
Pufferscale: Rescaling HPC Data Services for High
Energy Physics Applications

Nathanaël Cheriere
Univ. Rennes, Inria, CNRS, IRISA

Rennes, France
nathanael.cheriere@irisa.fr

Matthieu Dorier
Argonne National Laboratory

Lemont, IL, USA
mdorier@anl.gov

Gabriel Antoniu
Univ. Rennes, Inria, CNRS, IRISA

Rennes, France
gabriel.antoniu@inria.fr

Stefan M. Wild
Argonne National Laboratory

Lemont, IL, USA
wild@anl.gov

Sven Leyffer
Argonne National Laboratory

Lemont, IL, USA
leyffer@anl.gov

Robert Ross
Argonne National Laboratory

Lemont, IL, USA
rross@anl.gov

Abstract—User-space HPC data services are emerging as an
appealing alternative to traditional parallel file systems, because
of their ability to be tailored to application needs while elimi-
nating unnecessary overheads incurred by POSIX compliance.
The High Energy Physics (HEP) community is progressively
turning towards such services to enable high-throughput accesses
under heavy concurrency to billions of event data produced by
instruments and consumed by subsequent analysis workflows.
Such services would benefit from the possibility to be rescaled
up and down to adapt to changing workloads, as experimental
campaigns progress , in order to optimize resource usage. This
paper formalizes rescaling a distributed storage system as a multi
objective optimization problem considering three criteria: load
balance, data balance, and duration of the rescaling operation.
We propose a heuristic for rapidly finding a good approximate
solution, while allowing users to weight the criteria as needed.
The heuristic is evaluated with Pufferscale, a new rescaling
manager for microservice-based distributed storage systems. To
validate our approach in a real-world ecosystem, we showcase
the use of Pufferscale as a means to enable storage malleability
in the HEPnOS storage system for HEP applications.

Index Terms—Distributed Storage System, Elasticity, Rescal-
ing, Load balancing, High Energy Physics

I. INTRODUCTION

User-space data services are becoming increasingly pop-
ular in the HPC community as an alternative to traditional
file-based methods for data storage and processing [1], [2],
[3]. Although file-based approaches (e.g., POSIX-compliant
parallel file systems) have certain advantages, such as stan-
dard interfaces with well-understood semantics, ensuring these
properties leads to drawbacks including suboptimal underlying
data storage organization and high overheads to preserve
POSIX semantics unneeded by many HPC applications [4].
In contrast, user-space data services can be tailored to their
target applications to meet specific needs [1]. They are usually
deployed on compute nodes alongside the applications that use
them. Some of these services may need to remain deployed
after the application has shut down and to be rescaled up
and down to either conserve resources or adapt to changing
workloads.

An example is of such data service is HEPnOS [1], [5],
a distributed storage system for High Energy Physics (HEP)
applications developed in the context of the SciDAC4 “HEP
on HPC” joint project between Argonne and Fermilab [6],
based on a methodology and software components developed
by the Mochi project [7]. HEP applications at FermiLab

have traditionally used files stored on parallel file systems
to manage event data coming out of particle accelerator and
through pipelines of post-processing applications. These files
are written in CERN’s ROOT format [8] or in HDF5 [9].
The file-based abstraction however hinders performance, since
parallel file systems are generally not optimized for highly-
concurrent, small random accesses. HEPnOS is designed
to store billions of events produced by particle accelerator
experiments and analysis workflows. Ultimately, users intend
to deploy HEPnOS on a supercomputer for the duration of an
experimental campaign (a few weeks to a few months), which
comprises a series of applications, each of which consumes
existing data and produces more data. As the experimen-
tal campaign progresses, some processing steps will require
HEPnOS to span many compute nodes in order to sustain a
high throughput under heavy concurrency. During other steps,
HEPnOS should be scaled down so that some compute nodes
allocated to it could be reassigned to other applications on the
supercomputer.

Today HEPnOS is not malleable: it cannot be scaled up
or down. Once deployed, all initially allocated nodes remain
reserved until shutdown, which forces users to either (1)
run short experimental campaigns, (2) deploy HEPnOS on
a limited number of resources that may be inadequate for
high workloads, or (3) overprovision it and waste resources
that could have been used by other applications. Indeed
shutting down HEPnOs and redeploying it at a different scale
in between each application run would require temporarily
exporting the stored data to a parallel file system, and ingesting
it all back in before the next application starts, an operation
that would be arguably too slow in practice.

Hence one requirement when designing the architecture
of HEPnOS was to give it the ability to scale up or down
without being shut down, depending on the needs of the
applications that interact with it and on the needs of other,
separate applications requesting time and resources on the su-
percomputer. Indeed as the experimental campaign progresses,
some processing steps will require HEPnOS to be deployed
across many storage nodes to sustain a high throughput under
heavy concurrency; while HEPnOS should be scaled down
during other periods so that compute nodes could be allocated
to other users of the supercomputer.

HEPnOS is representative of a class of distributed storage

systems built by composing microservices [1]. These microser-
vices each provide a reduced set of features, such as managing
a database or handling remote accesses to nonvolatile memory
devices. In such a design, rescaling consists of migrating
microservices and their associated resources across a set of
compute nodes. This capability to rescale poses a number of
challenges.

Speed. Rescaling should be as fast as possible. Whether
rescaling is done while the data service is actively being
used by applications or when it is idle, fast rescaling will
lead to better resource utilization overall by enabling other
applications to reuse decommissioned resources (when the
service is scaled down) and by speeding up the applications
that use the service (when the service is scaled up).

Load balancing. Part of the data managed by the service
may be “hotter” than others (e.g., accessed more frequently).
In HEP campaigns, selection steps will go through a large
set of events in parallel and identify some events with specific
characteristics. These events will then repeatedly be used as in-
put of subsequent processing steps. If most of these events are
located in the same node, this node will become a bottleneck.
Hence given that a load metric can be assigned to individual
data items or groups of items, such a load should remain
balanced across the active nodes on which the service runs
(i.e., ideally, the I/O pressure should be uniformly distributed
across those nodes). Note that this goal is different from that of
data balancing, which aims to have each node store the same
amount of data: in a perfectly data balanced configuration,
nonuniform data accesses (corresponding to having some hot
data more frequently accessed than other, colder data) may
produce a load imbalance. Having a load balanced storage
system mitigates hotspots, which in turn reduces I/O interfer-
ences, one of the root causes of performance variability in
HPC applications [10], [11], [12], [13].

Why classical load rebalancing is not enough. An ap-
proach to address these challenges would be to use classical
load-rebalancing strategies [14], which move data from the
most-loaded servers to the least-loaded ones, starting with
data with the highest load-to-data-size ratio. This strategy
minimizes the amount of data to transfer, while balancing the
load on the storage system.

