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We revisit the problem of classifying topological band structures in non-Hermitian systems. Re-
cently, a solution has been proposed, which is based on redefining the notion of energy band gap in
two different ways, leading to the so-called “point-gap” and “line-gap” schemes. However, simple
Hamiltonians without band degeneracies can be constructed which correspond to neither of the two
schemes. Here, we resolve this shortcoming of the existing classifications by developing the most
general topological characterization of non-Hermitian bands for systems without a symmetry. Our
approach, which is based on homotopy theory, makes no particular assumptions on the band gap,
and predicts significant extensions to the previous classification frameworks. In particular, we show
that the 1D invariant generalizes from Z winding number to the nonabelian braid group, and that
depending on the braid group invariants, the 2D invariants can be cyclic groups Zn (rather than
Z Chern number). We interpret these novel results in terms of a correspondence with gapless sys-
tems, and we illustrate them in terms of analogies with other problems in band topology, namely
the fragile topological invariants in Hermitian systems and the topological defects and textures of
nematic liquids.

I. INTRODUCTION

Topological invariants associated with energy bands in
the reciprocal momentum (k-) space have proven useful
in predicting novel physical phenomena [1, 2], including
robust unidirectional transport, in both electronic and
photonic systems. Examples of topological invariants in-
clude Chern numbers [3], which are defined for general
systems lacking any particular symmetry, as well as Z2-
invariants [4] and winding numbers [5], which are defined
as long as some symmetry is preserved. Classification
schemes such as the tenfold way [6–8] and its various ex-
tensions [9] provide a unified approach within the math-
ematical frameworks of K-theory and homotopy theory
and enable a systematic understanding of the implica-
tions of different symmetries for topological invariants.

Non-Hermitian Hamiltonians have widespread appli-
cations in describing open systems. For example, the
ubiquitous loss and gain in photonic systems [10–32],
the finite quasiparticle lifetimes [33–37], and certain
statistical-mechanical models [38] are naturally described
in terms of non-Hermitian Hamiltonians. Recently, there
has been a growing interest in uncovering novel topo-
logical phases in non-Hermitian systems [39–61]. Al-
though these questions have been partially addressed in
theory [42, 62, 63], a unified mathematical description of
non-Hermitian band topology is still lacking, even for the
most basic setting when no symmetry is assumed. This
is most manifest in the innate dichotomy of the recently
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suggested K-theory classification framework, which dis-
tinguishes two schemes, the “line-gap” and the “point-
gap” schemes [62, 64]. Within the line-gap scheme, the
complex energy spectrum is assumed to miss a line in the
complex plane. This allows one to deform the Hamilto-
nian into one which is Hermitian with no symmetries
(class A), implying integer topological invariant in even
spatial dimensions. In contrast, within the point-gap
scheme, the complex energy spectrum is assumed to miss
a point in the complex plane. This facilitates a continu-
ous deformation into a Hermitian Hamiltonian with chi-
ral symmetry (class AIII), and implies integer topological
invariants in odd spatial dimensions.

However, there are interesting topologically non-trivial
non-Hermitian Hamiltonians that are not uniquely char-
acterized by either a point gap or a line gap. A prototyp-
ical example of a such a Hamiltonian is an exceptional
ring [54], which arises when a generic non-Hermitian per-
turbation is applied to a Weyl point [27, 65]. Although
our focus in this paper is on gapped systems, the gapless
exceptional ring provides a vivid illustration of the dif-
ficulty of separately considering point and line gap clas-
sifications. The exceptional ring carries both a 1D and
a 2D invariant simultaneously, depending on which type
of gap one considers. Curiously, the two invariants have
non-trivial influence on each other and therefore cannot
always be decoupled. Especially, Ref. [66] showed that in
non-Hermitian systems with exceptional lines, the Chern
number of an exceptional ring ceases to be conserved,
but can change sign through a reciprocal braiding pro-
cess [66–69]. This observation suggests the need for a
more general classification framework, which does not
make any assumption on the band gap being globally
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a point vs. a line, and which naturally incorporates the
interaction between the invariants defined on manifolds
with various spatial dimensions.

In this paper, we develop such a unified classification
using homotopy theory. Within a concise mathematical
framework, we revisit the derivation of 1D and 2D topo-
logical invariants of non-Hermitian bands. As opposed to
the two K-theory classification schemes described above,
our homotopy theory approach is also sensitive to un-
stable topological invariants [70]. Our derivation signifi-
cantly extends the previous theoretical works [42, 62, 63]
and explicitly captures the interaction of these invari-
ants. Specifically, the theory allows us to classify non-
Hermitian Hamiltonians defined on a periodic 2D k-
space, with the surprising result that depending on the
braid-group-valued 1D invariants, the Z-valued Chern
numbers can be replaced by Zn-valued invariants, where
the value of n depends on the details of the cycle type of
the braids along the Brillouin zone torus. We note that
the interaction of topological invariants in various di-
mensions is an intrinsically non-Hermitian phenomenon,
which is inaccessible in perturbative approaches which
start from Hermitian models. As we explain, this inter-
action is captured mathematically by the action of π1

on π2 [71], a classical piece of homotopy-theoretic data
which is absent in classifications based on the tenfold way,
but crucial in our non-Hermitian classification scheme.

The manuscript is organized as follows. The first two
sections present the classification result in a detailed,
pedagogical manner. First, in Sec. II, we revisit the
derivation of the topological invariant for two-band Her-
mitian systems. The goal is to reformulate this simple
story using a mathematical language that is more ap-
propriate for the generalization to non-Hermitian sys-
tems, which constitute the contents of Sec. III. In this
section, we highlight the novelty which arises in the non-
Hermitian setting, both in terms of rigorous mathematics
and intuitive pictures. Next, in Sec. IV, we describe the
interaction between 1D and 2D invariants as reported for
gapless non-Hermitian systems in Ref. [66], and explain
how this interaction relates to the modified topological
classification of gapped systems. To further extend the
intuition for the new classification, we also report on cer-
tain relationships with the physics of nematic liquids [72–
74] and with the fragile topology of real-symmetric Bloch
Hamiltonians [67–69, 75–77], which provide a useful anal-
ogy for understanding the topology of non-Hermitian
Bloch Hamiltonians. We also provide a calculation of the
new invariants in an explicit model. Finally, in Sec. V,
we generalize these results to many bands, finding braid
group and ZN invariants.

II. TOPOLOGICAL CLASSIFICATION OF
TWO-BAND HERMITIAN HAMILTONIANS

The idea of topology has been prominent in the study

of electronic band structures in the last few decades.
This notion emerges naturally from the ultimate task
of condensed matter physics: to classify and discover
phases of matter and study phase transitions. At the
phase-transition critical point, many systems show scale-
invariant characteristics, indicating that there is no finite
characteristic length or energy scale at low energy. For a
non-interacting electron problem, this point corresponds
to a gapless band-structure. Therefore, a phase transi-
tion corresponds to a gap closing process. The notion
of topology is essential to describing phases: as long as
the continuous tuning of the Hamiltonian does not re-
sult in a gap closing, the system remains in the same
phase. Studying the equivalence classes of Hamiltonians
under continuous tuning without closing a gap therefore
becomes a problem in topology, or more specifically ho-
motopy theory.

In this section, we review this classification problem
using a two-band example in 2D, in a formalism that
can be generalized to non-Hermitian cases. We split our
presentation into four subsections. In the first subsec-
tion, we introduce notation and define the classification
problem. The main objects of interest which we intro-
duce are a topological space X (here it is the space of
Hermitian Hamiltonians with a spectral gap) and a set
[T 2, X] (equivalence classes of such Hamiltonians defined
on a Brillouin zone torus T 2). In the second subsection,
we develop a characterization of the space X. The main
result here is that X is homeomorphic to the 2-Bloch
sphere S2, i.e. X ∼ S2. In the third subsection, we com-
pute the set [T 2, X] and find [T 2, X] = Z. This is done in
several steps, the first of which is computing the homo-
topy groups πn(X) (equivalence classes of gapped Hamil-
tonians defined on an n-sphere Sn, representing strong
topological invariants of various dimensions). In the fi-
nal subsection, we define an action of π1(X) on π2(X),
which will be of crucial importance in the non-Hermitian
setting.

