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Introduction
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The Method of Moments Implementation of the EFIE

e Surfaces are discretized using planar or curvilinear mesh elements
e 4D integrals are evaluated over source and test elements

e Green’s function yields (near-)singularities in higher-order derivatives
— In scalar and vector potential terms
— Singularities: test and source elements share one or more edges or vertices

— Near-Singularities: test and source elements are otherwise close
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Introduction
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Existing Approaches for (Near-)Singularities

e Approaches for inner, source-element integral

— Singularity subtraction

— Singularity cancellation through variable transformation

- Hybrid schemes that combine subtraction and cancellation
¢ Approaches for outer, test-element integral

— Outer product of 1D quadrature rules

— Series of variable transformations and integration reordering

Other approaches for MFIE and CFIE
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This Work

¢ Development of geometrically symmetric quadrature rules

¢ Characterization of logarithmic singularities in the test integral
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Quadrature Rules
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Outline

e Triangle Quadrature Rules
— Overview
— Triangles
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Quadrature Rules

e An n-point quadrature rule exactly integrates a sequence of ny functions
f(x) = {f1(x),. .., fa; (%)}, such that

/. f(x)(]A = Z’u},]jf(xi)
JA i=1

¢ In 1D, ny = 2n and, for polynomials, f(z) = {1,...,2?"" 1}

'
¢ In 2D, ny = 3n,
— This is unproven

— If rules are symmetric, the efficiency can be significantly lower
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Quadrature Rules
O

Challenges to Generate

¢ Regardless of dimension and function sequence, equations for computing
quadrature rules are stiff and highly dependent upon initial guess

 In multiple dimensions, for a given number of points, ns is unknown

2 andia National Laboratories



ure Rules

Triangles

¢ Quadrature rules for triangles useful for evaluating surface integrals

e Several authors have computed symmetric rules for polynomials
— Rules do not converge monotonically or rapidly for singular integrands

For 1D, rules have been developed for singular functions

¢ Geometrically symmetric rules are desirable
— Mapping is straightforward

— Points are not more concentrated at a single vertex
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Symmetric Rules for Triangles

e Invariant to rotation and reflection about the medians for equilateral
triangles

e Triangles can be isoparametrically transformed to other triangles

e Rules are constructed from a combination of orbits, such that
n = ng + 3n; + 6ng

~o¢

1
I

- l ~
|

type-0 orbit type-1 orbit type-2 orbit
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Qu ure Rules
[e]e]

Approach 1: Overview
e Goal is to efficiently integrate polynomials and singularities

e Compute points & weights through optimization — nonlinear least squares

This approach uses polynomial rules as a baseline
— Initial guesses near the polynomial rule
— Same orbit counts for each n

e Replace higher polynomial degrees with singular functions

Attempt to increase number of functions integrated
(1,0,0)

(0,1,0) (0,0,1)
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Quadrature Rules
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Approach 1: Computation

e Given a function sequence, we formulate problem as unconstrained
optimization problem in barycentric coordinates:

argmin F(a, B, w),
a, B,w

where )
2

Fla,B,w) =

n

1 18
Iy, :Zw;fj(a,i,ﬁ,'), Iy, :/0 /0 fila, B)dadp,

i=1
with the expectation that F'(c, 3, w) =0

e We only consider interior points
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Quadrature Rules
(ool J

Approach 1: Function Sequence

e Weigh number of singular functions against maximum polynomial degree

e Ability to integrate polynomials includes ability to integrate cross terms
(e.g., 2% includes 22%y)

e Ability to integrate singular functions does not extend to cross terms
e Three approaches to address this issue:
e Use 2D characterization of singularity, if available

e Use 1D characterization of singularity, assume cross terms are not essential

¢ Include cross terms for 1D characterization and reduce polynomial degree

¢ Alternatively, one can use Approach 2
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Quadrature Rules
L ]

Approach 2: Overview

In multiple dimensions, number of integrable functions not straightforward
e Computation is expensive and multiple solutions exist

e For large ny, we employ n'-point 1D rules that integrate 1D function
sequences, such that n = 3n/?

n’ points

0 1
n l
(1,1)
o L] L] L] F
o o ° . — a
] L] ] & {e { 3
(0,0) A D A D B
2 points n’? points 3n'? points
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gularities
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Singularities in Scalar Potential and Vector Potential

Singular integrals in EFIE when using MoM take the form

. ) e—ij )
L=| v. Air/ € V. ALdAsdAr,
Ar as B

p e-ikR
= / A-’T-/ & ALdAsdAr,
./\7' -/\3 R

where I appears in scalar potential, I,, appears in vector potential
e As and Ay are source- and test-element surfaces
* R(xs,x7) = [[xs — %72
e xs and x7 are source and test points

o A%-(x'r) is test basis function associated with edge j

A5 (xs) is source basis function associated with edge i

8 @ Sandia National Laboratories



gularities

Scalar Potential

When AJ.T and Afg are linear (e.g., RWG), V - A,jr and V - Afg are constants:

- [ kR
IL=C / / dAsd AT
Ao Sy B

Taylor-series expansion test integrand about R:

foer) = ;} (*j)_f)p ' [15 Riss, % P \dAs

Odd powers of R yield unbounded derivatives along boundaries of Ag
Even powers of R remain smooth and integrable
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gularities

Vector Potential

When A‘%—(XT) = x7 — x; and A%(xs) = xs — x; (unnormalized RWG)
* x; is vertex of test element opposite edge j

e x; is vertex of source element opposite edge ¢
; ; . X7 —X§ . X7 —X§
Ay Ay = o =) (ns =) = (R 2520 ) (3= X228 )
=D+ D1R+ D2R2,
x(xs,x7) = (X5 + X7)/2, ¢(xs,x7) is angle between (x7 — xs) and (x; — x;),

Do(xs,x7) = ||IX||3 — (x; + X;)-X+X; X5, Di(xs,x7)= 7["";’(’”" cosp, Dy=—1/4

-y kR .
Ly = / Dy dAsdAr + /
Jard As R

g JArJAg

Die *RdAsdAr + Dy / / e *RRAAsdAT
JAT JAs

Taylor series expansion leads to integer powers of R (odd powers yield singularities)
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gularities

Singularities in Scalar Potential and Vector Potential

Scalar and vector potential contain singularities of the form

/ R(Xs.,XT)qug, for q= —1, U, ] [N
JAs
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Log Singularities
®0000

Coplanar Domains: ¢ = —1

For ¢ = —1,

d b
|
R(xs,x7) 'dA :/ / drsdys
/43 R SR Je Jo Jar—asPtr —ws "

4
= Z {ai In {dl +y/a? + /9;2} —a;ln {% = \/ﬂ] }

i=1

I3

a = {UT =G YT — (l? T —a, TT — b}
/B = {'TT —a, TT — b7 Y —'¢; Yy — d}
v=A{xr—b, x7 —a, yr —d, yr —c}

Ve
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gularities
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Coplanar Domains: Vertex Singularities (¢ = —1)

Approaching edges of Ag, where 3; =0 or v; =0,

}irno «a;In {35 + \/0422 + 312} = a; In |o),
Bi— :
Ahglo a;1n {% + \/(y? + 7?} = a; In |ay]

I

At vertices of Ag, where a; = 0, «; In |oy| is singular (unbounded derivatives)

I3

s By 7 — B — 4 1)
B={or =027 = b 97— yr —d},
v=A{xr—b, x7 —a, yr —d, yr —c}

Ve
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ularities

[ lele}
Coplanar Domains: Edge Singularities (¢ = —1)
On edges of As not at vertices, o; = 0, and ; and +; have opposite signs

Taylor series expansions of logarithm argument:

2
o
Bi+ /ot + B2 = Bi+ |Bil ‘ ‘ (o), when 3; < 0, =~ 9‘5’}|
“|M
[02 1 A2 of 3 a7
Yi+ /a2 +9% = + [yl T (a), when v; < 0, =~ 2l
] 7

These yield terms with «; In|«;| singularities

s By 7 — B — 4 1)
B={or =027 = b 97— yr —d},
v=A{xr—b, x7 —a, yr —d, yr —c}
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Log Singularities
[e]e]e] lo}

Coplanar Domains: Series Expansions and Higher Powers

ong an edg Ag, a series expansion of ¢ = —1 integrand as «; is
Along an edge of Ag, a series expansion of 1 integrand —=0
! 2 3 4 5
1, a;, o Inleyl, a5, o, o, af, ...

For ¢ =1, JlAs R(xs,x7)dAs, yield additional terms, including singular terms

af In {/31- + \/W} ’ ozf In [ﬂ/; + \/a% + ’y,z}

and series expansion

9 3 .3 1 o4 5
1, a;, o, o, o In|ayl, af, af,. ..