Let us note, however, that rescaling cannot simply target
load rebalancing: classical load rebalancing, as described
above, may create data imbalance, leaving some nodes with
either much higher or much lower volumes of data than other
nodes, for instance when a few (or small) data items have
a high load while a large number of (or larger) data items
have a comparatively lower load. This data imbalance will
slow down future rescaling operations: nodes hosting more
data than others need more time to transfer out data during
their decommission, thus slowing down the operation.

This paper aims to provide a comprehensive understanding
of the factors that affect rescaling operations and to propose
an effective approach to optimize their performance. Our
approach considers both load balance and data balance.
To enable efficient, repeated rescaling operations over a long
period of time, one must jointly (1) optimize load balance,
(2) minimize the duration of the current rescaling operation,
and (3) ensure data balance to help speed up the subsequent
rescaling operations. This problem is NP-hard [14] and cannot
be solved exactly in a reasonable amount of time in the

envisioned situations. A fast heuristic taking decisions in
fractions of a second is required since rescaling can last only
a few seconds.

This paper makes the following contributions.
Multiobjective problem (Sections III and IV). We formal-

ize the rescaling problem above as a multiobjective optimiza-
tion problem. We demonstrate the need to consider all three
objectives by showing what happens when one or more of the
objectives are overlooked by the rescaling algorithm.

Heuristic (Section V). We present a heuristic to manage
data redistribution during a rescaling operation. This heuristic
aims to reach a good trade-off between load balance and data
balance for the final data placement and the duration of the
rescaling operation.

Pufferscale (Section VI). We design and implement Puffer-
scale, a generic rescaling manager that can be used in
microservice-based distributed storage systems. The roles of
Pufferscale are to (1) track the data hosted on each node and
records its size and load, (2) schedule the data migrations using
the previous heuristic, and (3) start and stop microservices on
compute nodes that are being respectively commissioned and
decommissioned.

Evaluation (Section VII). We show the performance and us-
ability of Pufferscale in experiments on the French Grid’5000
experimental testbed. We show in practice that one can con-
sider both load balancing and data balancing with negligible
impact on the quality of both and with only a 5% slowdown
compared with strategies ignoring load balancing. Moreover,
we showcase the use of Pufferscale with a combination of mi-
croservice components used in the HEPnOS storage systems,
with the goal of enabling malleability in HEPnOS.

Additional aspects are discussed in Section VIII, followed
by a conclusion in Section IX.

II. RELATED WORK

Most distributed storage systems, such as Ceph [15] or
HDFS [16] include tools to balance the amount of data hosted
by each node. Some works such as that of Liao et al. [17] place
the data uniformly from the beginning to avoid rebalancing.

Rocksteady [18] is a technique for scaling out RAMCloud
clusters, it allows fast data migration while minimizing re-
sponse times. This work is orthogonal to ours as it is focused
on efficient point to point data transfers while ours determines
which data transfers are needed by rescaling operations.

Operations to rebalance the data in the context of peer-
to-peer storage systems have been extensively studied by
Rao et al. [14], Ganesan et al. [19], and Zhu and Hu [20].
Similar techniques have been applied to distributed storage
systems [21] and RAID systems [22]. However, all these works
focus only on one criterion to balance: either the amount of
data per node or the load (memory usage, CPU usage, etc.)
and intend to do so as quickly as possible. Neither considers
both objectives.

The multicriteria problem studied in this paper is close to
that of rebalancing virtual machines on a cluster [23], [24],
[25], [26], [27]. Each virtual machine needs some resources to
perform nominally (CPU, memory, bandwidth, etc.), and each
physical machine has limited capacity. Thus, virtual machines
should be migrated to avoid overloading physical machines;
in addition, as few virtual machines as possible should be
migrated to limit the performance degradation. Arzuaga and

Kaeli [26] simplify the problem to one dimension by simply
adding resource usage metrics and by balancing this sum.
However, even if this sum of metrics is well balanced across
the cluster, it may not be the case for each individual metric.
Most works on balancing virtual machines [23], [24], [25],
[27] are designed to keep the resource usage on each physical
machine under a user-defined threshold while migrating as few
virtual machines as possible. The work presented in this paper,
however, aims to simultaneously load balance and data balance
the cluster as fast as possible.

III. FORMALIZATION

In this section, we formalize the problem of data redistri-
bution during a rescaling operation.

A. Rescaling operations
We consider two rescaling operations: commissioning

(adding) storage servers or decommissioning (removing) stor-
age servers. Rescaling a distributed storage system has to be
done under one main constraint: objects initially stored must
be available in the system at the end of the operation. In other
words, no data can be lost during the operation.

In the context of this paper we assume that the storage
service is directed to add or remove specific storage servers,
and the task is to decide which data to move to meet our
objective. The definition of this server selection policy is out
of the scope of this work since it can depend on external
factors, such as the arrival of new jobs that need to take over
servers from the existing job. For the same reason, the list of
servers to commission or decommission is assumed not to be
known in advance.

B. Parameter description
We consider a homogeneous cluster. Let I be the set of

storage servers involved in the operation (including servers
that will be commissioned or decommissioned). We denote
as I− the set of storage servers to decommission and as I+

the set of storage servers to commission. All nodes have a
network bandwidth Snet. We assume (fast) in-memory storage;
therefore the network is expected to be the bottleneck of the
rescaling operation in this case. The alternative scenario where
data storage causes a bottleneck is discussed in Section VIII-A.
Each storage server has a storage capacity of C.

In this work, we focus on storage systems without data
replication for two reasons: (1) HEPnOS, our targeted system,
does not rely on data replication for fault tolerance, and (2)
space constraints do not allow us to develop both cases.

We assume that storage servers can exchange collections of
objects, which we call buckets, during the rescaling operations.
Buckets are considered because rebalancing the storage system
with a finer, object-level granularity would take too long due
to the sheer number of objects. This strategy has been used
in Ceph [15]. Each bucket j has a size (Sizej) and a load
(Loadj), a generic, user-defined measure of the impact the
bucket has on its host. For example, the load of a bucket of
objects can be defined as the number of requests for the objects
in the bucket over a time period. Let J be the set of buckets.
Each bucket is initially stored on a single storage server. b0 and
b are matrices in {0, 1}|I|×|J| representing the placement of
buckets before and (respectively) after the rescaling operation.
b0ij = 1 if the bucket j is on the storage server i at the

beginning of the operation. Similarly, bij = 1 if the bucket
j is on the storage server i at the end of the operation.

C. Problem formalization
Our goal is to minimize at the same time the maximum

load per node (load balancing), the duration, and the maximum
amount of data per node (data balancing) (Eq. 1).

1) Load balance: The first objective is to reach a load-
balanced distribution of buckets. We assume that each server
is under a load equal to the sum of the load of the buckets
that are placed on it. We denote as Lmax (Eq. 2) the load
of the most loaded server. A cluster is load-balanced when
Lmax is as low as possible. Although other metrics for load
balance could be considered (e.g. the variance of the loads
across servers or the entropy of the load distribution), using
the maximum ensures that hotspots are avoided, while leaving
some leeway to optimize the other objectives. Indeed, as long
as the maximum load across the cluster does not increase,
buckets can be transferred from servers to servers to optimize
the data balance or left in place to reduce the duration of the
operation.