A. Defining the classification problem

For simplicity, we consider a two-band Hamiltonian
describing a 2D lattice model. In momentum space, the
Bloch Hamiltonian is simply a family of 2 × 2 Hermi-
tian matrices H(k), where k ranges over the wavevectors
in the 2D first Brillouin zone. Because H(k) is peri-
odic in both directions, we can identify opposite edges
of the first Brillouin zone and consider the wavevector
k as a point in a torus T 2. Then H(k) defines a con-
tinuous map H : T 2 → Herm2(C) from the momentum
space torus to the set of Hermitian 2× 2 matrices. Fur-
thermore, as we motivate from the notion of a topolog-
ical phase transition, we are interested in the equiva-
lence classes of the Hamiltonians upon continuous de-
formation without gap closing. Therefore, the space we
classfiy is the more restricted space X, which is the set
of gapped 2 × 2 Hermitian matrices, i.e. those with dis-
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tinct eigenvalues. This can be equivalently and concisely
formulated by requiring that the discriminant, defined

as Disc(H) =
∏
i<j(λi − λj)2 [where {λi}dim(H)

i=1 are the

eigenvalues of H], is non-vanishing for the Hamiltonian.
Therefore we define our target space of gapped Hamilto-
nians as

X := {H ∈ Herm2(C) : Disc(H) 6= 0}. (1)

Notably, Disc(H) is a polynomial in the coefficients of
H, so X is the complement of a hypersurface inside a 4D
vector space and can therefore be expected to be topo-
logically interesting. Then [T 2, X] is the set of homo-
topy classes of Hamiltonians which have distinct energies
at every point in momentum space. Topological clas-
sification with this choice of X means that topological
invariants can change under continuous deformations of
H(k), but specifically only under those which close the
spectral gap (which correspond to phase transitions).

In the Hermitian case, our gap condition agrees with
the standard one in the literature. In the non-Hermitian
case in Sec. III, we will use the same gap condition.
There, this definition will not be equivalent to either the
point gap or line gap conditions used in Ref. [62]. It is,
however, equivalent to the definition of separable bands
from Ref. [39].

B. Characterizing the target space

We now need to characterize X in a way that makes
its topological structure more apparent. We do this by
parameterizing X in terms of eigenvectors and eigen-
values, performing an eigen-decomposition. This allows
us to describe X in terms of more familiar topological
spaces. According to the spectral theorem, the eigen-
vectors of a Hermitian matrix H constitute columns of
a unitary matrix U ∈ U(2). The eigenvalues (λ1, λ2)
are the diagonal entries of a diagonal matrix Λ. Due
to the gap condition, we require λ1 6= λ2, therefore
Λ ∈ Conf2(R) := {(λ1, λ2) ∈ R2 : λ1 6= λ2} (the no-
tation (λ1, λ2) refers to a pair of ordered points along
the real line). The eigenvalue decomposition of H is
H = UΛU−1. Thus our parameterization begins with a
map p : U(2)× Conf2(R)→ X which is defined by send-
ing a pair (U,Λ) ∈ U(2) × Conf2(R) to the Hamiltonian
H = UΛU−1.

The map p is the starting point for our parameteriza-
tion, but there are two forms of redundancy which we
must account for before we have a one-to-one parameter-
ization of X. First, the eigenvectors are only defined up
to multiplicaton by a unit complex scalar (the gauge in-
variance). This defines an action of the group U(1)×U(1)
on U(2), namely multiplying U on the right by a di-
agonal unitary matrix. Because H is invariant under
this group action, we can replace U(2) with the quotient
group U(2)/U(1)×U(1). Second, the ordering of the

FIG. 1. The space of eigenvalues in the Hermitian vs. non-
Hermitian case; Conf2(R) ∼ Z2 while Conf2(C) ∼ S1.

eigenvalues and eigenvectors is not uniquely determined,
as long as they are reordered simultaneously. To be pre-
cise, if σ is the 2 × 2 matrix representing the swap per-
mutation, it is easy to verify that (U,Λ) 7→ (Uσ, σ−1Λσ)
leavesH invariant. This defines an action of the group Z2

which we must also divide out. By removing these two
redundancies, the parameterization of a given Hamilto-
nian is uniquely defined, so we have the description of X
as

X =

(
U(2)

U(1)×U(1)
× Conf2(R)

)/
Z2 (2)

The equals sign here denotes a homeomorphism of topo-
logical spaces. Both of the factor spaces are, like X,
defined by systems of equations, but they are much more
familiar in topology. The space U(2)/U(1)×U(1) is a
classical example of a homogeneous space in Lie theory,
and the space Conf2(R) arises in connection with the
braid group; both play an important role in algebraic
topology in the context of classifying spaces [71, 78, 79].

The characterization of X we developed is already suf-
ficient for many purposes, but we can simplify it fur-
ther. As a first simplification, we recognize the space
U(2)/U(1)×U(1) as the Bloch sphere CP 1 = S2. An-
other simplification we can make (cf. Fig. 1) is to deform
the space Conf2(R) = {(λ1, λ2) ∈ R2 : λ1 6= λ2} into the
discrete space Z2 = {+1,−1} (a form of spectral flatten-
ing). Because we can choose the deformation (indicated
by the symbol ∼) in a way that respects the Z2 group
action, we can retain the parameterization throughout
the deformation. We therefore conclude that

X ∼ (S2 × Z2)/Z2 (3)

= S2. (4)

The intuitive interpretation is that the S2 represents one
(e.g. the lower-energy) eigenvector of the Hamiltonian H
on the Bloch sphere.

C. Computing the topological classification

Now that we understand the target space X, we are
ready to solve the topological classification problem. As
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shown in Fig. 2, the torus can be thought of as a rectan-
gle with opposite sides identified. The boundary of this
rectangle is called the one-skeleton of the torus, and it
contains information about 1D invariants, while the inte-
rior of the rectangle is known as the two-cell and contains
information about 2D invariants.

The general strategy is as follows. First, we compute
the homotopy groups πn(X), which describe topological
invariants of various dimensions; this is a preliminary
step which provides data we need to compute [T 2, X].
The homotopy groups πn(X) are defined in terms of maps
on the n-sphere rather than on the torus; we will be in-
terested in S1 and S2, since the torus T 2 has non-trivial
cycles in 1D and 2D. Next, we use this data to compute
[T 2

1 , X], where T 2
1 is the one-skeleton of the torus. Fi-

nally, we study extensions to the two-cell of the torus; this
is the key step. Notationally, if f ∈ [T 2

1 , X] is a homotopy
class of maps on the one-skeleton, we write [T 2, X]f to
denote the set of homotopy classes of extensions of f to
the two-cell, i.e. maps in [T 2, X] which restrict to f on
the one-skeleton. As a technicality which we elaborate
on in Sec. II D, we begin by studying pointed homotopy

sets, denoted [T 2, X]f∗ (so that for now, all maps and
homotopies preserve basepoints).

Following our outlined strategy, we begin by comput-
ing the homotopy groups πn(X) = [Sn, X]∗ (considering
pointed homotopies). For X = S2, the first few are well-
known [71]:

π1(X) = 0 (5)

π2(X) = Z (6)

π3(X) = Z. (7)

These correspond physically to topological invariants in
various dimensions. We understand π1(X) = 0 as a
statement of the fact that there are no one-dimensional
topological invariants in Hermitian systems (without ad-
ditional symmetry protection). On the other hand,
π2(X) = Z is a statement about 2D topological insu-
lators. The fact that this integer invariant is given by
the Chern number is slightly subtle, but can be under-
stood e.g. in terms of the Chern-Weil theory [80]. The
three-dimensional “Hopf” invariant is unstable, meaning
it does not survive in the presence of additional bands.
Nonetheless, it is still of interest in recent works [81–84].

