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Potentially Safeguards-Relevant Data
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Computer Vision: What objects are in an image, where they are, how
they relate to the background, and the meaning of the image as a
whole?

Classification: Obiect Detection:
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Training Deep Computer Vision Models

MNIST: 70,000 handwritten digits




Training Deep Computer Vision Models

COCO: > 200,000 Labeled images; 1.5 million object instances

Dataset examples




Training Deep Computer Vision Models

ImageNet: > 14 million Images; >1 million bounding boxes
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Safeguards training data challenges:

1) Proliferation-relevant images may be rare due to their
sensitivity or the limited availability of a technology.

2) Creating relevant images through real-world staging is
costly and introduces biases into the resulting model.

3) Expert-labeling is expensive, time consuming, and prone
to error and dissent.




Hypothesis:

Synthetic images generated from three-dimensional
CAD models of an object of interest can be used
during training to overcome these problems.




Would you trust the autonomous vehicle that can’t identify both signs?




Progress To-Date

1) Synthetic image generation
2)
3)
4)

Data and model validation

mage background experiments

Real:Synthetic ratio experiments
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Example images




Data & Model Validation

Do we have sufficient data to fine-tune the model?

Res-Net 50 image classification model pre-trained on ImageNet
Replaced final 1000-ooutput fully connected layer to detect a single class: “manipulators”

1) Fine-tuned using 411 real-world images

2) Fine-tuned using 2000 synthetically generated images




Average loss and accuracy training and testing using only
real-world images with 5x2 cross validation.
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Average loss and accuracy training and testing using only
synthetic images with 5x2 cross validation.
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First Run

Trained on synthetic data

Tested on real-world data

Random 20% of synthetic data
for validation, each experiment
repeated 10 times

Poor performance could be due
to low variance in training data
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Average performance of synthetic training data with real test
data, for ten models.
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Average performance of synthetic-foreground + real-
background training data, ten models

Loss while training Accuracy while training
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Image Ratio Experiments
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Conclusions

From our results comparing panoramic to flat backgrounds, we speculate that the flat
backgrounds led to lower performance because they rarely aligned with the randomly chosen
synthetic camera angle. This suggests that realism may be more important than we originally
imagined.

Our synthetic data led to useful loss reduction for the real-world prediction task in early epochs,
before diverging. This suggests that the distribution of our synthetic data needs to match the
distribution of our real-world data more closely, again implying that more realism is better.

Synthetic data in combination with real world data was useful when real world data was limited,
and decreased variance in test accuracy even when there was no improvement in mean
accuracy. This suggests that synthetic data could be useful for decreasing uncertainty even when
sufficient real-world data is available (perhaps by training models on unlikely scenarios).




Acknowlegements

This work was funded by Sandia National Laboratories’ Laboratory-Directed Research &
Development program, under the Global Security Investment Area.