2) Duration: The second objective is to minimize the
duration of the rescaling operation Tmax (Eq. 3). It is the
maximum of the time needed to receive data and to send data
across all servers. This reflects that most modern networks are
full duplex and thus can send and receive data at the same time
without interference. Latency is ignored since it is a negligible
part of the time needed to transfer a bucket because of their
large sizes.

3) Data balance: The third objective is data balancing:
each server should host similar amounts of data. We denote as
Dmax (Eq. 4) the maximum amount of data on a single node.
A cluster is data balanced when Dmax is as low as possible.

4) Constraints: The objectives should be minimized while
ensuring some constraints. Each node must have the capacity
to host the data placed on it (Eq. 5). Each bucket must be
placed on one and only one node (Eq. 6). No bucket should
be hosted by decommissioned nodes (Eq. 7), since these nodes
are leaving the cluster.

Find b minimizing Lmax, Dmax, and Tmax. (1)

Lmax = max
i∈I

∑
j∈J

bijLoadj (2)

Tmax = max
i∈I

max

(∑
j∈J
bij=1

b0ij=0

Sizej
Snet

,
∑
j∈J
bij=0

b0ij=1

Sizej
Snet

)
(3)

Dmax = max
i∈I

∑
j∈J

bijSizej (4)

C ≥
∑
j∈J

Sizejbij ∀i ∈ I (5)

1 =
∑

i∈I\I−

bij ∀j ∈ J (6)

0 =
∑
j∈J

bi−j ∀i− ∈ I− (7)

IV. NEED FOR MULTIOBJECTIVE OPTIMIZATION

In this section, we discuss the multiple objectives we
consider, their relevance, and their impact on the rescaling
operations.

L LT LDT

0
5

10
15

M
ax

im
um

 lo
ad

 p
er

 n
od

e
(%

)

L
LT
LDT
Lower bound

L LT LDT

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

M
ax

im
um

 d
at

a
pe

r
no

de
 (

G
iB

)

L LT LDT

0.
0

0.
5

1.
0

1.
5

2.
0

D
ur

at
io

n
(s

)

L LT LDT

0
20

40
60

80
10

0
D

at
a

tr
an

sf
er

ed
 (

%
)

(a) Commission of 3 servers to a storage system with 5 initial servers

L LT LDT

0
5

10
15

20
M

ax
im

um
 lo

ad
 p

er
 n

od
e

(%
)

L
LT
LDT
Lower bound

L LT LDT

0
1

2
3

M
ax

im
um

 d
at

a
pe

r
no

de
 (

G
iB

)

L LT LDT

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

D
ur

at
io

n
(s

)

L LT LDT

0
20

40
60

80
10

0
D

at
a

tr
an

sf
er

ed
 (

%
)

(b) Decommission of 3 servers out of a storage system with 8 servers

Fig. 1. Load balance, data balance, duration, and percentage of data transferred for the strategies L, LT, and LDT.1

A. Methodology

To study the relevance of each objective, we devise and
evaluate several strategies for a rescaling operation and try to
minimize various subsets of the objectives.

1) Problem size and cluster configuration: The optimal
solutions for each strategy are obtained by using CPLEX,
a solver for mixed-integer programming [28]. Because of
the prohibitive compute time needed to get optimal solutions
(1 h 40 min on average for one optimal solution on a cluster
of up to 8 servers and 32 buckets), we focus in this section
on smaller instances of the problem: only 16 buckets on up
to 8 nodes. We consider 100 commissions with a cluster of
5 storage servers increased to 8 and 100 decommissions with
a cluster of 8 storage servers reduced to 5. Each solution is
obtained in 850 ms on average.

2) Distribution law: We generate buckets with sizes and
loads that follow a normal distribution (standard deviation of
40%, for a total of 8 GB hosted on the cluster) to represent
a bucket hosting hundreds of objects. Indeed, even if the load
induced by a single file in a peer-to-peer setup is known
to follow a Mandelbrot-Zipf distribution [29], the central
limit theorem shows that the distribution of the load of a
bucket can be approximated by a normal distribution with a
standard deviation that decreases with the number of files in
the collection. The same applies to the size of the buckets.

3) Initial data placement: The initial placement of the
buckets on the nodes is obtained by executing sequentially
9 random rescaling operations (during each operation, the
cluster is rescaled to a size randomly selected between 2 and 8
servers) using the same placement strategy as the one studied.
This ensures that the initial data placement of the presented
results is a consequence of the studied strategy. This warm
up period is commonly used in simulations to reach a steady
state from unlikely initial conditions [30].

B. Impact and relevance of each objective

Figure 1 respectively presents1 the load balance, the dura-
tion, the data balance, and percentage of the stored data moved
during the rescaling, for each of the three following strategies.
• L: Data is placed such that Lmax is minimized.
• LT: The load balancing is relaxed; the data is placed so

that Lmax is within 10% of its optimal value (obtained
with L) and Tmax is minimized.

1Boxplots represent the min, first quartile, median, third quartile, and max.

• LDT: The load balancing and data balancing are relaxed,
and the duration is minimized. The data is placed so that
Lmax and Dmax are within 10% of their optimal values,
and Tmax is minimized.

1) Load balance: In Figure 1, we can observe the perfor-
mance of L, which focuses only on load balancing and is
optimal for this criterion. The lower bound is below since
it is estimated by the average load per node, and thus it is
not a tight lower bound. However, the optimality of the load
balance comes at the cost of many data transfers; at least 85%
of the data on the cluster was moved between nodes in half
of the decommissions. This is also reflected in the duration
of operations: the median duration of the decommission is at
least 1.8 times longer than with LDT.

These results can easily be explained by the fact that L
solely focuses on finding an optimally load balanced data
placement and is oblivious to the other objectives.

2) Duration: LT is a strategy focused on load balancing
and fast rescaling. We observe in Figure 1(a) that most of
the commissions are done about 3 times faster with LT than
with L, since LT moves 3 times less data. Figure 1(b) shows
that relaxing the load balancing helps speed decommission
operations by a factor 1.4 compared with L. However, the
strategy does not exhibit stable performance: the duration
of operations can vary by up to 100%. The stability of the
duration of rescaling operations can be obtained only by
considering a third aspect: data balance.

3) Data balance: Data balancing is needed to speed up
decommission operations and to stabilize the duration and
performance of all rescaling operations.

In the case of a decommission, when the storage is data
balanced, the duration of the operation is independent of
the choice of the storage servers that are being removed:
all storage servers host the same amount of data. If there
is some data imbalance in the storage, the decommission
could be faster if only storage servers hosting less data than
average are decommissioned. Most likely, however, at least
one storage server hosting more data than average is selected to
be decommissioned, lengthening the duration of the operation.

