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ABSTRACT

Sparse triangular solver is an important kernel in many com-
putational applications. However, a fast, parallel, sparse tri-
angular solver on a manycore architecture such as GPU has
been an open issue in the field for several years. In this paper,
we develop a sparse triangular solver that takes advantage
of the supernodal structures of the triangular matrices that
come from the direct factorization of a sparse matrix. We
implemented our solver using Kokkos and Kokkos Kernels
such that our solver is portable to different manycore ar-
chitectures. This has the additional benefit of allowing our
triangular solver to use the team-level kernels and take ad-
vantage of the hierarchical parallelism available on the GPU.
We compare the effects of different scheduling schemes on
the performance and also investigate an algorithmic variant
called the partitioned inverse. Our performance results on
an NVIDIA V100 or P100 GPU demonstrate that our im-
plementation can be 12.4x or 19.5x faster than the vendor
optimized implementation in NVIDIA's CuSPARSE library.
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1 INTRODUCTION

Sparse triangular solver is an important kernel in several com-
putational science or engineering applications. However, the
sparsity pattern of the triangular matrix limits the amount
of the parallelism available for the solver to exploit. As a
result, it is notoriously challenging to parallelize the sparse
triangular solve on a manycore architecture such as a GPU.
Instead of developing a sparse triangular solver that targets
a general sparsity pattern, we focus on the case when a direct
sparse matrix factorization is used to compute the triangular
matrix. In this particular case, the triangular matrix typically
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has dense blocks called supernodes. We exploit this supern-
odal structure to accelerate the triangular solves. This use
case covers a broad set of applications to warrant designing
a triangular solve just for it.

For instance, computation frameworks such as SIERRA
Structural Dynamics (SIERRA-SD) [24] implements finite ele-
ment analysis for structural dynamics on distributed-memory
computers. Computational frameworks such as these rely on
domain-decomposition based linear solvers [9, 11], where a
sparse direct factorization is used to solve each of the local
problems. In a typical distributed-memory simulation, each
process applies the sparse triangular solve — 104 times for
each factorization. As a result, sparse triangular solves often
dominate the simulation time. Hence, the performance im-
provement in the local triangular solve (used by each process)
can directly impact the simulation time.
A second use case arises in computation simulations such

as a low Mach fluids simulation that uses multigrid precondi-
toners on a distributed-memory computer [17]. In this case,
a local sparse triangular solver is used as part of the coarse
grid solve and as a smoother for the multigrid methods. A
sparse direct factorization is typically used for the coarse
grid, while either an incomplete or a complete factorization
is used for the smoother, depending on the problem.

In this paper, to enhance the performance of the supernode-
based sparse triangular solver, we study the effects of different
techniques, including the level-set and dynamic scheduling,
on the solver performance. We also investigate an algorithmic
variant called the partitioned inverse [1], which partitions the
triangular matrix and expresses its inverse as the product of
the inverse of the partitioned matrices. This technique from
two decades ago has not yet been investigated on a manycore
architecture such as GPU. We revisit this technique where
the triangular matrix is partitioned based on the supernodal
level set, and demonstrate that it is a valid option on a GPU.
Our implementation is based on Kokkos [10] and is now

available in Kokkos Kernels library [19]. Kokkos is a program-
ming model that allows implementing performance portable
applications on different manycore architectures. Hence, our
solver can run either on the shared-memory CPUs or on the
current NVIDIA GPU. It will also allow our solver to be
available on other types of GPUs such as those from AMD
or Intel in the future.
Our solver uses several key features of Kokkos Kernels

including team-level linear algebra kernels that allow the
batched operations on the independent supernodes in parallel
(independent supernodes are processed in parallel, using a
team of threads on each supernode). Hence, the team-level
kernels can effectively map the supernodes to the hierarchical
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parallelism available on the GPU. This also aims to cover an
important gap in the current algorithmic space. In order to
effectively utilize manycore architectures, the algorithm has
to exploit more parallelism. The supernode-based algorithm
exposes such parallelism launching a batch of threaded linear
algebra kernels on the independent supernodal blocks on top
of a traditional parallel algorithm (e.g. level scheduling).
We present experimental results to demonstrate the trade-

offs between the different approaches in term of stability,
storage, and performance, and study the effects of different
scheduling schemes on the GPU performance. Overall, the
new sparse triangular solver obtains the respective speedups
of up to 12.4 x or 19.5x over the vendor optimized imple-
mentation on the NVIDIA V100 or P100 GPU. The main
contributions of the papers include:

• A novel implementation of the supernode-based sparse
triangular solver on the GPU that exploits hierarchical
parallelism using team-level kernels;

• An investigation of using the partitioned inverse method
for the supernode-based sparse-triangular solve on the
GPU, where the matrix is partitioned based on the
supernodal level sets; and

• A performance study of eight different implementations
of the sparse-triangular solve, with various scheduling
and algorithmic choices, on the GPU, and their impacts
on the memory usage, performance, and stability.

The rest of the paper is organized as follows. After listing
related works in Section 2, we review the sparse supernode-
based factorization in Section 3. We then describe the algo-
rithms and implementations of our sparse-triangular solver
in Section 4 and 5, respectively. Finally, we present our ex-
perimental setups in Section 6 and results in Section 7. Since
we focus on the supernodal block algorithms, we use to
denote the (i, j)th supernodal block of the matrix L and
xi to refer to the ith block of the vector x, while ns is the
number of supernodal columns in L.

2 RELATED WORK

Since sparse triangular solve is a critical kernel in many
applications, significant efforts have been made to improve the
parallel performance of a general-purpose sparse triangular
solver both on CPUs [3, 5, 22] and on GPUs [14, 15, 18, 20,
23]. On shared-memory CPUs, the best known algorithm
is the Hybrid Triangular Solve (HTS), which uses level-set
scheduling for relatively sparse portions of the triangular
matrix and uses recursive blocking for the denser portions [5].
HTS does not utilize the supernodal structure of the matrix
and relies on fine-grained synchronizations that may not scale
well on manycore architectures. We evaluate an option similar
to this approach (called dynamic scheduling) that uses such
synchronizations on the block columns instead of columns.