The classification of maps on the one-skeleton [T 2
1 , X]∗

is entirely straightforward, since T 2
1 = S1 ∨ S1 is the

wedge product (“bouquet”) of two circles, i.e. two circles
joined at a common basepoint (see Fig. 2). Therefore
[T 2

1 , X]∗ = π1(X)×π1(X) = π1(X)2. But we found that
π1(X) = 0, so

[T 2
1 , X]∗ = 0. (8)

The upshot of the result that [T 2
1 , X]∗ = 0 is that we

can assume our Hamiltonian H is constant on the one-
skeleton of the torus (by continuously deforming it). In
other words, we can identify the one-skeleton of the torus

FIG. 2. The torus can be constructed out of a rectangle by
gluing together the two red lines and the two blue lines. These
lines become closed loops on the torus. Taken together, these
two loops form the one-skeleton of the torus, while the cyan
interior of the rectangle forms the two-cell of the torus. The
one-skeleton T 2

1 = S1 ∨ S1 consists of two circles joined at
a common basepoint, i.e. the “bouquet” of two circles; we
refer to these circles as a and b following the mathematical
literature.

to a single point. But then we obtain a sphere, so in this
case the extension problem is trivial, and we have

[T 2, X]0∗ = π2(X) = Z (9)

where 0 : T 2
1 → X denotes the constant map. We have

the result

[T 2, X]∗ = Z (10)

which constitutes the solution to the classification prob-
lem in the Hermitian case.

D. Action of π1(X) on π2(X)

Although the obtained classification is complete, there
are some important issues regarding basepoints which we
have not yet discussed. More precisely, we have com-
puted the pointed homotopy set [T 2, X]∗ rather than the
free homotopy set [T 2, X]. However, in the considered
physical setting there is no reason to prefer a particular
basepoint, thus it would be interesting to study how the
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homotopy class might change as the basepoint changes;
in other words, we are really interested in the free homo-
topy. In this section, we explain why the two sets could
in principle be different, and why the difference can be
described in terms of an action of π1(X) on π2(X). Fur-
thermore, although the extension problem was trivial in
the Hermitian case, it will not be in the non-Hermitian
case, so this is a good time to point out the features
which are absent in the Hermitian case which make the
non-Hermitian setting richer. The action of π1(X) on
π2(X) will also play a central role in understanding the
general features of this extension problem.

As a central example, we first describe the non-trivial
action of π1(X) on π2(X) for X = RP 2 = S2/Z2 (the
sphere with antipodal points identified), which will pro-
vide the intuition for the non-Hermitian case. We rep-
resent elements of RP 2 interchangeably as lines or as el-
lipsoids with a single axis of rotational symmetry, either
of which can be thought of as unit vectors with oppo-
site directions identified (due to the symmetry the ob-
jects possess). We think of an element of π2(RP 2) as
a texture of ellipsoids on the sphere. As an example,
a fixed “Skyrmion” texture, which is the generator of
π2(RP 2) = Z, can be visualized by attaching to x ∈ S2

the ellipsoid aligned with the vector x.

We now define a continuous deformation of an arbi-
trary RP 2 texture by continuously rotating each ellipsoid
in place up to π radians around the y-axis. This continu-
ous deformation defines a homotopy H : S2 × [0, 1] →
RP 2 with H(·, t) ∈ π2(RP 2) for t ∈ [0, 1] (but not
necessarily preserving basepoints the whole time). The
map H(·, 0) 7→ H(·, 1) thus defines an automorphism of
π2(RP 2) which is specifically realized via a homotopy on
each element. Whether this automorphism is nontrivial
depends on the choice of basepoint of RP 2. Indeed, for
the Skyrmion texture as described above, if we choose
the y-axis as the basepoint ∗ ∈ RP 2, then H is a pointed
homotopy, and the automorphism of π2(RP 2) is trivial.
In this case, when we choose a lift of the basepoint to S2,
the loop H(∗, ·) lifts to the constant path in S2. On the
other hand, suppose we choose the z-axis as the base-
point ∗ of RP 2. Then H is a free homotopy, since H(∗, t)
for t 6= 0, 1 is not kept fixed. Accordingly, when we start
withH(·, 0) representing 1 ∈ π2(RP 2), the class ofH(·, 1)
is −1 ∈ π2(RP 2), so the “Skyrmion” texture is contin-
uously deformed into its mirror-image “anti-Skyrmion”
texture. Evidently, this could not be done if the target
space were S2. The homotopy H thus defines a non-
trivial automorphism of π2(RP 2). In this case, when we
lift the loop H(∗, ·) to a path in S2, the endpoints of this
path will be antipodal points on S2.

In the example above, we observe that when the loop
H(∗, ·) lifts to a path in S2 whose endpoints coincide,
the automorphism of π2 is trivial, whereas when the loop
lifts to a path that connects two antipodal points, the
automorphism is nontrivial. Below, we formalize this ob-
servation by defining an action of π1(X) on π2(X), where
X is an arbitrary space. In this action, the automorphism

of π2(X) coming from the action of a loop γ in X can
be realized by a free homotopy H : S2 × [0, 1]→ X with
H(∗, t) = γ(t) (note that γ(t) is an element of π1(X)).
The behavior of H at the basepoint determines the rela-
tionship between H(·, 0) and H(·, 1) in π2(X). Given a
loop γ in X and a map f : S2 → X, we can produce a
homotopy H : S2 × [0, 1] → X such that H(p, 0) = f(p)
and H(∗, t) = γ(t) using the homotopy extension prop-
erty of a CW-subcomplex [71]. In the example above for
the specific case X = RP 2, we provide an explicit con-
struction of such a homotopy by producing a continuous
family of homeomorphisms (namely rotations) of X re-
stricting to γ on the basepoint, and using this to define
H at every point on S2.

To more rigorously define the action of π1(X) on
π2(X), we use the theory of covering spaces [71]. The
main theorem we need concerns the homotopy groups
of a covering space Y with covering map p : Y → X. It
states that the map induces an isomorphism on all πn for
n > 1, and an injection on π1. Intuitively, the covering
space is “unwrapping” some portion of the π1 while leav-
ing the rest of the homotopy unchanged. In fact, there
is a one-to-one correspondence between connected cover-
ing spaces and subgroups π1(Y ) ⊂ π1(X). The universal

covering space X̃ is the covering space corresponding to
the trivial subgroup.

There is an action of π1(X) on any regular covering
space Y (one for which π1(Y ) ⊂ π1(X) is a normal sub-
group) by deck transformations. To define this action,
we must specify where a loop γ at the basepoint x0 ∈ X
sends a point y ∈ Y . For the basepoint y0 ∈ Y , we can
lift the loop γ to a path γ̃ with γ̃(0) = y0, and send y0

to γ̃(1). For any other point y ∈ Y lying over x ∈ X, we
must first transport the loop γ to a loop γ′ at x by choos-
ing a path from x0 to x. If we choose a different path, the
transported loop is well-defined up to conjugation by the
loop formed by composing the two chosen paths. As be-
fore, we lift γ′ to a path γ̃′ with γ̃′(0) = y, and map y to

γ̃′(1). As long as π1(Y ) is a normal subgroup of π1(X),
this definition is independent of the choice of path from
x0 to x [71]. Note that the subgroup π1(Y ) acts trivially
on Y .