In Figure 1(b) we observe that the duration of the decom-
mission with LT can be up to 25% shorter than with LDT, but
it can also be up to 2 times slower in some cases. Overall,
LDT tries to satisfy all objectives and has less variability in
duration, which can greatly help resource managers predict
the performance of rescaling operations. However, it comes
at the cost of higher load imbalance and longer commission

operations (Figure. 1(a)): LDT requires more data movements
to balance the data.

C. Why all three objectives are relevant
The three objectives are often mutually incompatible. For

example, the fastest commission duration is not reachable if
the cluster must be data balanced. Besides, there is no single
hierarchy to order these objectives and minimize them one
after another. Indeed, depending on the application, some
of the objectives may not be as relevant as the others. For
instance, a distributed storage that is not a bottleneck for the
application using it may not need an ideal load balancing, but
the job manager may need stable rescaling durations in order
to anticipate the operations.

All three objectives should be taken into account when
rescaling a distributed storage system. Thus, the rebalancing
algorithm (which is also in charge of moving data out of
decommissioned nodes) must consider load balance, duration,
and data balance and find an equilibrium between them.

V. HEURISTIC

Calculating exact solutions for our multiobjective problem
for realistic deployment scales is not feasible: it simply takes
too long (see Sec. IV-A). Thus, a heuristic is needed to get
fast approximations that are usable in practice.

A. Challenges
Traditional load rebalancing is usually a bi-objective opti-

mization problem: the load must be balanced, but it should
be done quickly. In the previous section, we showed that,
to ensure efficient decommission for the long term, the data
redistribution done during rescaling operations should consider
three objectives simultaneously: load balance, data-balance
and duration.

Like most multiobjective optimization problems, there is
not just one optimal solution, thus the goal is to provide
an acceptable trade-off. Moreover, because of the expected
scale of the storage system (a few hundreds to thousands of
nodes on a supercomputer) the rebalancing algorithm must
compute a solution quickly. This makes computing an exact
solution unusable (see Section IV-A). We need a fast heuristic
that can be parametrized to provide solutions that balance the
objectives according to the needs of each application.

B. Heuristic for the rescaling problem
The heuristic we design is a greedy algorithm inspired

by the longest-processing-time-first rule and usual load-
rebalancing mechanisms [31]. A greedy algorithm enables the
transfer of buckets before a complete solution is computed.

It works in three steps: 1) estimate the target values for load-
balancing, data-balancing, and duration; 2) select buckets that
will not be moved (which we call “fixed” buckets); and 3)
allocate the remaining buckets to destination storage servers
(which may be the storage servers they are already on).

1) Determination of target values for metrics: The heuristic
is designed to provide solutions that have their metrics as close
as possible to target values; thus the computation of the target
values is critical. We do not set the targets to 0 for two reasons,
even if 0 is a relevant choice because we aim to minimize the
objectives. First, setting realistic targets allows us to normalize
the metrics with respect to these targets. Second, it prevents an
imbalance between the objectives: none of the load balancing

1 foreach Storage server i do
2 ∀j ∈ J , set bij = 0;
3 Let Ji = {j1, j2, ...} be the buckets initially on i

ordered by decreasing norm N (Eq. 14);
4 Find the largest n such that

∑n
k=1 Sizejk ≤ Dt and∑n

k=1 Loadjk ≤ Lt;
5 Allocate {j1, ..., jn} to i: ∀k ∈ [1, n], bijk = 1;
6 Add {j1, ..., jn} to Ja;

Algorithm 1: Fixing buckets

and data balancing metrics can reach 0 (since there are buckets
on the storage, the lower bounds for these metrics is positive),
but the duration can be 0 in case of a commission (leaving
new nodes empty is valid). Thus, setting realistic targets helps
avoid biases toward some objectives.

Lt =

∑
j∈J Loadj

|I\I−|
(8)

Dt =

∑
j∈J Sizej

|I\I−|
(9)

Di =

∑
j∈J Sizej

|I\I+|
(10)

Tt =

max
(
|Dt−Di|

Snet
, Di

Snet

)
if I− 6= ∅

max
(
|Di−Dt|

Snet
, Dt

Snet

)
if I+ 6= ∅

(11)

The target load per storage server Lt and the target amount of
data per server Dt at the end of the rescaling operations are
respectively the average load per storage server (Eq. 8) and the
average amount of data per storage server (Eq. 9). The target
duration Tt for the rescaling operations is more challenging
to estimate. We approximate the initial data placements as
perfectly data balanced; that is, each storage server initially
hosts the same amount of data Di (which can be computed by
using Eq. 10) and will host Dt at the end of the operation. For
a decommission (upper part in Eq. 11), the operation should
last at least the time needed to empty the decommissioned
servers of their buckets and at least the time needed for the
remaining servers to receive those buckets. For a commission
(lower part in Eq. 11), the duration is the maximum of the time
needed to add enough buckets to new storage servers and the
time required to send those buckets.

2) Fixing buckets: We call “allocated” a bucket for which
the algorithm has determined a destination server. Among
these buckets, we call “fixed” the ones that will not move
from their current location. Let Ja be the set of allocated
buckets during the execution of the algorithm. The fixing phase
(Algorithm 1) consists of determining the buckets that will not
be moved and adding them to Ja. The idea behind the fixing
phase (Algorithm 1), is to avoid transferring the “largest”
buckets. Buckets are ordered by decreasing norm N (Eq. 14),
which is a combination of their load and size normalized by the
total load and total size on the storage system (Eq. 12, Eq. 13).
The fixing algorithm allocates to the node the largest buckets
that fit within the target for load balancing and data balancing.

1 Sort unallocated buckets (J\Ja) by decreasing N (Eq. 14);
2 foreach Bucket j do
3 Let i0 be the initial host of bucket j, b0i0j = 1;
4 Find the server i that minimizes the penalty

P (i) + P (i0) (computed assuming j has been allocated
to i) ;

5 Allocate j to i (bij = 1, b0i0j = 0);
6 Add j to Ja;

Algorithm 2: Allocation of buckets

The remaining buckets will be allocated by Algorithm 2.

SLoad =
∑
j∈J

Loadj (12)

SSize =
∑
j∈J

Sizej (13)

N(j) =

√(
Loadj
SLoad

)2

+

(
Sizej
SSize

)2

(14)

3) Allocation of remaining buckets: The allocation phase
(Algorithm 2) follows a greedy strategy: the buckets, taken in
order of decreasing norm N (Eq. 14) are placed on the servers
where so as to minimizes a penalty function (Eq. 15). The
penalty is the sum of the cube of the value of each objective
divided by their targeted value. Thus the bigger the value of
an objective is compared with its targeted value, the higher is
the penalty. The effect of this penalty function is to minimize
the objective that is the least optimized.