Supernode-based triangular solvers are implemented along
with supernode-based sparse matrix factorization packages
such as SuperLU [16] and CHOLMOD [6]. Recently, one-
sided communication is used for sparse triangular solve on

distributed memory architectures [8]. However, these supern-
odal solvers primarily target the CPUs. They could offload
the dense block operations to the GPUs using a vendor-
provided BLAS package. This is our default approach. In our
experiments using one GPU, it was slower than our other
approaches (Section 7).
On a GPU, the NVIDIA's CuSPARSE library provides the

vendor-optimized sparse-triangular solver that uses a level-set
scheduling and hardware-specific optimizations to handle the
"chaine of dependencies and to reduce the number of GPU
kernel calls [18]. This implementation has been optimized by
NVIDIA as the GPU architectures evolved. In Section 7, we
compare our performance with this implementation.

Several other techniques have been explored to improve the
performance of a general-purpose triangular solve or when the
triangular matrix comes from an incomplete sparse matrix
factorization. For instance, the level scheduling and another
scheduling scheme called element scheduling were studied
in [15]. Also in [14, 23], graph coloring was used to reorder
the matrix. Though this matrix reordering may increase the
parallelism for the triangular solve, when the matrix was used
as a preconditioner, it could increase the number of iterations
needed by the iterative solvers. As our current focus is on
direct factorizations, coloring is not an option for reordering
the matrix. However, we used other matrix ordering tech-
niques such as nested dissection or minimum degree ordering
to reduce the number of nonzeros in the triangular factors.
On the GPU, a graph partitioning algorithm was also used
to find the subblocks and to improve the performance of the
triangular solver [20]. This analysis phase can be expensive,
but its cost may be amortized over multiple solves.
None of these recent studies considered the partitioned in-

verse method [1]. We revisit this approach from two decades
ago on the current manycore architectures. The primary
advantage of this method is that it transforms the triangu-
lar solves into a sequence of sparse matrix-vector multiply
(SpMV) operations. Our implementation (called Invertüff)
is a special case of this approach where we define the parti-
tions based on the level set partition of the supernodal graph
from the direct factorization. One concern is the stability of
this approach. Higham and Pothen [12] showed that stability
is guaranteed when the matrix is well-conditioned and has
a small number of partitions. We show that this approach
perform well for the problems of our interests.

3 SUPERNODAL FACTORIZATION

When considering a dense factorization, instead of factoring
one column or row of a matrix at a time, it is a standard
approach to factor one block column or row at a time. This
block factorization performs the majority of the operations
using BLAS-3 subroutines (instead of BLAS-2 for the column-
wise factorization), improving the cache-reuse. Since the data
access can be expensive on the current computers, the block
factorization can obtain much higher performance than the
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(a) Natural ordering. (b) Nested dissection ordering.

Figure 1: Sparsity pattern of lower-triangular ma-
trix computed using SuperLU for the SIERRA-SD
ti_20x20x20 matrix. We computed the nested dissec-
tion ordering using METIS. With or without nested
dissection, we had 943 or 30 levels, respectively.

column-wise factorization can. Such block algorithms are im-
plemented in software packages like LAPACK [2] for factoring
a dense matrix.
The block factorization can be applied to a sparse ma-

trix by grouping a set of consecutive rows or columns with
a similar sparsity pattern into a supernodal block. During
the factorization, new nonzero entries, referred to as fill, are
introduced in the triangular factors, increasing both the stor-
age and computational costs of factorization. To obtain high
performance, it is critical to reorder the matrix before the
factorization. For instance, Figure 1 shows that a proper ma-
trix ordering can reduce the number of fill and also increase
the supernodal block sizes in the triangular factor. For our
experiments, we use the software packages SuperLU [16] and
METIS [13] that implements the supernodal factorization
of a sparse nonsymmetric general matrix, and the nested-
dissection ordering to reduce the number of fill, respectively.
Here, we only gave a short background of the sparse factor-
ization and refer the interested reader to a recent survey [7].
The sparse triangular solver can also take advantage of

the supernodal structures, allowing us to replace the BLAS-1
operations of the column-wise algorithm with the BLAS-2
operations on the blocks. In parallel execution, the supernodal
approach can also reduce the number of synchronizations and
in turn improve the scalability of the parallel factorization
or solve. These two features make the block algorithm more
suitable for GPUs.

4 ALGORITHMS

We now describe our implementations of the parallel sparse
triangular solver including the scheduling schemes used for
the implementations.

4.1 Solver Steps

We first provide the overview of our sparse triangular solver.
Our solver consists of the following three steps:

(1)Symbolic Analysis uses just the sparsity structure of
the triangular matrix. This step needs to be performed
once for multiple solves with a fixed sparsity structure.
Based on the sparsity structure, it first computes the
level sets. It then sets up the internal data structures
for storing the matrix on the GPU, and internally saves
the sparsity structure and the scheduling information
(either level-set or dynamic). If the algorithmic option
to merge the supernodes is enabled, it merges the
supernodal blocks with the same sparsity structure
before computing the level-set. If the algorithm option
for fine-grained dynamic scheduling is used, the task
dependencies are also computed.

(2) Numerical Setup copies the numerical values of the
triangular matrix into the internal data structures.
It also performs any numerical steps such as explic-
itly inverting the diagonal blocks and applying the
inverse of the diagonal blocks to the corresponding
off-diagonal blocks if such options are enabled. This
step is performed once for several solves with different
right-hand-side vectors but with the same matrix.
Solve performs the sparse-triangular solve based on
the level sets. It can also integrate other optimizations
at the implementation level such as using different
kernels at each level (e.g., batched kernels or device
level kernels with CUDA streams).

Figure 2 shows each step of the solver at high level. In the
next three subsections, we cover three major algorithmic
choices: level-set scheduling or dynamic scheduling, and the
partitioned-inverse (invertOff in Figure 2). The rest of op-
tions in Figure 2 are addressed in Section 5.1.

