAST code suite was used to model the
coupled dynamic response of the NRT turbine. Monte Carlo sampling was conducted to randomly
sample 10,000 simulations, each 10 minutes long, for each of the four erosion categories using six
uncertain aleatoric parameters: hub-height wind speed, turbulence intensity (TI), the vertical power-
law wind-shear exponent, air density, turbine yaw offset and collective blade pitch. The samples were
taken from normal distributions of the aforementioned parameters with the respective means and
standard deviations shown in Table 1. These values in Table 1 were informed by experimental data
from the wake steering experiment at the Sandia Scaled Wind Farm Technology (SWiFT) site [22].
The TurbSim and OpenFAST simulations were scheduled and run using Dakota [23], an uncertainty
quantification toolkit developed by Sandia National Laboratories which provides a flexible interface
between the simulation codes and sampling-based uncertainty quantification. Dakota also provides
parallel computing capabilities, which allows for hundreds of independent simulations to be run
concurrently on Sandia's high-performance capacity cluster systems.

Table 1: Summary of uncertain aleatoric parameters in the dynamic UQ study. derived from the
real operatmg conditions at the SWiFT site [20].

Parameter Units Mean St. Dev.
Hub-Height Wind Speed [m s-1] 8.69 1.6673
Turbulence intensity [%] 10.80 6.50

Shear exponent [-] 0.14 0.1713
Air Density [kg m-3] 1.02 0.0281
Yaw Offset [deg] 0.00 7.9950

Collective Blade Pitch [deg] 1.00 0.0483

The results of the probabilistic eroded power curve study are shown in figures 10 and 11. The
power curve clouds in figure 10 do not show a clear difference between the erosion levels. But the
relative generator power difference between the best fit of each power curve to that of the uneroded
curve, shown in figure 11, shows distinct disparities between the eroded categories. At low wind
speeds, the results for lower erosion levels (category 2 and 3) show an increase in power, but this trend
is likely due to the combination of a lower number of samples away from the mean sampled wind
speed and that the relative variance in power due to the random changes in the input parameters may
be larger than the change in power due to erosion. If this study had been parametric, meaning that
each of the eroded blade cases were simulated for the same 10,000 samples, then the increased relative
power at low wind speeds for the category 2 and 3 erosion blades would likely disappear, but then this
study would not simulate the uncertainty of testing turbines in the field. The small number of random
samples at the low wind speeds are not sufficient to reduce the variance due to the inflow parameters
below that of the effect of erosion. Also, this indicates that power reduction due to erosion may be
difficult to detect from field measurements at low wind speeds as the uncertainties associated with the
atmospheric inflow and turbine operation are more significant than erosion effects. At moderate wind
speeds, which are more important for total energy production, more samples were taken due to the
normal distribution for wind speed. The difference in power for moderate wind speeds is more similar
to the steady power curve results shown in figure 8. In the middle of region II the power difference
appears marginal, but near rated power the influence of erosion gradually becomes clearer in the
power curve. After rated wind speed, the power curves were assumed to converge, although this
assumption will be explored in future work.

Table 2 contains the difference in annual energy production (AEP) relative to the clean, non-eroded
blade for three categories of blade erosion and four mean wind speeds using a Rayleigh probability
distribution of wind speed. The lowest 4 m/s mean wind speed case is not a standard wind class and



was included to illustrate the effect of erosion with minimal region III operation, where power is
regulated based on generator and turbine load limits. The results show that as the mean wind speed
increases, the impact of erosion on AEP decreases due to longer relative operation in region III above
rated wind speed. These results indicate that the difference in power production due to leading edge
erosion should be distinguishable between turbines that are similarly calibrated in the field given enough
sampling time.
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Table 2. Annual energy production relative to no erosion for a range of mean wind speeds using a
Ra lei h wind distribution, based on the power curve cloud results.

4

Mean

6

Wind Speed

7.5

(m/s)

8.5 10Erosion Category

0 0.0% 0.0% 0.0% 0.0% 0.0%

2 -1.0% -0.9% -0.7% -0.6% -0.4%

3 -1.9% -1.6% -1.3% -1.1% -0.8%

4 -3.0% -2.6% -2.2% -1.9% -1.6%

4. Conclusion
This paper summarized a high level analysis of the issue of erosion for the US wind turbine fleet, and
then performed a more detailed analysis on the difference in power curves between different blade
erosion levels. These sources of uncertainty were estimated based on past work and propagated to the
impact to annual energy production using the uncertainty quantification tool Dakota that ran instances
of the wind turbine modeling tool OpenFAST. Future work will keep expanding this detailed analysis
to include more parameters, such as erosion rate due to droplet size and frequency distributions, different
control and maintenance strategies, uncertainty in airfoil performance, and different turbine designs.
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