P (i) =

(∑
j∈Ja bijLoadj

Lt

)3

+

(∑
j∈Ja bijSizej

Dt

)3

+
0.5

(SnetTt)3
∗max

(∑
j∈Ja

b0ij=0

bij=1

Sizej ,
∑
j∈Ja

b0ij=1

bij=0

Sizej

)3

(15)

C. Enabling heuristic tuning

Since no ideal rebalancing exists for all situations, we added
weights to provide the possibility to adapt the importance of
each objective to the needs of the application. Let WL,WD,
and WT (such that max(WL,WD) = 1 and WT > 0,WL >
0,WD > 0) be the weights for the load balancing, data
balancing, and duration of the transfers, respectively. The
higher the weight, the more important the objective.

Li =

∑
j∈J Loadj

|I\I+|
(16)

Ltw =

{
Lt

WL
if WT < 1

1
WL

((1− 1
WT

)Li +
Lt

WT
) otherwise

(17)

Dtw =

{
Dt

WD
if WT < 1

1
WD

((1− 1
WT

)Di +
Dt

WT
) otherwise

(18)

Ttw =
DT

WT
(19)

Nw(j) =

√(
Loadj ∗WL

SLoad

)2

+

(
Sizej ∗WD

SSize

)2

(20)

Pu
ff

er
sc

al
e

Resource
manager

(RM)

Rescaling
orders

Controller
-Interface with
RM

Rescaling
orders

Master
-Rebalancer

Transfer instructions

Transfer instructions

Node
Worker
-Interface with
storage server

Storage
Microservice

Transfer instructions

Node
Worker
-Interface with
storage server

Storage
Microservice

Bucket
transfer

Fig. 2. Architecture of Pufferscale.

With these weights, we can adjust the target values in Ltw,
Dtw, and Ttw for each objective. The target duration Ttw is
simply scaled by its weight (Eq. 19) because the minimum for
the duration is 0. But because the needed transfers to reach the
targets Lt and Dt are estimated to last at least Tt, the targets
for the load balancing and data balancing are adjusted as the
weighted mean between the initial balancing and the targeted
balancing. Then the data balancing and load balancing each
are multiplied by their weights (Eq. 17 and Eq. 18). At least
one of the weights WL or WD is set to 1 so that the heuristic
aims to optimize at least one objective. A weighted norm is
also used to order the buckets as shown in Eq. 20.

VI. PUFFERSCALE

To evaluate our proposed heuristic, we implemented Puffer-
scale1, a rescaling service developed in the context of the
Mochi project [7]. This project aims at boosting the de-
velopment of HPC data services thanks to a methodology
based on the composition of building blocks that provide a
limited set of features, accessible through remote procedure
calls (RPC) and remote direct memory accesses (RDMA) and
a threading/tasking layer [1]. As such, Pufferscale can be
composed with other Mochi microservices to be integrated
in various larger data services. Pufferscale’s roles in such data
services are to (1) keep track of the location of buckets, (2)
schedule and request the migration of buckets from a node
to another using the presented heuristic, and (3) request the
deployment and shutdown of microservices on nodes that have
to be respectively commissioned or decommissioned.

Pufferscale consists of the following components (Figure 2).
The controller acts as an interface to send rescaling orders
to the master from outside of the service. The master is
the component that contains the heuristic and decides where
each bucket should be placed during rescaling operations.
The workers are the interfaces between the master and the
microservices available on a given node. They are able to
start and stop microservices on their node and forward the
transfer instructions from the master to the corresponding
microservices. The composition with the microservices is done
by dependency injection. That is, the microservice registers
callbacks that the workers can call to request the migration of
a bucket or ask for information about the buckets present in
the storage microservice.

1Pufferscale is available at gitlab.inria.fr/Puffertools/Pufferscale.

Pufferscale is not aware of the nature of the data that it is
managing. It also does not handle data transfers itself. In the
experiments presented in Section VII-D, the transfers are per-
formed by REMI, Mochi’s REsource Migration Interface [32],
another microservice designed specifically to enable efficient
file transfers across nodes using RDMA.

Pufferscale is written with about 3500 lines of C++ code and
is implemented by using Mercury [33] for remote procedure
calls and Argobots [34] for thread management.

VII. EVALUATION

In this section, we evaluate the heuristic at a large scale
using emulation. Then we showcase the use of Pufferscale
to build the core of a real malleable storage system. For the
first goal, we use a “dummy” storage microservice to evaluate
Pufferscale’s heuristic without making actual data transfers.
We then use Pufferscale in a real-world setting, using the set
of microservices used in the HEPnOS data service described
in the introduction.

A. Scope of the evaluation
Note that a complete assessment of the advantages of

rescaling a service would require evaluating (1) how fast
a migration plan can be computed by Pufferscale; (2) how
fast the rescaling and data migrations can be done; (3) how
much of a performance speedup is obtained from running the
application with a data service deployed at different scales;
and (4) whether applications suffer from a slowdown during
rescaling.

In this paper, due to space constraints and because of the
focus on the scheduling heuristic, we restrict our evaluation
to (1) and (2). The performance gains from the application
perspective (3) depends on the application and will be studied
in future works. As for whether applications suffer from a
slowdown when a rescaling happens concurrently (4), this
scenario is not envisioned by HEP use cases, where the
service will be rescaled in between the execution of individual
applications.

B. Evaluation of the heuristic
1) Setup: To evaluate the heuristic and its implementa-

tion at large, realistic scales, we emulate a storage system
by implementing a “dummy” storage microservice that only
transfers metadata about buckets but does not actually store or
transfer data. Since no data is actually migrated between any
two instances of this microservice, we estimate the duration
of the rescaling using (Eq. 3). This setup allows us to scale up
beyond the number of physical nodes available, by emulating
multiple virtual storage servers on each physical node.

This distributed service can scale from 128 storage servers
up to 2,048 storage servers on a 28-node cluster of the French
Grid’5000 testbed [35]. Of the 28 nodes, one acts as a master,
and one as a controller, and the other 26 each host up to 80
emulated storage servers. With this setup, we emulate 8,192
buckets with a load distribution following a normal law with
40% standard deviation proportionally adjusted to reach a total
load of 100%. Similarly the amount of data stored in each
bucket follows a normal law with 40% standard deviation for
a total of 4,096 GB of data on the storage system. We distribute
the buckets by doing 25 random rescaling operations as warm
up with the same rescaling strategy as the one studied. Then,

we consider the following rescaling scenarios: commission of
1,920 nodes to a storage system of 128 nodes, commission
of 64 nodes to a storage system of 256 nodes, decommission
of 1,920 nodes out of a storage system of 2,048 nodes, and
decommission of 64 nodes out of a storage system of 320
nodes. Each rescaling operation is executed 100 times with 9
random rescalings between two recorded ones.

We record the load balance, the data balance, and the
amount of data received and sent that allows us to estimate
the duration of the data transfers under the best conditions.

In Figure 3 we compare the load balance, data balance,
and duration of 3 strategies: LDT (optimization of all three
objectives), LT (optimization of the load balance and of the
duration of transfers), and DT (optimization of data balance
and of the duration of transfers). Each of the strategies is
obtained by modifying the weights in our heuristic.