(3)

4.2 Level-set Scheduling

Level-set scheduling [21] is a standard technique for imple-
menting a parallel sparse-triangular solve. For each level,
we identify a set of unknowns in the solution vector, which
can be independently computed in parallel. In this paper,
we focus on the supernode-based level-set scheduling, where
the dependencies among the supernodal blocks are analyzed
based on the underlying directed acyclic graph (DAG) asso-
ciated with the triangular matrix. There is an edge from the
ith to the jth supernodes in the DAG if the corresponding
block L,,, is not empty. The solution for the jth supernode
can be computed once all the solutions corresponding to
the supernodes with the out-edges to the jth supernode are
computed. Figure 4b shows a DAG, which happens to be a
binary tree in this particular case. This is a common case
when the matrix is reordered by a nested dissection ordering.
For this matrix, the level-set scheduler will compute a set of
the available solution blocks, referred to as leaf blocks, level
by level, starting from the bottom to the top of the tree.

Figure 3 shows the pseudocodes of two different imple-
mentations of the block level-set triangular solve that we
looked at (xs is the s-th solution block corresponding to
Ls,$). In Figure 3a, if xs is one of the available leaf solution
blocks at the current level, we first compute xs, and then
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Symbolic phase:
Inputs: sparsity structure of L in CSR (rowmap, colind), and

number and sizes of supernodes (ns, sizes)
Options: merge and levelset/dynamic
1. if merge then
2. merge the supernodes and

update (rowmap, colind) and (ns, sizes)
3. compute and store level-sets
4. if dynamic then
5. compute a counter for each task

to keep track of its dependencies
6. store the supernodal structure in a single CSC/CSR structure

Numeric phase:
Inputs: numerical values of L
Options: gemv/spmv, invertDiag, and invertOff
1. copy numerical values into internal CSC/CSR structure
2. if invertDiag then
3. invert diagonal blocks
4. if invertOff then
5. apply inverse of diagonal blocks to off-diagonal blocks
6. if levelset with spmv then
7. store each L.e in a separate CSR without zero entries
8. if not invertOff then
9. store diagonal blocks of LE separately

from off-diagonal blocks

Solve phase:
Inputs: right-hand-side
Options: Stream
Parameters: threshold to switch between device/batched gemv
(default is 250)
use device gemv if average supernode size at a level > threshold

1. for each level do
2.
3.
4.

if invertOff then
if spmv or small gemv then
launch one spmv kernel or one batched gemv kernel
for all the supernodal columns at this level

5. else
6. launch one gemv for each of supernodal columns,

on different streams if Stream
using a default stream otherwise

7. else
8. if invertDiag then
9. launch batched/streamed gemv or spmv

with all the diagonal blocks
10. else
11. launch batched/streamed trsm

for all the diagonal blocks
12. launch batched/streamed gemv or spmv

with all the off-diagonal blocks

Figure 2: Algorithmic flow at each solver phase with
lower-triangular matrix L.

use x8 to update all the solution blocks that depend on xs
In contrast, in Figure 3b, we first update the leaf solution
block xs using the previously-computed solution blocks, and
then compute x8. At each level of the scheduling, all the leaf
solution blocks xs can be computed in parallel.

Figure 4a illustrates these two approaches. Due to the
way the lower-triangular matrix is traversed, we referred to
the first approach as push-based (right-looking), while the
second approach is called pull-based (left-looking). We use
the column-major and row-major storages for the push-based
and pull-based approach, respectively.

4.3 Partitioned Inverses

Our implementation exploits the two-level of parallelism:
1) all the available solution blocks xs are computed in parallel

Ichitaro Yamazaki, Sivasankaran Rajamanickam, and Nathan David Ellingwood

1. for each level
2. for each s in this level
3. // compute sth solution
4. xs := Wsxs
5. // use sth solution

// to update child RHS
6. for i = s 1, s + 2, . , ?is
7. xi := - L,sxs
8. end for
9. end for
10. end for

(a) Push (col-major/left-look).

1. for each level
2. for each s in this level
3. // update sth RHS

// with computed solution
4. for j = 1, 2, ... , s - 1
5. xs := xs -
6. end for
7. // compute sth solution
8. xs := LV-xs
9. end for
10.end for

(b) Pull (row-major/right-look).

Figure 3: Sparse-triangular solve based on level-set
scheduling of supernode blocks. The for-loop for the
block column or block row indexes, j or i, are exe-
cuted with respect to the block sparsity of the matrix
(we do not operate with the empty block Ls,, or Li,$).

lir! Row major  MIL
 I Push/Column-majo

7111.1 

(a) Push/Pull(column/row (b) DAG representation of block
major) approach. matrix.

Figure 4: Supernode-based level-set scheduling with
nested-dissection ordering. In (a), only the nonzero
block rows or columns in the supernodal block (indi-
cated by black blocks in Figure 4a) are stored in the
block row or column major scheme, respectively.

at each level and 2) each solution block xs is computed using
a threaded kernel. The dense triangular-solve trsm, which
is needed to compute the solution block xs (on Line 4 or 8
in Figure 3a or 3b), is a fundamentally sequential algorithm.
Hence, it cannot exploit the thread parallelism a,s well as
the matrix-vector multiply gemv used to update the solution
vector (on Line 7 or 5 in Figure 3a or 3b).
To avoid the potential performance bottleneck with trsm,

we explicitly compute the inverse of the diagonal blocks of L
in the numeric phase and use gemv to compute the solution xs
in the solve phase. We call this approach InvertDiag in Fig-
ure 2. Moreover, we can apply the inverse of the diagonal
blocks to the corresponding off-diagonal blocks in the numeric
phase (i.e., if Ls,s := L;:s1, then L.9+1:res,s := Ls+1:res,8L;,s1).
Then, in the solve phase, this allows us to combine trsm
and gemv calls into a single gemv call to compute xs and
update the remaining solutions (i.e., xs:Tis := L8,,,,,a,sx, for
Lines 4 through 7 in Figure 3a), halving the number of kernel
launches. We call this approach Invert() ff in Figure 2.
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With this InvertOff scheme, we can write the inverse of the
triangular matrix as the product of the partitioned inverses:

rke

L-1 = Li',
E=1

where Re is the number of levels, and LE is an identity matrix
except that the supernodal columns, which belong to the
ith level, are replaced with the corresponding columns in L.
Hence, we can apply the inverse of L to a vector by applying
the sequence of the sparse-matrix vector products, which
is often more efficient than the sparse-triangular solve on a
manycore architecture. One trade-off is the increase in the
memory (to store the additional nonzero entries introduced
by applying the inverse of the diagonal blocks to the corre-
sponding off-diagonal blocks). However, all the new nonzeros
are introduced within the non-empty blocks of L, and this is
a block version of no-fill partition [1].