We define the action of π1(X) on π2(X) in terms of the

action of π1(X) on the universal cover X̃ by deck trans-

formations. An element γ ∈ π1(X) acts on X̃ by deck

transformations, inducing an automorphism γ∗ of π2(X̃)

(since X̃ is simply-connected, π2(X̃) is independent of
basepoint). Using the isomorphisms in π2 coming from

the covering map X̃ → X, we get an induced automor-
phism γ∗ of π2(X). The action of π1(X) on π2(X) is thus
defined as a map

ρ : π1(X)→ Aut(π2(X)). (11)

Now we can see the role of basepoints in defining
[T 2, X]. We found [T 2, X]∗ = π2(X) = Z if one allows
only pointed homotopies. The only difference if one al-
lows free homotopies is that a free homotopy could in-
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corporate a nontrivial action of π1(X) on π2(X). Thus
[T 2, X] is the set of orbits of [T 2, X]∗ under the action of
π1(X). In the Hermitian case X = S2, π1(X) = 0, so we
have

ρ = 0 (12)

[T 2, X] = Z. (13)

In the nontrivial case X = RP 2, we note that S2 →
RP 2 is a double cover, and π1(RP 2) = Z2 acts on S2

via the antipodal map (the deck transformation in this
setting) and thus on π2(S2) by parity-conditioned nega-
tion. The map ρ : π1(X) → Aut(π2(X)) thus sends
1 ∈ π1(X) = Z2 = {0, 1} to the automorphism of
π2(X) = Z given by multiplication by −1; we can identify
Aut(π2(X)) = Z2 = {1,−1} (as the two automorphisms
of Z are given by multiplication by ±1) and write

ρ(a) = (−1)a. (14)

We study [T 2,RP 2] in Sec. III.

III. CLASSIFICATION OF TWO-BAND
NON-HERMITIAN SYSTEMS

Now that we have seen the structure of the argument
applied to the more familiar Hermitian systems, we can
see precisely what changes when one adapts it to non-
Hermitian systems. Instead of the space of Hermitian
matrices Herm2(C), we start by considering the space of
all 2×2 matrices M2(C). In the non-Hermitian case, sev-
eral different gap conditions have been considered, lead-
ing to differing results [62, 64]. The condition we consider
here is natural from a mathematical perspective and re-
sults in a classification theory which unifies and extends
the existing results.

We define our target space of gapped non-Hermitian
Hamiltonians as

X = {H ∈ M2(C) : Disc(H) 6= 0}, (15)

i.e. the space of 2×2 matrices with non-degenerate eigen-
values. To make clear the relationship to the point-gap
and line-gap classifications that have previously been
studied, note that we are considering independently at
each wavevector k whether or not the complex eigen-
values of H coincide as points in the complex plane.
This is a weaker constraint than used by the point-gap
scheme, which considers Hamiltonians whose spectrum
misses a point (such as 0) in the complex plane. It is
also very different from the line-gap scheme, which con-
siders Hamiltonians whose spectrum misses a line (such
as the imaginary axis) in the complex plane. Under these
two schemes, it has been found [62] that non-Hermitian
Hamiltonians with a point gap have a Z-invariant in di-
mension one and none in dimension two, while those with
a line gap have a Z-invariant in dimension two and none
in dimension one. Our gap condition is, however, equiv-
alent to the definition of separable bands from Ref. [39].

A. Characterizing the target space

With our definition of X in terms of the local gap
condition, we need to parameterize X as before in order
to compute [T 2, X]. The structure of the argument is
the same as before; here, we highlight only the relevant
differences.

Note that we can again perform an eigen-
decomposition, just as we did in the Hermitian case.
Indeed, a non-Hermitian matrix with non-degenerate
eigenvalues is diagonalizable (e.g. from the theory of the
Jordan normal form [85]). We only have two modifica-
tions to consider. First, the eigenvectors are no longer
orthogonal, so our matrix of eigenvectors is G ∈ GL2(C)
instead of U ∈ U(2). Second, the eigenvalues can be
complex, so the space Conf2(R) is replaced with the
space Conf2(C), i.e. the configuration space of ordered
pairs of distinct points in the complex plane.

In the Hermitian case, we have argued that the de-
scription has a U(1) × U(1) redundancy as well as a Z2

redundancy. In the non-Hermitian case, the U(1)×U(1)
redundancy in the definition of the eigenvectors becomes
a GL1(C) × GL1(C) redundancy (recall GL1(C) = C×,
i.e. the complex plane without the origin). The Z2 re-
dundancy remains unchanged. Therefore we have a first
description of our target space

X =

(
GL2(C)

GL1(C)×GL1(C)
× Conf2(C)

)/
Z2 (16)

As before, while this expression is sufficient for many
calculations, we can simplify it to make a clearer pic-
ture of the novelties in the non-Hermitian setting.
The first factor GL2(C)/GL1(C) × GL1(C), correspond-
ing to the eigenvectors, is homotopy equivalent to
U(2)/U(1)×U(1) = S2. This is expected because of
the well-known Gram-Schmidt procedure which deforms
GL2(C) into U(2), but the actual proof is more compli-
cated; see Ref. [86]. The second factor, Conf2(C), is evi-
dently more interesting than the Conf2(R) encountered in
the Hermitian case. As we see in Fig. 1, Conf2(C) ∼ S1,
where a single loop around S1 corresponds to the pair
of eigenvalues winding around each other once before re-
turning to their original positions (with the same order-
ing). Thus we can already see the combination of one-
and two-dimensional structure in our characterization

X = (S2 × S1)/Z2. (17)

This is a key result and will guide our understanding in
later sections.

B. Computing the topological classification

Now that we have a simple characterization of the
space X, we can begin to study the topological classifi-
cation. The homotopy groups are easily obtained from
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FIG. 3. A texture on the sphere is merged with a texture on
the torus to form a new texture on the torus. Two configura-
tions are shown, a Skyrmion and and anti-Skyrmion.

the description X = (S2 × S1)/Z2. Indeed, X has a
double cover Y = S2 × S1 which has π1(Y ) = Z and
π2(Y ) = Z. From general properties of double covers
(Sec. II D), the covering map Y → X induces an iso-
morphism in π2 and “unwraps” π1 to some extent. To
be precise, π1(Y ) = Z ⊂ π1(X), and the quotient is
π1(X)/π1(Y ) = Z2. This is consistent with π1(X) = Z,
which we verify in Appendix A (and π1(Y ) sits inside
as the even integers). To gain some insight here, we
consider the projections Π2 : X → S2/Z2 = RP 2 and
Π1 : X → S1/Z2 = S1. The map Π2 selects the un-
ordered eigenvectors and the map Π1 selects the un-
ordered eigenvalues (after deformations) of H. As we
verify in Appendix A, Π1 induces an isomorphism on

π1, so π1(X) = Z. On the other hand, Π2 induces
an isomorphism on π2 and reduction mod two on π1

(π1(RP 2) = Z2). So we have the homotopy groups
πn(X), namely

π1(X) = Z, (18)

π2(X) = Z (19)

and all the higher homotopy groups agree with those
of the sphere S2. We see that all the novelty in the
non-Hermitian case originates in the eigenvalue wind-
ing in 1D. However, as we discuss below, this drastically
changes the topological classification in the higher dimen-
sions as well.

The calculation of the homotopy groups also gives
some insight into their nature. The space Conf2(C)/Z2

is also known as the unordered configuration space
UConf2(C). The one-dimensional invariant is given by
the winding of the eigenvalues in UConf2(C) (so they
are allowed to swap after a complete cycle). The two-
dimensional invariant of X comes from the unordered
eigenvectors as an element of RP 2. Moreover, since
S2 → RP 2 induces an isomorphism in π2, we see that
any map S2 → RP 2 can be lifted to a map S2 → S2. In
other words, for a family of Hamiltonians parameterized
by a sphere, one can consistently choose a global ordering
of the complex eigenenergies. Then the two-dimensional
Z-invariant is just the ordinary Chern number.

As an additional conceptual simplification, it is con-
venient to think of X as a “proxy” space which closely
resembles RP 2. Formally, this is because the map X →
RP 2 induces isomorphisms on πm for m > 1 and is the
reduction modulo 2 (Z→ Z2) on π1, and therefore for our
purposes remembers all important homotopy-theoretic
data. This analogy facilitates visualization of the follow-
ing calculation, and leads to particular physical insights
outlined in Sec. IV E below.