We could not compare fairly our work with other works
on rebalancing, because the latter do not comply with the
strong constraints of the decommissions: nodes being decom-
missioned must have all their data transferred out to the other
nodes, a constraint that is not enforced by other rebalancing
algorithms. Moreover, to the best of our knowledge, there is no
distributed storage system designed to be colocated with HPC
applications that could serve as reference. Distributed storage
systems designed to be colocated with applications exist in
the cloud, like HDFS, but their rescaling mechanism relies on
data replication (that is unneeded for our use-case) and are
not optimized for speed [36], but to minimize their impact on
application performance.

Instead, we added computed comparison points (ref.) on
each of the graphs: for load balance and data balance we added
the lower bounds (Lt (Eq. 8) and Dt (Eq. 9)). For duration, we
added the lower bound of the duration of the transfers needed
to transition from a perfectly data balanced storage system to
another perfectly data balanced storage system (Tt, (Eq. 11)).

2) Results: Overall, the quality of the load balancing for
LT and of the data balancing for DT compared with their
respective lower-bounds depends on the average number of
buckets on the servers at the end of the operation. It is
on average within 2% when there are 128 servers after the
rescaling operation (Figure 3(b)), and within 40% when there
are 2,048 servers at the end of the operation (Figure 3(a)).
Such a difference between the lower bounds and the obtained
results is explained by the granularity of the load and data
stored per node: the 8,192 buckets cannot be subdivided
to perfectly balance the corresponding objective. The lower
bounds, however, are the average per node, ignoring the
granulary of the metrics.
LDT combines of the benefits of the LT and DT strategies,

without any major drawbacks. Its load balance is not signifi-
cantly different from that of LT, and its data balance is similar
to that of DT. It can be up to 5% slower than DT since LDT
has more transfers to do in order to maintain both the data
balance and the load balance.

Moreover, compared with LT, the range of duration (dif-
ference between the longest and shortest operation) of LDT
is shorter by 32% to 70%, highlighting the fact that data
balancing is needed to make operations faster (Figure 3(a) and
Figure 3(d)) and have a more stable, and thus more predictable
rescaling duration.

The computation of the heuristic was done in at most 612 ms

LDT LT DT

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

M
ax

im
um

 lo
ad

 p
er

 n
od

e
(%

)

LDT
LT
DT
ref.

LDT LT DT

0
1

2
3

4
5

M
ax

im
um

 d
at

a
pe

r
no

de
 (

G
iB

)

LDT LT DT

0
5

10
15

20
25

D
ur

at
io

n
(s

)

(a) Commission of 1920 to a cluster of 128

LDT LT DT

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

M
ax

im
um

 lo
ad

 p
er

 n
od

e
(%

)

LDT
LT
DT
ref.

LDT LT DT

0
5

10
15

20
25

30
35

M
ax

im
um

 d
at

a
pe

r
no

de
 (

G
iB

)

LDT LT DT

0
5

10
15

20
25

D
ur

at
io

n
(s

)

(b) Decommission of 1920 to a cluster of 2048

LDT LT DT

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

M
ax

im
um

 lo
ad

 p
er

 n
od

e
(%

)

LDT
LT
DT
ref.

LDT LT DT

0
5

10
15

M
ax

im
um

 d
at

a
pe

r
no

de
 (

G
iB

)

LDT LT DT

0
2

4
6

8
10

D
ur

at
io

n
(s

)

(c) Commission of 64 to a cluster of 256

LDT LT DT

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

M
ax

im
um

 lo
ad

 p
er

 n
od

e
(%

)

LDT
LT
DT
ref.

LDT LT DT

0
5

10
15

20
M

ax
im

um
 d

at
a

pe
r

no
de

 (
G

iB
)

LDT LT DT

0
2

4
6

8
10

12
D

ur
at

io
n

(s
)

(d) Decommission of 64 to a cluster of 320
Fig. 3. Maximum load, amount of data per node, and duration of different rescaling operations.

LDT LT DT

0.
0

0.
1

0.
2

0.
3

0.
4

M
ax

im
um

 lo
ad

 p
er

 n
od

e
(%

)

LDT
LT
DT
ref.

LDT LT DT

0
5

10
15

M
ax

im
um

 d
at

a
pe

r
no

de
 (

G
iB

)

LDT LT DT

0
2

4
6

8
10

D
ur

at
io

n
(s

)

(a) Commission of 64 to a cluster of 256

LDT LT DT

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

M
ax

im
um

 lo
ad

 p
er

 n
od

e
(%

)

LDT
LT
DT
ref.

LDT LT DT

0
5

10
15

M
ax

im
um

 d
at

a
pe

r
no

de
 (

G
iB

)

LDT LT DT

0
2

4
6

8
10

D
ur

at
io

n
(s

)

(b) Decommission of 64 to a cluster of 320
Fig. 4. Maximum load, amount of data per node, and duration of different rescaling strategies starting from a load and data balanced data placement.

for the commission of 1,920 nodes while the data transfers
themselves lasted for 25 s. The impact of this delay can be
reduced by starting the transfers as soon as the destination is
decided by the heuristic.

C. Impact of the initial data balance

1) Setup: Using the same setup as in the previous exper-
iment, we conduct a different set of measurements. After a
warm-up of 25 operations that follow the LDT strategy, we
switch the strategy and perform one rescaling operation. This
ensures that the bucket placement before the last operation is
data balanced and load balanced. Each measure is repeated 50
times with newly generated bucket sizes and loads.

2) Results: By looking at the results of the commission
(Figure 4(a)) and comparing them with those of the previous
experiment (Figure 3(c)), we can see that starting from a data
balanced bucket placement has no impact on the commission
operation for any of the strategies.

In contrast, we can observe that an initially data balanced
bucket placement has an important impact on the duration of

the decommission operation (Figure 4(b) and Figure 3(d)): all
strategies have a similar duration. This shows that, indepen-
dently of any other value, enforcing data balance is required to
improve the duration of rescaling operation on the long term.

D. Pufferscale in HEPnOS

In this section, we showcase the use of Pufferscale with a
composition of microservices corresponding to the HEPnOS
use case described in the introduction. We composed SD-
SKV [37], an in-memory, single-node key-value store acting
as a storage microservice, REMI, a microservice designed to
efficiently transfer files between nodes, and Pufferscale, to
build the base of an elastic version of HEPnOS. Contrary to
the previous experiments, databases are transferred between
nodes, and the duration of the rescaling operations is recorded.

The rescaling operations of this composition were evaluated
on the paravance cluster of the Grid’5000 testbed. This cluster
is composed of 72 nodes each with 16 cores, 128 GiB of
RAM, and a 10 Gbps network interface. At the maximum
size, 64 nodes were used to host databases, and another one

LDT LT DT

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

M
ax

im
um

 lo
ad

 p
er

 n
od

e
(%

)

LDT
LT
DT
ref.