Another trade-off of the partitioned inverse is the poten-
tial numerical instability. There are several studies on the
numerical stability of the partitioned inverse method [12].
In our application, the triangular matrix is computed ei-
ther by the LU factorization with partial pivoting, or by the
Cholesky factorization. Hence, computing the inverse of the
diagonal blocks or the partitioned matrix is often more stable,
compared with a random triangular matrix.

4.4 Dynamic Scheduling

The level-set scheduling exposes the parallelism within the
level, but there is a synchronization at the end of each level.
As a result, if there is not enough computation at any level,
we may not fully utilize the compute power of the manycore
architecture. In order to exploit more parallelism, we also
looked at a dynamic scheduling scheme, where each of the
node in the DAG (see Figure 4b) are executed as soon as
its child tasks were completed. Typically, supernodes pro-
vide enough computation at each level, but if supernodes
have different sizes or do not provide enough computation
at one level, the dynamic scheme may be beneficial. Our
implementation of the dynamic scheduling is described in
Section 5.4.

5 IMPLEMENTATIONS

We implemented our solver using Kokkos [10], which is a
C++ library to provide portable performance across different
manycore architectures. By writing our solvers in Kokkos, it
can run on different machines with a single code base.

5.1 Algorithmic Options

Here, we list the different solver options, each of which we
describe in the following subsections, and whose effects we
study on the solver performance in Section 7:

(1) Default Our default implementation performs the su-
pernodal triangular solve (Figure 3) using the device-
level kernels (e.g., CuBLAS gemv or trsm) on one su-
pernodal block column at a time.
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Figure 5: Supernode sizes of A_20x20x20 from Siera-
SD with nested dissection. The error bars show the
minimum, average, and maximum number of rows or
columns of the supernode blocks at each level, while
the numbers by the markers show the number of
supernodes at each level. Rows/columns here are not
block rows/columns. Merging the supernodes results
in fewer larger supernodes (left vs right).

(2) Stream In order to more efficiently utilize the compute
power of the manycore architecture (e.g., GPU), at each
level, we execute each of the independent device-level
kernel calls on a different stream in parallel.
Team We replace the device-level kernels with the
team-level (batched) kernels for gemv or trsm, hence
launching the "batch" of independent team-level ker-
nels (of variable-sizes) with a single kernel launch. This
often exposes the hierarchical parallelism more effec-
tively than Stream can. We use Kokkos Kernels team
level gemv or trsm for this option.

(4) Merge We merge the supernodes that have the same
supernodal structure. Figure 5 shows one example
where merging the supernodes results in fewer larger su-
pernodes (15 levels after merge instead of 30). This has
the trade-off of increasing the memory usage (more ex-
plicit zeros may be needed to form a larger supernode).
But, this often improves the performance by reducing
the number of kernel launches (or the number of levels)
and increasing the compute intensity at each level.
InvertDiag At each level, instead of applying the
triangular solve trsm with the diagonal blocks, we
invert these blocks (during the numerical setup) and use
the matrix-vector multiply gemv to apply the inverse of
the diagonal blocks to the vector (for the solve phase).

(6) InvertOff At each level, we combine two matrix-vector
multiplies: one to apply the inverse of the diagonal
blocks and the other to update with the off-diagonal
blocks. This is done by applying the inverse of the
diagonal block to the corresponding off-diagonal blocks
(during the numerical setup). This is equivalent to the

(3)

(5)
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(b) CSC storing the supernodal blocks, where
values and rowind store the numerical values and
row indices of the entries in nonempty blocks,
and colptr points to the beginning of each col-
umn in values.

Figure 6: Supernodal blocks stored in CSC.

partitioned inverse method (based on the level-set su-
pernode partition), and may improve the performance.

(7) SpMV Instead of relying on the batched gemv, we store
each partitioned inverse LQ 1 in a separate sparse format
and use the sparse-matrix vector product (spmv) kernel.
This trades off the knowledge of the block structure,
but spmv is often optimized on the specific hardware
(e.g., like one from CuSPARSE). This also reduces the
memory requirement since it removes the explicit zero
entries used to form the supernodal blocks.

(8) Dynamic executes each task as soon as its data de-
pendencies are satisfied. Hence, it removes the synchro-
nization at each level of scheduling.

InvertOff may increase the storage cost for SpMV due to
the extra fill, while for gemv, the fill is introduced only within
the non-empty blocks and the storage cost stays the same.

5.2 Basic Components

For all the solver options listed in Section 5.1, we store the
triangular matrix either in the Compressed Sparse Column
(CSC) or in the Compressed Sparse Row (CSR) format,
respectively, for our push-based or pull-based approaches in
Figure 3. If we choose to use gemv (instead of spmv), then we
potentially store explicit zero entries to form the supermodel
blocks, but this allows us to compute the solution using the
dense matrix kernels like BLAS. In this case, we only store
the union of the nonzero rows or columns in each supernodal
block. The empty rows or columns in the block are not stored.
Figure 6 shows an example of supernodal blocks stored in
the CSC format.

lchitaro Yamazaki, Sivasankaran Rajamanickam, and Nathan David Ellingwood

Ls

1) stored I„ in a
compressed format

2) compute update in
workspace

Ls xs

3) scatter update

Figure 7: Illustration of block update, where the
supernodal block L3 in the lower-triangular matrix
is stored in CSC format, and the updates are com-
puted in the workspace before being scattered into
the solution.