3

s . . . . )
Trend continues for odd powers of R, yielding a? In
Y o %

a?H In {/3,,- = \/a? + ,8;2} : ag+2 In [%‘ + \/af + ’yf}

|ai| from
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Log Singularities
[e]e]e]e] ]

Coplanar Domains: Singular Examples

A7 and Ag share an edge: Ar = As:
Shared edge and vertices Entire boundary has singularities
have singularities
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Log Singularities
L Ie]

Perpendicular Domains: ¢ = —1

/ R(xs,x7) " dAs R =%+ (yr— o +a?,
JAg
(

; R;%:?;/«Jr yr — d)? + a2,
~Q
= / / . dysdzs Ye =YT — G
% =% \/I27+(y’r*y$)2+ 2% Ya=yr —d
a ay
= — g arctan . B + a7 arctan i %
zT R, zT Ry \

i ,
_ % In [;1727 + yﬂ + % In [:z:%— - y;ﬂ
+ycInfa+ Ry —yqlnfa+ Ry

+alnfy. + R:] —aln[yy + Ry

@ Sandia National Laboratories



Perpendicular Domains: Vertex Singularities (¢ =

Approaching shared vertices from inside

AT. T = 0,
- 1 R =25+ (yr - +a
nn—n,( = 1 |1sl, ) .
oy b ] =venlue Ro= b+ (yr— df +
lim %41 = 4l Ye=y7—C,
I;IEO n [rT + yd} ya In |yql Ye = YT
Yd = Y1 — d
At shared vertices, where y. = 0 or yg = 0, %
A

Yeln |ye| or yqln |yg| is singular

Trend continues for other odd ¢ powers,
with y2*%In |y| and yq+ In |yq|

Arctangent terms are also singular at
shared vertices but behave differently
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ingularities
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One-Dimensional Characterization

e Series expansion about singularity location
e Expansion alternates between monomials and singularities

e From coplanar and perpendicular cases,

f(z) ={1, z, zlnz, 2%, 23, 2*Inz, z*, 25 2%Inz,...}
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sional Characterization

e Expansions alternate between monomials and singularities

¢ From coplanar case,

1
T

,1‘]11(;/ —1 4 \ﬂ)T(j/ = 1)-’)
zln(y + a2 + y?)

2

b
x® ]11(!/ -1+ \/;
z?® ln(,l/ + \/

24, 23y,

oy, Toy?
PIn(y — 1+ /22 + (y — 1)?)

25 In(y + /22 + 2)

3

b L
28, 2%y, a*y?, 2y
. Oy

2T n(y + N y?)
8 2Ty, x%y?, 283, =ty
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Numerical Experiments
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Outline

e Numerical Experiments for (Near-)Singular and Far Interactions
— Overview
— Approach 1
— Approach 2
— Results
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Numerical Experiments

For convenience, we assume k is real and A = 1 m

Scalar Potential

/ BT 2 e
Ay JAg

2
/ ABPRE o 2
As

/
)

AT

Vector Potential
i cos(27R) 2
Lye= / (= —x3) / 2 (xs — x;)dAsdAT
JA As

: - il ]
T / X7 — X; / SR e — A
As

Ag has vertices (0m,0m), (1/20m,1/20m), and (—1/20m, 1/20m)

A7 has same shape

8 1 Sandia National Laboratories



Numerical Experiments
@0000

Approach 1 Function Sequences

ID Singularities
1 il
T T
In
2, xy
2
By

3 2.2
» 7Y, 7Y

[ 9 7 3 5.4 5.5
210, 29, x8y?, 27y3, 28y4, x5y°

andia National Laboratories




Sandia National Laboratories

Numerical Experiments

Approach 1, 1D Singularities




Numerical Experiments
[e]e] le]e}

Approach 1, 1D Singularities (continued)
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Numerical Experiments

Approach 1, 2D Singularities




Experiments
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Numerical Experiments
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Approach 2 Function Sequence

f(z) = {1, z, zlnz, 2%, 3, 2°Inz, 2%, 2° 2°Inz,.. .}
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Numerical Experiments
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Numerical Experiments
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Numerical Experiments
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Numerical Experiments
[e]e]e]e]e] Tele)

se 6: Scalar potential, far interacti =0y, and Az =0

0 —+ Polynomial Rules

I . (Nonsingular)
DMRW (Averaged)

¥— Approach 1, 1D Singularities

“— Approach 1, 2D Singularities

T ] —— Approach 2

g ] 2

80 100

I, ; (Nonsingular)

=




Numerical Experiments
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e Summary
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Summary
[ ]

e Introduced 2 symmetric quadrature approaches for arbitrary functions

Motivated by need to integrate singular test integrands in EFIE

e Approach 1

— Generally most efficient for singular integrands — outperformed polynomial rules
by orders of magnitude

Similar efficiency to polynomial rules for nonsingular integrands
e Approach 2
— More efficient than polynomial rules for singular integrands
— Error decreases monotonically relative to number of integration points

— Points are cheap to compute (from 1D rules)
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Additional Information

¢ B. Freno, W. Johnson, B. Zinser, S. Campione
Symmetric triangle quadrature rules for arbitrary functions
Computers & Mathematics with Applications (2020) arXiv:1909.01480

e B. Freno, W. Johnson, B. Zinser, D. Wilton, F. Vipiana, S. Campione
Symmetric numerical integration techniques for singular integrals in the
method-of-moments implementation of the electric-field integral equation
arXiv:1911.02107
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