LDT LT DT

0
1

2
3

4
M

ax
im

um
 d

at
a

pe
r

no
de

 (
G

iB
)

LDT LT DT

0
1

2
3

4
D

ur
at

io
n

(s
)

(a) Commission of 16 to a cluster of 48

LDT LT DT

0
1

2
3

4
M

ax
im

um
 lo

ad
 p

er
 n

od
e

(%
)

LDT
LT
DT
ref.

LDT LT DT

0
1

2
3

4
M

ax
im

um
 d

at
a

pe
r

no
de

 (
G

iB
)

LDT LT DT

0
1

2
3

4
D

ur
at

io
n

(s
)

(b) Decommission of 16 from a cluster of 64 servers
Fig. 5. Maximum load, amount of data per node, and duration for two rescaling operations of the composition of Pufferscale, SDSKV, and REMI.

node served as controller to issue rescaling orders. Hosted by
the SDSKV microservice instance were 256 databases, acting
as buckets, each with a load following a normal distribution
(with 40% standard deviation) and a size following a normal
distribution with a mean of 512 MiB and a standard deviation
of 40%. Similarly to the previous evaluation (Section VII-B),
we distributed the databases by doing 25 random rescaling
operations as warmup. Then, each rescaling operation was
executed 50 times with 9 random rescalings in between two
recorded ones. We add the same references on the figures, with
the difference that the network bandwidth is the one recorded
when benchmarking RDMAs on the cluster: 900 MiB/s. The
network bandwidth is not maximized because of the emulation
of RDMAs over a TCP network as well as some overhead in
libfabric’s socket provider used by Mercury.2

The load balance, data balance, and duration of the rescaling
operations are presented in Figure 5. Comparing LT and LDT,
we observe trends similar to that of Section IV: because LDT
considers the data balance, its decommission operations are
on average 13% faster than LT, but there are no significant
changes for the commission operations. Even if the data
balancing of LDT is on average 10% worse than DT, it
does not have a significant impact on the duration of the
decommissions: both strategies ensure similar durations. The
large duration variability is due to the data transfers (neither
the network nor the scheduling of the databases transfers is
perfect, which adds interferences). The variability is likely to
be increased by the emulation of RDMAs over a TCP network.
In the case of the commission, LDT is slower than DT because
of a higher number of database transfers that induces more
network interferences.

An overall conclusion of all these experiments is the
following: it is worth considering data balancing in addition
to load balancing for rescaling storage systems. This helps
reduce the rescaling duration with a negligible impact on load
balance when sending data is the bottleneck of the rescaling,
without any negative impact on the duration in the other
cases.

VIII. DISCUSSION

In this section, we discuss some assumptions made on
Pufferscale, as well as some aspects related to generalizing

2https://ofiwg.github.io/libfabric/master/man/fi provider.7.html: “Socket
[...] This provider is not intended to provide performance improvements
over regular TCP/UDP sockets, but rather to allow developers to write, test,
and debug application code even on platforms that do not have high-speed
networking.”

the approach.

A. Storage bottleneck

Tmax = max
i∈I

(∑
j∈J
bij=0

b0ij=1

Sizej
Swrite

+
∑
j∈J
bij=1

b0ij=0

Sizej
Sread

)
(21)

Tt =

max
(
|Dt−Di|
Swrite

, Di

Sread

)
if I− 6= ∅

max
(
|Di−Dt|
Sread

, Dt

Swrite

)
if I+ 6= ∅

(22)

The objective Tmax is written under the assumption of a
network bottleneck. However, the work of this paper can easily
be adapted to the case of a storage bottleneck. The particularity
of storage devices is that they cannot sustain simultaneous
reads and writes at maximum speed thus the duration of the
I/O operations has to be modeled as the sum of the time taken
to read data and the time taken to write data. Therefore, Eq. 3
should be replaced with Eq. 21, and Eq. 11 should be replaced
with Eq. 22.

B. Generality of Pufferscale

Though Pufferscale was motivated by the need for rescaling
the data service in HEP workflows, it can be used more gener-
ally in any service based on the Mochi components [1], and its
principles could be applied to other user-space data services.
For example, we are planning to adapt it to FlameStore, a
storage system for caching deep neural networks.

C. Adjusting the weights

Giving the user the possibility to adjust the weights of the
heuristic enables the user to tune the heuristic to the needs
of the application. Users could also fine-tune these weights
using some training runs in which the weights are adjusted
in some outer loop, e.g., using derivative-free optimization
solvers (DFO solvers) such as POUNDERS [38].

For instance, data balance is required mostly for decommis-
sions. Thus, if few decommissions will be required, it makes
sense to reduce the importance of the data balance.

If the load and the size of buckets are volatile, the load
balance and data balance could be relaxed, since they will
quickly change after the rescaling operation.

D. Bucket replication

In this work we focused on the case where buckets are not
replicated, which is often the case in state-of-the-art user-level
data services, such as HEPnOS. If the storage system replicates
buckets for fault tolerance, the focus of the heuristic should be
different: data balance would be less important since bucket
replication can be leveraged both to balance the load across
the nodes and to speed up rescaling operations. This would be
a means to greatly reduce the risk to experience bottlenecks
on servers sending data, which reduces the importance of data
balance. This is an open direction for future work.

IX. CONCLUSION

This paper formalizes the problem of rescaling a distributed
storage system while simultaneously considering three opti-
mization criteria: load balance, data balance, and duration of
the rescaling operation. Since computing an exact solution
to this multiobjective optimization problem takes too long,
we introduce a heuristic that helps find a good approximate
solution in a much shorter time. Users are provided with
the possibility to weight each criterion as needed to reach
the desired trade-off across the three criteria. To evaluate
our heuristic, we introduce Pufferscale, a generic rescaling
manager for microservice-based distributed storage systems.
Our large-scale evaluation of the proposed heuristic with
Pufferscale exhibits the importance of maintaining data bal-
ance in order to systematically ensure fast rescaling when data
reading generates a bottleneck, with no drawbacks in the other
cases. We showcase the use of Pufferscale as a means to enable
storage malleability in HEPnOS, a real-world microservice-
based storage system. The study of this problem under the
assumption of data replication is left for future work.

ACKNOWLEDGMENT

The work presented in this paper is the result of a collabo-
ration between the KerData project team at Inria and Argonne
National Laboratory, in the framework of the Data@Exascale
Associate team, within the Joint Laboratory for Extreme-Scale
Computing (JLESC, https://jlesc.github.io).

Experiments presented in this paper were carried out on
the Grid’5000 testbed, supported by a scientific interest group
hosted by Inria and including CNRS, RENATER, and several
universities as well as other organizations (see https://www.
grid5000.fr).

This material is based upon work supported by the U.S.
Department of Energy, Office of Science under contract DE-
AC02-06CH11357.

REFERENCES

[1] M. Dorier, P. Carns, K. Harms, R. Latham et al., “Methodology for
the rapid development of scalable HPC data services,” in Parallel Data
Storage & Data Intensive Scalable Computing Systems, 2018.