In the row-major pull-based approach, to update the so-
lution x3 with the multiple off-diagonal blocks (on Line 5
of Figure 3b), we first gather the previously-computed solu-
tions, corresponding to the nonzero columns in Ls„, into a
workspace, then we update xs with a single gemv call. Simi-
larly, in the column-major pull-based approach, to update the
multiple solution blocks (on Line 7 of Figure 3a), we first call
gemv to accumulate all the updates in a workspace then the
updates are scattered into x (see Figure 7 for an illustration).
Even with the overhead of gathering or scattering the vector,
it is often more efficient to compute the update with one
gemv call rather than using one gemv call per block.
At each level of the column-major push approach, different

block columns may update the same part of the solution in
parallel. Hence, for updating the remaining solutions, we use
atomic operations among the teams. In contrast, in the row-
major pull approach, we do not need the atomic operations
among the teams, but to update each supernodal block of the
solution, the kernel performs the reduction operation among
the threads within its team. This could lead to performance
differences, which we will study later in Section 7.

5.3 Level-set Scheduling

At each level, we compute all the available leaf solution blocks
in parallel. The corresponding updates are also executed in
parallel. To exploit as much parallelism as possible, we employ
hierarchical parallelization:

• At the initial levels of the solve, we typically have
a large number of relatively small supernodes (see
Figure 5). If we launch one kernel to compute or update
the small supernode, the overhead associated with
the kernel launch can dominate the execution time
(referred to as "Defaule setup). To effectively utilize
the manycore architecture, we rely on a batched kernel,
which can launch a batch of the multiple independent
kernels (e.g., trsm followed by gemv for each xs in the
level) in parallel with a single call. Then, a team of
threads executes the team-level thread-parallel kernel,
independently (referred to as "Team" setup).
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1. for ( size_type lvl = 0; lvl < num_levels; ++1v1

2. using lower_functor = LowerTriSupernodalFunctor

<ColPtrType, RowIndType, ValuesType, SolType,

NodeGroupType>;

)

3.

4. // specify parallel ezecution policy:

5. // uses num_blocks teams of threads (one team/block column)

6. // use default number of threads per team (i.e., AUTO)

7. size_type num_blocks = num_blocks_per_level(lv1);

8. TeamPolicy<execution_space> team_policy (num_blocks,

Kokkos.:AUTO);

9. // create triangu/ar solve functor

10. // (co/ptr, rowind, valus) stores L in CSC

11. // suprcols(s) specifies column-offset to s-th supernode

12. // block_id stores block-column ids, ordered by level-set

13. lower_functor sptrsv_functor (

supercols, colptr, rowind, values,

1v1, sol, work, work_offset,

block_id, num_blocks_processed);

14.

15.

16.

// /aunch functor

Kokkos;:parallel_for ("lower_solve_supernode",

team_policy, sptrsv_functor);

17. num_blocks_processed += num_blocks

18. }

Figure 8: Driver function for sparse lower-triangular
solve by level-set scheduling.

• As the supernode becomes large enough at the later
stage of solve, it is more efficient to rely on the stan-
dard kernel (like CuBLAS), instead of a batched kernel
(which is optimized for small sized matrices). To ex-
ploit more parallelism, we may execute each of the
independent kernel calls on a different stream in paral-
lel (referred to as "Stream" setup).

As an illustration, Figure 8 shows our driver routine for
the sparse lower-triangular solve using Kokkos. On line 9, we
assign one team of threads for computing one supernodal
block of the solution (i.e., num_blocks is the number of the
available leaf blocks at the level lvl, and we use the keyword
AUTO to let Kokkos decide how many threads to use per team,
e.g., one thread on Intel Haswell CPUs and 64 threads on an
NVIDIA P100 GPU). On line 13, we create a functor which is
called by each team of threads. Finally, on line 16, we launch
the parallel-for to compute the solution blocks in parallel.

Figure 9 then shows the functor called by each thread team.
The first few lines of the functor extract the information about
the thread and supernode, but the main computation is at
Lines 29 and 34, where the team-level threaded trsm and
gemv are called. Since each team executes both trsm and
gemv, it can reuse the data more effectively, compared with
launching the batched trsm followed by the batched gemv,
separately. For the rest of the functor, this team's threads
work together to scatter the solution back into the output
vector (using the atomic operations).

For the partitioned inverse, instead of relying on the
batched gemv at each level, we store LT1 in the sparse storage
format and use the sparse-matrix vector product spmv kernel
(e.g., like one from CuSparse). This also reduces the storage
requirement since the explicit zeros are not stored. If the
diagonal inverse is not applied to the off-diagonal blocks, then
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I. KOKKOS_INLINE_FUNCTION

2. void operator()(const member_type t team) coast {

3. // batch id

4. const int team_rank = team.team_rank();

5. const int team_size = team.team_size ();

6. const int thread_rank = team.thread_rank ();

7. // supernode sizes

8. auto s = block_id (num_blocks_processed + team_rank);

9. int jI = supercols[s], j2 = supercols[s+1];

10. int iI = colptr (jI), i2 = colptr (j1.1);

11. // number of columns in the s-th supernode column

12. int nscol = j2 - jl ;

13. // total number of rows sn the supernodes

14. int nsrov = i2 - il;

15. // total number of rows In off-diagonal supernodes

16. int nsrov2 = nsrov - nscol;

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

// extract s-th supernocal column

scalar_t .dataL - const_cast<scalar_t.> (values.data ());

Viev<scalar_t.s, LayoutLeft, memory_space, MemoryUnmanaged>

vievL (tdataL[il], nsrov, nscol);

// workspace

int vorkoffset - vork_offset (s);

auto Z = subviev (vork, range_type(offset+nscol,

offsetonsrov));