Now we are ready to study [T 2, X]∗. We use the same
approach as in the Hermitian case. First, we find for the
one-skeleton that

[T 2
1 , X]∗ = Z2. (20)

This is an intuitive result, since we have a pair of inte-
gers describing the eigenvalue winding in each direction
on the torus. Now fixing f : T 2

1 → X, we need to com-

pute [T 2, X]f∗ . We identify f with (a, b) ∈ Z2 describing
its winding in both directions, and write f = (a, b). Re-
call that in the Hermitian case, because the map f was
trivial on the one-skeleton, we could replace extensions
with elements of π2(X). Here, because f is non-trivial,
we need a more sophisticated approach. Our approach is
inspired by obstruction theory [79], but we present it in
elementary terms.

Our approach is to compute [T 2, X]f∗ by defining an

action of π2(X) on [T 2, X]f∗ . For the purpose of these
constructions, it is most helpful to visualize elements of
[M,X] as RP 2 textures on M . The action is defined as
in Fig. 3 by gluing a small sphere onto the torus. In this
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figure, we show two configurations, a Skyrmion and an
anti-Skyrmion, on S2; later, we will discuss how one can
continuously go from one to the other, but for now, we
just compare the two textures. Starting with a sphere,
one can puncture the sphere and the torus at a point,
inflate these points, and glue the resulting boundaries to-
gether, resulting in a flattened out version of the texture
from the sphere now residing on the torus. This gluing
process works as long as the ellipsoid on the sphere and
the torus at the point of contact have the same orien-

tation. In this way, π2(X) acts on [T 2, X]f∗ , modifying
any given texture on the torus to produce a new texture
on the torus with the same behavior on the one-skeleton.
The action can be shown to be transitive; for proofs of
these claims using cohomology in the context of obstruc-
tion theory, see [79, 87, 88].

We have a transitive group action of π2(X) on

[T 2, X]f∗ ; by the orbit-stabilizer theorem, [T 2, X]f∗ =
π2(X)/Stabπ2(X)(φ) (as sets), where Stabπ2(X)(φ) is the

stabilizer of some chosen φ ∈ [T 2, X]f∗ [85]. The stabilizer
consists of textures on the sphere which are not homo-
topic but which become homotopic once glued onto the
torus. It turns out that the only way this can occur arises
from the action ρ : π1(X)→ Aut(π2(X)) [88]. In Fig. 4,
we see the mechanism by which this occurs: a sphere
with a Skyrmion texture can be moved around a nontriv-
ial cycle on the torus such that it ends up with an anti-
Skyrmion texture. If two spheres with Skyrmion textures
are glued onto the torus and only one is moved around,
then we are left with a Skyrmion and an anti-Skyrmion,
which can annihilate. Thus 1 + 1 = 2 ∈ π2(X) generates
Stabπ2(X)(φ), as once glued to the torus, 1+1 can become
1 + (−1) = 0. One way to understand this is that al-
though π2(X) is defined in terms of pointed homotopies,
a pointed homotopy on the torus can be realized which
results in a free homotopy on glued spheres (making it
impossible to consistently choose a lift in π2(S2)). How-
ever, not all free homotopies can be realized by moving
the sphere around on the torus. The only ones which can
be realized are those coming from [T 2

1 , X]∗ (via the action
of π1(X) on π2(X)). Generalizing the observation that
1 = −1 in the quotient and thus 1−(−1) ∈ Stabπ2(X)(φ),
we see that Stabπ2(X)(φ) is generated by elements of the

form s− ρ(f(γ))s, where s ∈ π2(X) and γ ∈ π1(T 2). In
other words,

[T 2, X]
(a,b)
∗ = π2(X)/〈1− ρ(a), 1− ρ(b)〉. (21)

The angle brackets denote the subgroup generated by a
collection of elements; the statement is that the elements
of π2(X) which become trivial on T 2 are precisely those
which can be written as linear combinations of the two
elements which are obtained by comparing a texture with
that obtained by moving it around either the a or b di-
rection.

We know from the preceding discussion that

[T 2, X]f∗ = π2(X)/〈1 − ρ(a), 1 − ρ(b)〉, but we haven’t
yet computed the action of π1(X) on π2(X). Fortu-

FIG. 4. An RP 2 texture on a sphere and a torus, drawn
as a field of ellipsoids; the figure illustrates the mechanism by
which the action of π1(X) on π2(X) leads to a reduction from
a Z invariant to a Z2 invariant on the torus. The texture on
the torus has nontrivial winding in the x direction, while the
texture on the sphere has nontrivial “Chern number”. The
sphere is moved around a complete cycle in the x-direction,
and meanwhile each ellipsoid undergoes a π-rotation around
the y-axis. In the end, the texture on the sphere is equivalent
to the texture on the xz-mirror of the original sphere. The
color indicates the angle of rotation around the y-axis.

nately, this is straightforward from our description X =
(S2 × S1)/Z2. The even subgroup of π1(X) correspond-
ing to the double cover S2 × S1 clearly acts trivially on
π2(X). The odd subgroup acts via deck transformations
on S2 × S1, which restrict to the antipodal map on S2.
Because this map is orientation-reversing, we see that
odd elements of π1(X) act by negation on π2(X). Com-
pare this with Fig. 4, where we illustrate this claim for
RP 2. Altogether, we find that π1(X) acts on π2(X) by
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parity-conditioned negation [66]:

ρ(a) = (−1)a. (22)

We observe that 1−(−1)a is 0 for a even and 2 for a odd.
There are four cases for the parity of a and b to consider;
in each case, the stabilizer subgroup in π2(X) = Z is
either 0 or 2Z. Therefore

[T 2, X]
(a,b)
∗ =

{
Z if a, b are both even

Z2 otherwise.
(23)

This concludes the calculation of the topological clas-
sification in the non-Hermitian setting. To summarize,
we have

[T 2, X]∗ =
⋃

(a,b)∈Z×Z

{
Z if a, b are both even

Z2 otherwise.
(24)

This should be compared with

[T 2,RP 2]∗ =
⋃

(a,b)∈Z2×Z2

{
Z if a, b are both zero

Z2 otherwise

(25)

obtained for the “proxy” simpler space visualized in
Figs. 3, 4. Finally, we have

[T 2, X] =
⋃

(a,b)∈Z×Z

{
N if a, b are both even

Z2 otherwise
(26)

where N is the set of natural numbers. We can compare
this with

[T 2,RP 2] =
⋃

(a,b)∈Z2×Z2

{
N if a, b are both zero

Z2 otherwise.
(27)

TABLE I. A process demonstrating that the Z2 invariant
is unstable under the addition of trivial bands. The total
charge across all three bands satisfies a local triviality con-
dition (summing to zero) throughout the process; we ensure
this by handling the charges in pairs (one positive and one
negative). Stage 1 describes a three band system where the
first two bands have a nontrivial (odd) winding and a nontriv-
ial Z2 invariant. The notation indicates a localized positive
charge on band 1 and negative charge on band 2. This config-
uration is equivalent to that shown in stage 2, where we have
created a superposed positive and negative charge on band 3
and then separated the four charges into two pairs, one be-
tween band 1 and band 3 and one between band 2 and band
3. We apply the odd winding to the first pair to get to stage
3, and then annihilate the two pairs of opposite chirality to
get the trivial stage 4 configuration.

Stage 1 Stage 2 Stage 3 Stage 4
Band 1 + +
Band 2 − − +−
Band 3 −+ −+

The Z2 invariants in Eq. (24) can be understood in
terms of the gluing procedure of Fig. 3, which creates a
localized positive charge on one band and a localized neg-
ative charge on the other. The Z2 nature of the invariant
can be understood in terms of the procedure of Fig. 4,
which inverts the localized Skyrmion texture, i.e. swaps
the positive and negative charges between the two bands.
A consequence of this is that one can start with a pair of
Skyrmions (total charge 2), move one around the torus
in a direction of odd winding to obtain a Skyrmion and
an anti-Skyrmion, and then annihilate these to obtain a
trivial configuration.