[2] Q. Zheng, K. Ren, G. Gibson, B. W. Settlemyer, and G. Grider,
“DeltaFS: Exascale File Systems Scale Better without Dedicated
Servers,” Parallel Data Storage Workshop, 2015.

[3] J. M. Wozniak, P. E. Davis, T. Shu, J. Ozik et al., “Scaling deep learning
for cancer with advanced workflow storage integration,” in IEEE/ACM
Machine Learning in HPC Environments, 2018.

[4] M. I. Seltzer and N. Murphy, “Hierarchical file systems are dead,” in
Conference on Hot Topics in Operating Systems, 2009.

[5] xgitlab.cels.anl.gov/sds/HEPnOS, accessed March 29, 2019.
[6] computing.fnal.gov/hep-on-hpc/, accessed March 29, 2019.
[7] www.mcs.anl.gov/research/projects/mochi/, accessed March 29, 2019.

[8] R. Brun and F. Rademakers, “Root—an object oriented data analysis
framework,” Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equip-
ment, vol. 389, no. 1-2, pp. 81–86, 1997.

[9] The HDF Group. (1997-NNNN) Hierarchical Data Format, version 5.
Http://www.hdfgroup.org/HDF5/.

[10] J. Lofstead, F. Zheng, Q. Liu, S. Klasky et al., “Managing variability
in the IO performance of petascale storage systems,” in ACM/IEEE
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2010.

[11] Q. Liu, N. Podhorszki, J. Logan, and S. Klasky, “Runtime I/O re-
routing+ throttling on HPC storage,” in HotStorage, 2013.

[12] M. Dorier, G. Antoniu, R. Ross, D. Kimpe, and S. Ibrahim, “CALCioM:
Mitigating I/O interference in HPC systems through cross-application
coordination,” in IEEE Parallel and Distributed Processing Symposium,
2014.

[13] O. Yildiz, M. Dorier, S. Ibrahim, R. Ross, and G. Antoniu, “On the root
causes of cross-application I/O interference in HPC storage systems,” in
IEEE Parallel and Distributed Processing Symposium, 2016.

[14] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica, “Load
balancing in structured P2P systems,” in International Workshop on
Peer-to-Peer Systems, 2003.

[15] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in USENIX
Symposium on Operating Systems Design and Implementation, 2006.

[16] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
distributed file system,” IEEE Symposium on Mass Storage Systems and
Technologies, 2010.

[17] J. Liao, Z. Cai, F. Trahay, and X. Peng, “Block placement in distributed
file systems based on block access frequency,” IEEE Access, 2018.

[18] C. Kulkarni, A. Kesavan, T. Zhang, R. Ricci, and R. Stutsman, “Rock-
steady: Fast migration for low-latency in-memory storage,” in ACM
Symposium on Operating Systems Principles, 2017.

[19] P. Ganesan, M. Bawa, and H. Garcia-Molina, “Online balancing of
range-partitioned data with applications to peer-to-peer systems,” in
Conference on Very Large Data Bases, 2004.

[20] Y. Zhu and Y. Hu, “Efficient, proximity-aware load balancing for DHT-
based P2P systems,” IEEE Transactions on Parallel and Distributed
Systems, 2005.

[21] H.-C. Hsiao, H.-Y. Chung, H. Shen, and Y.-C. Chao, “Load rebalancing
for distributed file systems in clouds,” IEEE Transactions on Parallel
and Distributed Systems, 2013.

[22] A. Miranda and T. Cortes, “CRAID: Online RAID upgrades using
dynamic hot data reorganization,” in FAST, 2014.

[23] G. Khanna, K. Beaty, G. Kar, and A. Kochut, “Application performance
management in virtualized server environments,” in IEEE Network
Operations and Management Symposium, 2006.

[24] T. Wood, P. J. Shenoy, A. Venkataramani, M. S. Yousif et al., “Black-
box and gray-box strategies for virtual machine migration,” in NSDI,
2007.

[25] A. Singh, M. Korupolu, and D. Mohapatra, “Server-storage virtualiza-
tion: integration and load balancing in data centers,” in ACM/IEEE
conference on Supercomputing, 2008.

[26] E. Arzuaga and D. R. Kaeli, “Quantifying load imbalance on virtual-
ized enterprise servers,” in WOSP/SIPEW International Conference on
Performance Engineering, 2010.

[27] H. Shen, “RIAL: Resource intensity aware load balancing in clouds,”
IEEE Transactions on Cloud Computing, 2017.

[28] “IBM ILOG CPLEX Optimization Studio (version 12.8.0.0),”
https://www.ibm.com/products/ilog-cplex-optimization-studio, 2018.

[29] M. Hefeeda and O. Saleh, “Traffic modeling and proportional partial
caching for peer-to-peer systems,” IEEE/ACM Transactions on Network-
ing, 2008.

[30] P. S. Mahajan and R. G. Ingalls, “Evaluation of methods used to detect
warm-up period in steady state simulation,” in Proceedings of the 2004
Winter Simulation Conference, 2004., vol. 1. IEEE, 2004.

[31] R. L. Graham, “Bounds on multiprocessing timing anomalies,” SIAM
Journal on Applied Mathematics, 1969.

[32] xgitlab.cels.anl.gov/sds/remi, accessed March 29, 2019.
[33] mercury-hpc.github.io/, accessed March 29, 2019.
[34] argobots.org, accessed March 29, 2019.
[35] D. Balouek, A. Carpen Amarie, G. Charrier, F. Desprez et al., “Adding

virtualization capabilities to the Grid’5000 testbed,” in Cloud Computing
and Services Science, 2013.

[36] N. Cheriere, M. Dorier, and G. Antoniu, “Pufferbench: Evaluating
and Optimizing Malleability of Distributed Storage,” in Parallel Data
Storage & Data Intensive Scalable Computing Systems, 2018.

[37] xgitlab.cels.anl.gov/sds/sds-keyval, accessed March 29, 2019.
[38] S. M. Wild, “Chapter 40: POUNDERS in TAO: Solving Derivative-Free

Nonlinear Least-Squares Problems with POUNDERS,” in Advances and
Trends in Optimization with Engineering Applications. SIAM, 2017.

The submitted manuscript has been created by
UChicago Argonne, LLC, Operator of Argonne National
Laboratory (“Argonne”). Argonne, a U.S. Department of
Energy Office of Science laboratory, is operated under
Contract No. DE-AC02-06CH11357. The U.S. Govern-
ment retains for itself, and others acting on its behalf,
a paid-up nonexclusive, irrevocable worldwide license
in said article to reproduce, prepare derivative works,
distribute copies to the public, and perform publicly and
display publicly, by or on behalf of the Government.
The Department of Energy will provide public access
to these results of federally sponsored research in accor-
dance with the DOE Public Access Plan. http://energy.
gov/downloads/doe-public-access-plan.

Page to be removed from final version, do not include in page count.