// call TRSM with diagonal

auto Xj = subviev (X, range_type(jI, j2));

auto Ljj = subviev range_type (0, nscol),

ALL O);

TeamTrsm;:invoke(team, one, Ljj, Xj);

// call CEMV with off-diagonal

auto Y = subviev (work, range_type(offset,

offsetonsrov));

auto Lij = subviev (viewL, range_type (nscol, nsrov),

ALL ());

TeamGemv;:invoke(team, one, Lij, Xj, zero, 7);

/+ scatter updated back into X ./

int k = nscol ; // offset into rowind

Viev<scalar_t*, memory_space,

MemoryTraits<Unmanaged I

Xatomic(X.data(), X.eztent(0) ,

for (int ii - thread_rank; ii < nsrov2; ii +- team_size)

int i = rovind (k ii);

Xatomic Z (ii);

tomic

}
team . team_barrier ;

Figure 9: Kokkos-kernel functor (called by each
team of threads) for column-major push-based
sparse lower-triangular solve by level-set scheduling.

at each level, we call spmv twice (once to apply the inverses
of all the diagonal blocks, followed by another to update the
off-diagonal blocks).

5.4 Dynamic Scheduling

For the dynamic scheduling, we focus on the push-based
scheme, where each task computes a solution block and
performs the corresponding updates (i.e., the inner s-th step
in Figure 3a). As a part of symbolic setup, we first figure
out the number of tasks that each task depends on and then
assign a set of tasks to a team of threads (where the number
of team is either specified by the user or given as the largest
number of tasks at a level). In our current implementation,
we assign the tasks at each level to the teams in a round-robin
fashion. Then, at the solve time, we launch these teams in
parallel-for, where each team executes tasks from the queue
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id name

ACTIVSg7OK
2 dawson5
3 qa8fk
4 FEM3Dtherm
5 thermall
6 apachel
7 apache2
8 helm2d03

type

power system grid
structural problem
acoustic problem
thermal problem
thermal problem

3D finite difference
3D finite difference

2D problem

nnnz ne error

69,999 12.6 83 0.003
51,537 770.4 1277 3.512
66,127 653.3 22 0.006
17,880 324.6 15 0.008
82,654 58.7 27 0.002
80,800 240.2 25 0.002
715,176 53.6 32 0.001
392,257 14.9 109 0.018

Figure 10: Test matrices from SuiteSparse matrix
collection, where "n,,, is the matrix dimension, "'":"
is the ratio of the total number of nonzero entries
in the lower and upper triangular factors, computed
by SuperLU, over the matrix dimension, "TO is the
number of levels, and "error" is the backward error

Ilb-Ax11  using the partitioned inverse method(11b11+11A(11x11)
(showing it was stable for all these matrices).

containing the set of tasks that are ready for execution. Once
the team completes a task, it decrements the counters for the
tasks that depend on the completed task, using an atomic.
Once the counter reaches zero, the corresponding task is
moved to the ready queue. Hence, there are some overhead
of figuring out the dependencies at the solve time.

6 EXPERIMENT SETUP

For our experiments, we used matrices from the SIERRA-SD
simulations [24] and from the SuiteSparse Matrix collection.
Table 10 lists our test matrices from the sparse collection,
covering different types of applications and sparsity patterns.
To reduce the number of fill in the factors, we used the nested
dissection ordering (computed by METIS [13]). We report
the average performance of 100 runs.
The main inputs to our solver are the sparse triangular

matrix (stored in a standard format such as CSR) and the
information about the supernodes (i.e., the number and the
sizes of the supernodes). Hence, our solver does not depend on
a particular factorization package. Nevertheless, our solver is
currently interfaced with SuperLU [16] and CHOLMOD [6].
Our symbolic and numerical phases read the LU factors
from SuperLU or CHOLMOD into Kokkos graph and sparse
matrix data structures, respectively. Internally, our solver
currently uses either the CSR or the CSC format for storing
the triangular matrices. For a symmetric matrix (e.g., with
CHOLMOD), it is possible to store the lower and upper
triangular matrices in the CSC and CSR formats, respectively,
and hence to store only one copy of the factor.

For our GPU experiments, we use an NVIDA V100 or
P100 GPU (with IBM Power9 or Power8 CPUs as host,
respectively).1 For our V100 or P100 runs, we compiled our
codes using the GNU g++ compiler version 6.40 or 5.4.0
and the NVIDIA nvcc compiler version 10.1.243 or 10.0.130,
respectively. We compare the performance of our solver with
that of the vendor optimized cusparseDcsrsv2_solve from
the NVIDIA's CuSPARSE library. To call this NVIDIA's
sparse triangular solver, we only store the nonzero entries of

1 Our V100 results are on the Summit supercomputer at the Oak
Ridge Leadership Computing Facility.

symbolic compute
L-solve
CSC

U-solve
CSR CSC fill-ratio

CuSparse 0.0487 0.2587 0.0087 0.0167 0.0185 13.7
Default 0.3000 0.2712 0.0888 0.0918 0.1343 28.9
Team 0.2921 0.3067 0.0038 0.0111 0.0051 28.9
Merge 0.5611 0.6444 0.0031 0.0083 0.0037 35.4
InvertDiag 0.5575 1.2576 0.0016 0.0076 0.0024 35.4
Invert Off 0.7067 7.2798 0.0015 0.0023 35.4
Stream(5) 0.7063 7.3001 0.0013 0.0020 35.4

(a) batched gemv based implementation.

symbolic compute L-solve U-solve fill-ratio
InvertDiag 0.6939 1.6820 0.0021 0.0018 14.7
Invert Off 0.6912 7.8646 0.0010 0.0012 15.5

(b) spmv based implementation.