Additionally, the invariants are evidently related to
Chern numbers. However, the Z2 case is somewhat sub-
tle, because Chern number is not defined when a global
ordering of the bands is absent. One could attempt to
integrate over the double cover of the torus to remedy
this, but the result of such integration is always zero, be-
cause the contributions from the two sheets cancel each
other. Finally, one could simply just integrate over the
single torus, ignoring the discontinuity at the boundary.
However, such a procedure does not produce a quantized
result, and hence such integration does not represent a
topological invariant. We discuss the proper way to com-
pute the Z2 invariant later in Sec. IV E, where we also
apply the method to study a simple toy Hamiltonian.

In contrast with topological classifications based on K-
theory, our homotopy approach predicts both stable and
unstable invariants. Here, an invariant is said to be stable
if it survives in the presence of additional topologically
trivial bands [70]. The Z Chern number and Z winding
numbers are known to be stable, since they are predicted
using K-theory[62]. The Z2 invariant we predict using
homotopy theory is unstable. This is best seen in an
example, so in Table I we describe an explicit procedure
by which an additional trivial band can trivialize the Z2

invariant.

IV. PHYSICAL INTERPRETATION OF
CLASSIFICATION RESULTS

In this section, we develop a physical framework for un-
derstanding the classification result obtained in Sec. III.
First, in Sec. IV A we describe a well-known relationship
between gapped systems and gapless systems, namely
how a Chern number can be described in terms of Weyl
points. Then, in Sec. IV B, we extend this correspon-
dence to the non-Hermitian setting using Weyl points
and exceptional rings, and use this correspondence to in-
terpret the Z2 invariants.

To strengthen our intuition about the reduced topo-
logical classification on a torus, we discuss in Sec. IV C
an analogy with the classification of topological de-
fects and textures in nematic liquids [72–74], where a
closely related phenomenon has been known for a long
time [72]. Similar phenomena have been studied more
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recently in the context of the fragile topology of real-
symmetric Hamiltonians [69, 75], which we briefly review
in Sec. IV D.

A. Correspondence betwen Chern number and
Weyl points in Hermitian systems

We revisit in this section certain elementary aspects of
band topology in Hermitian systems, before shifting our
focus in Sec. IV B to non-Hermitian systems. The pro-
totypical example of a topological invariant in Hermitian
band theory is the (first) Chern number, which is an in-
teger number assigned to any 2D closed manifold inside
the momentum space [1]. It is defined as the integral of
Berry curvature over the manifold, divided by 2π. Im-
portantly, there is an exact mathematical correspondence
which allows us to interpret the Chern number on a given
manifold in terms of the Weyl points enclosed inside that
manifold. To be more precise, recall that Weyl points are
point-like degeneracies of a pair of bands inside the 3D
k-space [65]. Depending on their chiral charge χ = ±1,
each Weyl point (WP) acts as either a source or a sink of
a 2π-quantum of Berry curvature [89]. Since Berry cur-
vature has vanishing divergence away from band degen-
eracies, it follows from Stokes’ theorem that the integral
of the Berry curvature on the boundary M = ∂D of any
region (domain) D is quantized to integer multiples of
2π, and the Chern number c is exactly equal to the total
charge of the Weyl points in D.

Reformulating the statements mathematically, it fol-
lows from the definition of the Chern number

cα =
1

2π

∮
M

F α(k) · d2k ∈ Z (28a)

that

cα =
∑

WPα∈D
χαWP, (28b)

In Eqs. (28), F α(k) = i 〈∇uαk | × |∇uαk〉 is the Berry cur-
vature on energy band α, |uαk〉 is the corresponding cell-
periodic part of the Bloch wave function, and ∇ is the
gradient operator in k-space. Note that we have fixed
one band (labelled α), and we consider only the Weyl
points formed by this band. Furthermore, as WPs are
degeneracies of pairs of bands, it can be shown [89] that

χαWP = −χβWP for WP formed by bands α & β, (28c)

meaning that each WP acts as a sink on one of the two
bands, and as a source on the other band. Two Weyl
points which are both formed by bands α and β can an-
nihilate only if their chirality is opposite.

B. Interpreting the Z2 invariant in terms of
braiding of Weyl points around exceptional rings

The correspondence between topological insulator and
band nodes becomes more subtle in a non-Hermitian
setting. Although the (first) Chern number has been
previously considered in non-Hermitian systems [39, 40],
as it is meaningful for some 2D closed manifolds, non-
Hermitian Bloch Hamiltonians have an additional 1D
invariant [39]. This 1D invariant interacts non-trivially
with the Chern number in the sense that the Chern num-
ber can be reduced from Z to Z2 depending on the 1D
invariant (Sec. III). As discussed above, the complica-
tion stems from the complex-valued band energies, which
allow for the permutation of two energy bands along a
closed trajectory without forming a band degeneracy on
the way. The presence of such a trajectory inside the 2D
Brillouin zone makes it impossible to globally assign each
band a unique band index, and therefore Eq. (28a) can-
not be readily applied to compute the first Chern num-
ber. Here, we briefly discuss the reduction mod 2 of
the Chern number in terms of a braiding of Weyl points
around exceptional rings reported in Ref. [66].

To get an insight into the nature of the non-Hermitian
counterpart of the Chern number, we find it useful to
consider again the correspondence with Weyl points. In
non-Hermitian systems, it has been found that Weyl
points generically turn into one-dimensional ring-like de-
generacies known as exceptional rings [27, 65]. These
exceptional rings have been found to have nontrivial one-
dimensional invariant associated with the winding on a
circle threaded by the ring (associated with the point-gap
classification scheme) as well as a nontrivial Chern num-
ber on a sphere large enough to enclose the entire ring
(associated with the line-gap scheme). Inside a torus, a
small exceptional ring may be considered effectively as a
Weyl point, with the understanding that it will generi-
cally have some small but nonzero radius. However, one
can consider large exceptional rings which thread through
the torus, in either direction (inside or outside).

For simplicity, we consider a two-band model on a
torus, see Fig. 5b. We assume that the two bands are
non-trivially permuted along the φ-direction of the torus,
and that originally there are no band degeneracies inside
the torus. The non-trivial band permutation is realized
by an exceptional nodal line threaded through the torus.
Let us now consider the following process: through a lo-
cal band inversion, we produce a pair of Weyl points of
opposite chirality. By appropriately adjusting the Hamil-
tonian parameters, we transport one of the Weyl points
along the φ-direction, while keeping the other Weyl point
fixed. Along the path, the transported Weyl point flips
upside-down. According to Eq. (28c), the flip implies
that the Weyl point has effectively reversed the chiral-
ity. As a consequence, the two Weyl points now (locally)
carry the same chirality, and are not able to annihilate
anymore.

Conversely, any pair of Weyl points can be annihilated
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FIG. 5. a) Comparison of the three physical settings discussed in Sec. IV B, IV C, resp. IV D. Although the terminology differs,
the description of their singularities (topological defects) is very similar. All three systems exhibit topologically protected line
and point defects in 3D, mathematically described respectively by π1 and π2 of the order-parameter space. In each instance, the
1D and 2D invariant interact non-trivially, meaning that the π2-charge describing a point nodes flips sign if it is carried along a
closed path with non-trivial π1 charge. This interaction leads to Z −→ Z2 lowering of the topological invariant on the torus, if
there is a non-trivial π1 charge in some direction. b) A 2D torus embedded in 3D, with a green curve indicating an exceptional
line, and red and blue points indicating Weyl points of opposite chirality. The two angular coordinates on the torus are denoted
θ and φ. Since the φ direction links with the exceptional line, the torus has nontrivial 1D invariant in the φ direction. By
moving one of the Weyl points around the exceptional line, we can change its chirality and obtain a configuration with total
charge 2 from this initial configuration of total charge 0; thus total charge 2 represents a topologically trivial configuration, as
we understand in terms of braiding Weyl points around an exceptional line.

in a model that exhibits a non-trivial band twist along
some direction of a 3D region D. If the two Weyl points
locally have the same chirality, one can still annihilate
them by transporting one of the Weyl points along the
non-trivial path. We thus observe that the right-hand
side of Eq. (28b) is no longer an integer invariant in a
non-Hermitian system if there is a non-trivial band flip
in some direction of the region D. On the other hand, the
parity (even vs. odd) of the total number of Weyl points
inside D remains invariant, as long as no Weyl points
are allowed to move across the boundary ∂D, i.e. as long
as ∂D does not exhibit a gap closing. This change of
parity is the manifestation of our Z2 invariant in terms of
the correspondence between gapped and gapless systems.
For more details on this procedure, see Ref. [66].