Figure 11: Sparse-triangular time for 11_20x20x20 on
an NVIDIA V100 GPU (n = 27, 783 and nnzln =
73.5). Our solver options are listed in Section 5.1, and
the fill-ratio is defined as the number of nonzeros in
the factor over the number of the nonzeros in the
original matrix.

the factors in the CSC format (all the explicit zero entries
were removed). We run the CuSPARSE solver with the level-
based scheduling by calling cusparseDcsrsv2_analysis with
CUSPARSE_SOLVE_POLICY_USE_LEVEL.
To demonstrate the portability of our code, we also show

the performance on the shared-memory two 10-core Intel
Haswell CPUs with 64GB of main memory. We compiled our
codes using GNU compiler version 7.3.0 and the optimization
flag -03, and linked to OpenBLAS version 0.3.5. We use these
setups for comparing the performance of SuperLU and our
triangular solve implementations on the CPUs.

7 PERFORMANCE RESULTS

We now study the performance of our supernode-based sparse-
triangular solver.

7.1 SIERRA-SD matrices on a GPU

In Figures lla and 12a, we compare the performance of our
sparse triangular solve with that of CuSPARSE for a matrix
from a SIERRA-SD 3D simulation on an NVIDIA V100 and
P100 GPU, respectively. In these tables, we used the batched
gemv at each level (instead of spmv). For all the SIERRA-SD
matrices, all the methods, including the partitioned inverse,
obtained the backward errors in the order of machine epsilon.
We currently perform both symbolic and numerical setups

on the CPU, sequentially, where the numerical time is domi-
nated by the time to compute the inverse of diagonal blocks
(using LAPACK's trtri) and the time to apply the inverse
to the corresponding off-diagonal blocks (using BLAS' trmm)
if we choose the InvertDiag or InvertOff options. Our current
focus is on the solve time, which is the bottleneck in the
simulations of our interests. These two routines are not yet
available in Kokkos Kernels as team-level options, but we
plan to perform trtri and trmm on the GPU to reduce the
setup time once they become available. After the setup, the
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symbolic compute
L-solve
CSC

U-solve
CSR CSC fill-ratio

CuSparse 0.0446 0.2597 0.0227 0.0355 0.0359 13.7
Default 0.2147 0.2796 0.1163 0.1067 0.0922 13.7
Team 0.4420 0.2823 0.0041 0.0108 0.0046 28.9
Merge 0.7401 0.5331 0.0033 0.0097 0.0043 35.4
InvertDiag 0.7430 1.6134 0.0022 0.0077 0.0025 35.4
InvertOff 0.7416 7.0458 0.0020 0.0024 35.4
Stream(5) 0.7148 7.0445 0.0014 0.0022 35.4
Dynamic 0.7447 7.0496 0.0015

(a) batched gemv based implementation.

symbolic compute L-solve U-solve fill-ratio
InvertFull 3.3638 529.40 0.0022 0.0019 64.4
InvertDiag
InvertOff

0.7506
0.7399

2.0961
7.9446

0.0028 0.0027
0.0013 0.0017

14.7
15.5

(b) spmv based implementation.

Figure 12: Sparse-triangular time for A_20x20x20 on
an NVIDIA P100 GPU (n = 27, 783 and nnz/n = 73.5).
For full-inversion in (b), we computed the inverse us-
ing the dense matrix kernel trtri, and the symbolic
and compute times are just for reference.

  Update and Compute X

Lovel-2

I I
Leval-1

(a) Lower-triangular update (b) Upper-triangular update
at lst level. at 4th level.

Figure 13: Illustration of CSC-based lower-
triangular and CSR-based upper-triangular update.

lower and upper triangular matrices are copied to the GPU
in either the CSR or CSC format.

For the "default" and "team" setups in the table, we
did not merge any supernode nor compute the inverse of
the diagonal blocks. Hence, we simply apply the level-set
scheduling to the supernodes computed by SuperLU. The
only difference is that at each level, the default setup calls the
device-level kernel (i.e., CuBLAS) on each supernode, while
the team setup uses the team-level kernels. We clearly see
the benefit of using the team-level kernels. Furthermore, even
without further optimizations, our team-level implementation
takes advantage of the supernodal structures, and obtains
a significant speedup over CuSPARSE (on V100 and P100,
we obtained 2.3x and 5.5x speedups for the lower-triangular
solve, and 1.5x or 3.6x and 3.3x or 7.8x speedups for the
upper-triangular solve in CSR or CSC, respectively).
The upper-triangular solve performed better using the

CSC format than using the CSR format. Figures 14b and 14c

illustrate the performance difference at each level of schedul-
ing. Using the CSC format, the upper-triangular solve was
about as fast as the lower-triangular solve using the CSC
format, except for the first couple of levels, where the upper-
triangular solve needs to update the remaining solution using
relatively large supernodes.

In contrast, the upper-triangular solve using the CSR for-
mat obtained significantly lower performance compared with
the lower-triangular solve using the CSC format. Figure 13
illustrates these two solves, where the matrix is assumed to
be symmetric, and hence, the upper-triangular factor is the
transpose of the lower-triangular factor (without pivoting to
maintain the numerical stability of the factorization). In this
case, compared with the CSC-based lower-triangular solve,
the CSR-based upper-triangular solve traverses the level-set
DAG in the reverse order but operates on the same set of
supernodes at the corresponding level (at the jth level, the
upper-triangular solve operates on the same supernodes as
the lower-triangular solve's (ne - j + 1)th level). However, in
the upper-triangular solve, each gemv kernel computes the
solution primarily based on the dot-products, or the reduc-
tions, operations, while the lower-triangular solve scatters the
updates to the remaining solutions (i.e., xe := tre:n.e Xt:nv
compared with := Li:nt,txt). This dot-product used for
the upper-triangular solve is a notoriously challenging kernel
to be optimized. We also looked at the performance of the
lower-triangular solve using the CSR format, but it often
performed better using the CSC format.
The rest of the rows in Figures lla and 12a show the

trade-offs between the performance and the storage require-
ment (and the setup costs). Compared with CuSPARSE,
our implementation requires more memory since it explicitly
stores the zero entries to form the supernodes. The memory
requirement increases when the supernodes are merged, but
it does not increase when the inverses are applied since all
the fill occur within the blocks. Overall, for this problem,
the supernode-based solver was up to 8.0x and 16.3x faster
than CuSPARSE on a V100 and P100 GPU, respectively.

Figures llb and 12b then show the performance of the
partitioned inverse using spmv at each level. More fill could
occur when the supernodes were merged or the diagonal
inverses are applied to the off-diagonal blocks, but since
only the nonzero entries are stored, using spmv reduces the
memory requirement from when using gemv on the supernodal
blocks. We also looked at computing the exact inverse of the
triangular matrix. The full inverse can be applied without the
level-set scheduling, but it often results in much more fill than
the partitioned inverse. As a result, the partitioned inverse
often outperformed the full inverse. Overall, the partitioned
inverse obtained the respective speedups of up to 12.4x or
19.5x over CuSPARSE on a V100 or P100 GPU.

In our experiments, the best performance was obtained
using the CSC format and the partitioned inverse (InvertOff)
calling either spmv or batched gemv at each level. Hence, for
the rest of the experiments, we focus on these two options.
Figure 15a shows the speedups over CuSPARSE for the ma-
trices of different sizes from the distributed SIERRA-SD
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Figure 14: Performance per level for SIERRA-SD 3D problem (A_20x20x20) on an NVIDIA P100 GPU.

14

tl
❑ ❑

CI perm-based
X spew-based 0.9

0.8

11. 6
o' ❑

❑

0.7

O 0 0 o
x x 0

. 0.5

X X 0.3

5 ❑

X 0.2

0.1

1 5 3 3.5 4 4.5 5 5.5 6
Matrix size x102

1 2 3 4 5 8 7 8 9 10 11 12 13 14 15 16
Matrix 11)

(a) Speedups over CuSPARSE. (b) Breakdown of solver time.

Figure 15: Performance of the partitioned inverse on
an NVIDIA P100 GPU, for the local interior prob-
lems from a distributed SIERRA-SD run.

simulation (these are the local interior submatrices on differ-
ent processes). Compared with the 3D problem A_20x20x20,
these local matrices typically had smaller supernodes, and
obtained smaller speedups. However, we still see the effective-
ness of our implementation over these different sizes of the
matrices (i.e., 4.8x 13.7x speedups). Figure 15b shows the
breakdown of the solver time for the same matrices (showing
29% of time could be spent in the kernel launch).

7.2 SuiteSparse matrices on GPU / CPUs
We now, in Figure 16, look at the GPU performance of the
sparse-triangular solve for a few matrices from the SuiteS-
parse matrix collection (see Figure 10). The performance
of our solver clearly depends on the sizes and structures of
the supernodes. Our solver typically performs well when the
supernodes are well separated such that we obtain a small
number of levels, or have supernodes of large sizes.
Then, in Figure 17, we compare the performance of our

sparse triangular solver (using batched gemv) with the Su-
perLU's sparse triangular solver on one CPU, and show the
thread scalability of our solver. There are a few differences
between SuperLU and our implementations. For instance, Su-
perLU stores the off-diagonal blocks of the upper-triangular
matrix in a sparse format, and hence operates only with
non-zero entries. In contrast, we operate on the supernodes

.15
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4109
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Figure 16: Speedups over CuSparse for the matrices
from SuiteSparse collection on a GPU. For these ma-
trices 1 through 6 (listed in Figure 10), CuSPARSE
took 0.002, 0.180, 0.032, 0.008, 0.004, and 0.018 sec-
onds on V100, and 0.002, 0.220, 0.061, 0.014, 0.007,
and 0.039 seconds on P100.

with explicit zeros. Also, our solver relies on the team-level
kernels for the batched operations, while SuperLU performs
the block operation using the standard BLAS, whose vendor-
optimized implementations are often available. Finally, the
atomic operations, which our solver relies on, may have per-
formance overhead, especially on the CPUs. These difference
in the implementations could lead to their different sequential
performance. SuperLU's sparse-triangular solve relies on the
threaded BLAS/LAPACK to exploit the thread parallelism,
and it performs similar to our default setup.

8 CONCLUSION
We studied the performance of a supernode-based sparse
triangular solver, and the potential of the partitioned inverse
method to improve its performance. Our code is based on
Kokkos, and is portable to different manycore architecture,
and uses the Kokkos-kernel's team-level kernels to enhance its
performance. The solver is publicly available in the Kokkos-
kernel library, and we are working to expose the functionality
to the Trilinos users (e.g., through the Trilinos sparse direct
solver Amesos2 [4]). We did not encounter any numerical
instability with the partitioned inverse (combined with the
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number of threads
name SLU 1 2 4 8 16
ACTIVSg7OK 0.0043 0.0114 0.0065 0.0040 0.0030 0.0026
dawson5 0.1937 0.1244 0.1055 0.1007 0.1049 0.1109
qa8fk 0.1824 0.0892 0.0600 0.0481 0.0428 0.0407
apachel 0.0916 0.0618 0.0364 0.0271 0.0232 0.0213
apache2 1.1378 0.7283 0.4222 0.3075 0.2564 0.2265
helm2d03 0.2234 0.2012 0.1057 0.0602 0.0439 0.0357
FEM3Dthermall 0.0244 0.0150 0.0068 0.0060 0.0053 0.0052
thermall 0.0270 0.0256 0.0102 0.0061 0.0042 0.0032

(b) Time in seconds.

Figure 17: Performance with matrices from SuiteS-
parse Collection on Intel Haswell CPUs. In (b),
"SLU" shows the sparse-triangular solve time using
SuperLU sequential on one core.

stable factorization), but to ensure the stability, we are con-
sidering to integrate techniques such as iterative refinement.
We are working to further enhance its performance. In

particular, the performance depends strongly on the perfor-
mance of the underlying kernels (team-level or device-level).
Hence, we are looking to improve their performance for our
particular use cases (e.g., shapes of the dense blocks), or
to interface with the vendor-optimized kernels (e.g., sparse-
matrix vector multiply of CuSPARSE). We are also looking
to amortize the kernel launch overhead, especially since we
could have multiple kernel launches for each level, and the
overhead could become significant in our solve time.
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