Thus we understand the classification result Eq. 24 in
terms of Weyl points and exceptional lines / rings inside
the torus. While the system is gapped on the torus, it
has band degeneracies inside the torus. Exceptional lines
/ rings which link with the torus are responsible for the
1D part of the classification, i.e. the winding numbers on
the one-skeleton; Weyl points are responsible for the 2D
part, i.e. the extension to the two-cell. The construction

from Sec. III of a group action of π2(X) on [T 2, X]f∗ can
be understood as the insertion of a Weyl point into the
interior of the solid torus. The reduction mod 2 of the
Z-invariant under conditions of nontrivial winding is un-
derstood in terms of parity-flip of Weyl points (see also
Fig. 4).

C. Insights from the physics of nematic liquids

Nematic liquids [74] are the archetypal example of an

ordered phase considered in the context of topological
defects and textures [73]. This phase of matter is built
up from approximately rod-like molecules, which are ran-
domly positioned (resembling a liquid) but with a frozen
orientation (resembling a crystalline solid). The order-
parameter of a liquid crystal is the so-called director,
which is an unioriented axis that describes the local ori-
entation of the molecules. The order-parameter space of
such “uniaxial” nematics is therefore

X = S2/Z2 = RP 2 (29)

where S2 represents a unit vector n aligned with the
orientation of the molecules, and the quotient identifies
n ∼ −n to produce the “headless” director. This is
exactly the “proxy” space considered in detail in Sec. III.

The order-parameter field of a nematic liquid in 3D
may exhibit topological defects, which can be explained
using homotopy groups. On the one hand, the first ho-
motopy group π1(RP 2) = Z2 describes a non-trivial twist
of the order-parameter along a closed path (S1). More
precisely, this is a π-rotation of the director, and the cor-
responding defect is described as a disclination line [72].
On the other hand, the second homotopy group π2(RP 2)
describes a non-trivial texture of the director on a sphere
(S2), which is colloquially called hedgehog.

Naively, by recalling the correspondence between
Chern number and Weyl points from Sec. IV A, one might
think that nematic textures on a closed surface ∂D would
be characterized by an integer topological invariant that
is in correspondence with the number of hedgehogs in D.
However, this conclusion is wrong. It has been recog-
nized by Volovik and Mineev [72] that moving a hedge-
hog around a disclination line flips its integer topological
charge. As a consequence, any pair of hedgehog defects
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can pairwise annihilate if brought together along a non-
trivial trajectory. This is very similar to the way Weyl
point chirality in non-Hermitian system is reversed when
it is moved around an exceptional line. Therefore, one
can draw the following analogy between non-Hermitian
systems and nematic liquids:

exceptional lines ←→ disclination lines (30a)

Weyl points ←→ hedgehogs. (30b)

For nematic liquids, it has been found [88] that the in-
teraction between the 1D and the 2D invariants reduces
the topological classification of textures on torus from Z
to Z2 whenever there is a non-trivial 1D invariant of the
director along some direction of the torus. The Z2 in-
variant is in one-to-one correspondence with the parity
of the number of hedgehogs inside the torus cf. Fig. 5b.

D. Fragile topology of real Hermitian models

Very recently, the observation that topological invari-
ant on a 1D subspace can reduce the topological classifi-
cation on a 2D manifold has also been made in the con-
text of topological band theory. More specifically, this
phenomenon was reported [69, 75] for fragile topological
invariants [90] of models with real-symmetric Hamiltoni-
ans. Such condition arises either in the presence of C2T
symmetry (composition of π-rotation with time reversal)
or PT symetry (composition of spatial inversion with
time reversal) [68, 77, 91].

Let us first summarize the so-called “stable” topology
of such real-symmetric Hermitian models, which corre-
spond to nodal class AI of Ref. [92]. The generic band de-
generacy of such Hamiltonians in 3D is a nodal line, pro-
tected by a Z2-valued (quantized) Berry phase on closed
paths (S1). Furthermore, nodal lines can be folded to
produce closed nodal-line rings, which were reported to
carry a Z2-valued monopole charge [93] on the enclosing
sphere (S2). This pair of Z2 invariants mathematically
correspond to so-called first and second Stiefel-Whitney
class [76, 80]. By fine-tuning the Hamiltonian param-
eters, nodal-line rings with a monopole charge can be
shrunk to a point-like degeneracy known as “real Dirac
point” [94], resembling the way we considered shrinking
exceptional nodal-line rings to Weyl points in Sec. IV B.

In systems with a small number of bands, the groups
describing the band nodes of real symmetric Hamiltoni-
ans may be enriched. This phenomenon is called fragile
topology, and its presence for real-symmetric Hamiltoni-
ans has been linked [90, 95, 96] to the physics of twisted
bilayer graphene near the magic angle [97–99]. Espe-
cially, when such Hamiltonian exhibits two occupied and
an arbitrary (but larger than two) number of unoccupied
bands, the monopole charge becomes an integer [92, 94]
called an Euler class [67, 75, 76]. It has been reported [69]
that the Euler class of a nodal-line ring flips sign when
it is carried along a closed path with non-trivial Berry

phase. As a consequence, the topological classification of
real-symmetric Hamiltonians 2D Hamiltonians with two
occupied bands reduces from Z to Z2 whenever there is a
non-trivial Berry phase along some direction of the torus,
cf. Fig. 5b. The Z2 invariant that remains from the inte-
ger Euler class is again the second Stiefel-Whitney class,
which we mentioned above in the context of the stable
topology. One thus finds the following analogy between
the non-Hermitian two-band Hamiltonians and the frag-
ile topology of real-symmetric Hamiltonians:

exceptional lines (EL) ←→ nodal lines (NL) (31a)

Weyl points ←→ real Dirac points(31b)

(EL-rings) (NL-rings).

The comparison between the various systems considered
in Sec. IV B, IV C, and IV D is summarized by the table
in Fig. 5a.

E. Wilson-loop spectra interpretation of the Z2

invariant

Apart from understanding the Z2 topology in terms of
Weyl points in 3D (Sec. IV B), it is also desirable to have
an intrinsic 2D algorithm to determine the Z2 invariant
derived in Sec. III B in Eq. (23). Here, we describe such
an algorithm. Recall that many Hermitian 2D topologi-
cal invariants, including the Chern number, appear in the
Wilson loop eigenvalue flow [100, 101], so this is a natu-
ral place to look for features of the Z2 invariant, which
we understand as a mod 2 reduction of the Chern num-
ber. To define the Wilson loop eigenvalue flow, we slice
the torus into loops and study the change of Wilson loop
eigenvalues along the family of loops.

Of the many possible loop directions we could choose
on the 2D torus, only some of them exhibit the famil-
iar and essential gauge invariance; however, we can al-
ways choose a loop direction with this property. The
condition for gauge invariance is that the eigenvalues not
interchange along the loop direction. Indeed, the two
eigenvectors have independent gauge (phase) degrees of
freedom, and so if they interchange, the eigenvalue is no
longer gauge-invariant. However, it is always possible to
choose such a loop direction with no eigenvalue inter-
change (even winding number); if both winding numbers
are odd, one can choose the diagonal as the loop direc-
tion [102]. In the following discussion, we write k1 and k2

to denote the two directions on the torus, and we assume
that the winding along the k1 direction is even.

Under this assumption, we consider a family of paral-
lel loops covering the torus, where each loop is directed
along the k1 direction. For each loop, the energy order is
well-defined and we can compute Wilson-loop eigenvalues
(Berry phases) for both bands. We use biorthogonal left
and right eigenvectors to compute the Berry phases, as
is standard for non-Hermitian systems [27]. We consider
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two cases, depending on whether the winding in the k2

direction is even or odd.

In the first case, the winding in the k2 direction is
even, and we expect a Z invariant which is the usual
Chern number. The Chern number is equal to the wind-
ing number say of φ1 as one varies k2 (which is well-
defined because φ1 and φ2 do not swap). Because the
two eigenvalues eiφ1 and eiφ2 satisfy φ1 + φ2 = 0 mod
2π, an alternative characterization of the Chern number
is as the number of times φ1 and φ2 cross, taken with
sign, either at φ1 = φ2 = 0 or at φ1 = φ2 = π (the two
crossing numbers are equal).

In the second case, the winding in the k2 direction
is odd, and we expect a Z2 invariant. The odd wind-
ing along the k2 direction requires the two eigenvalues
to have odd total crossing and swap as we vary k2 from
−π to π. Because the two bands swap, there is no con-
sistent notion of band ordering and therefore no notion
of a signed number of crossings of Wilson loop eigenval-
ues. However, the crossing number at φ1 = φ2 = 0 or
φ1 = φ2 = π can still be taken mod 2, without needing to
account for sign, and the sum will be odd. On physical
grounds, the crossing number mod 2 at φ1 = φ2 = π must
be our Z2 invariant, since a model with a single crossing
at φ1 = φ2 = 0 can be deformed to a model with both
φ1 and φ2 constant at 0, which is clearly trivial.

In Fig. 6, we illustrate the case where we have a Z2

invariant. We first construct a 3D lattice model [66] with
Weyl points and non-trivial winding along one momen-
tum direction:

H(k;m) = ei kz2
[
cos
(
kz
2 −

π
3

)
sin kxσx

+ cos
(
kz
2 + π

3

)
sin kyσy (32)

+
(
sin kz cos kz2 − 2m sin kz

2

)
σz
]
.

The construction is inspired by the correspondence de-
scribed in Sec. IV B. For m > 1, there are four Weyl
points at (kx, ky, kz) = (0, 0, 0), (π, 0, 0), (0, π, 0) and
(π, π, 0). Here, we take m = 2 and kr = 1. Now we
can take a cylinder (more precisely a torus) centered at
kx = ky = 0 with certain radius kr, small compared to
the separation of the Weyl points. This 2D torus embed-
ded in the 3D space of kx, ky, and kz will define our 2D
model, taking the polar direction on the cylinder to be
k1 (since there is clearly no winding along this direction)
and the kz direction to be k2 (since there is odd winding
in this direction). For this choice of cylinder, the total
parity of the enclosed Weyl points is 1. On the other
hand, if we shift the center of the cylinder away from
kx = ky = 0 to move the Weyl point outside of the cylin-
der, the total parity of the Weyl points is 0. We choose
our loop direction to be k1 (the polar direction on the
cylinder) and calculate the Wilson loop eigenvalue flow
as we vary k2 (kz). The results for the two choices of
cylinder are shown in Fig. 6.

FIG. 6. The Wilson loop eigenvalue flow for the Z2 invariant.
Panels (a) and (c) show nontrivial Z2 invariant, while panels
(b) and (d) show trivial Z2-invariant. We construct 2D mod-
els starting with a 3D model, and restricting to a 2D surface
inside 3D k-space. The 3D model has four Weyl points (red)
located at kz = 0 plane as shown in panels (a) and (b). We
choose two different cylinders (topologically, toruses) whose
projections are shown as orange loops in panels (a) and (b)
for the Wilson loop caculation in panels (c) and (d). Panel
(c) shows the flow of Wilson loop eigenvalues when the center
of the cylinder lies at (kx, ky) = (0, 0). The cylinder encloses
one Weyl point and the invariant is non-trivial. We see one
crossing (odd) at π and two crossings (even) at 0. Panel (d)
shows the flow of Wilson loop eigenvalues when the center
of the cylinder lies at (kx, ky) = (1.2, 1.2). The cylinder en-
closes no Weyl points and the invariant is trivial. We see zero
crossing (even) at π and three crossings (odd) at 0.

V. GENERAL CLASSIFICATION OF N-BAND
MODELS

We have by now developed a solid understanding of
topological invariants in non-Hermitian systems with two
bands. Here, we generalize the result to N bands. The
structure is even richer, with Z- and Z2-valued invariants
replaced with braid group (BN ) and cyclic groups (Zk)
valued invariants. Nevertheless, the overal logic behind
the derivation of these results is the same as before.

To start, we use the same gap condition,

X = {H ∈ MN (C) : Disc(H) 6= 0}. (33)

This means that we only consider “fully gapped” Hamil-
tonians in which all the complex eigenvalues are distinct.
The deformations and redundancies from before general-
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ize directly to this scenario, giving

X =

(
U(N)

U(1)× . . .×U(1)
× ConfN (C)

)/
SN (34)

where the unitary quotient space U(N)/U(1)× . . .×U(1)
is known as the complex flag manifold, and SN is the
symmetric group, acting viaN×N permutation matrices.
In this case, we will not simplify the presentation of X
further. Instead, we use well-known results [71, 78, 79]
concerning the homotopy groups of the factors, namely

π1(ConfN (C)) = PN (35)

πm(ConfN (C)) = 0,m > 1 (36)

π1(UConfN (C)) = BN (37)

πm(UConfN (C)) = 0,m > 1 (38)

π1

(
U(N)

U(1)× . . .×U(1)

)
= 0 (39)

π2

(
U(N)

U(1)× . . .×U(1)

)
= ZN−1. (40)

Here, PN is the pure (ordered) braid group, BN is the full
braid group, and ConfN (C) (UConfN (C)) is the ordered
(unordered) configuration space of N points in the com-
plex plane. The first equations are understood in terms
of N ordered points in the plane braiding around each
other. The last equation describes a Chern number as-
sociated to each band, subject to the constraint that the
sum over the Chern numbers of all the bands must be
zero.

We can compute the homotopy groups of X as before.
Since X has a covering space with deck transformation
group SN whose homotopy groups we understand, we
obtain immediately π2(X) = ZN−1. We use the pro-
jection X → ConfN (C)/SN = UConfN (C) with simply
connected fiber to obtain π1(X) = BN . The interpreta-
tion of these invariants is a straightforward extension of
the two-band case.

Now we can study [T 2, X]∗. On the one-skeleton,
we have [T 2

1 , X]∗ = B2
N . Now π1(X) = BN acts on

π2(X) = ZN−1 by permutations in the standard rep-
resentation; this is evident from the SN -covering space
and the interpretation of π2(U(N)/U(1)× . . .×U(1)) as
N Chern numbers whose sum is zero.

Let f : T 2
1 → X be given by a pair of braids (b1, b2),

and let (σ1, σ2) be the corresponding pair of permuta-
tions. We will study extensions of f to the two-cell of the
torus by computing the stabilizer for the action of π2(X)
on the set of extensions. The relations on π2(X) = ZN−1

are generated by the columns of 1 − σ1 and 1 − σ2 as
matrices in the standard matrix representation. As an
example, we study the case σ1 = (1, . . . , N) is a single N -
cycle, and σ2 = 1 trivial. The notation σ1 = (1, . . . , N)
means that band 1 goes to band 2, band 2 goes to band
3, etc., and band N goes back to band 1. We choose a

basis {ei − ei+1} for ZN−1. With respect to this basis,
we have

1− σ1 =



1 0 0 . . . 0 0 1
−1 1 0 . . . 0 0 1
0 −1 1 . . . 0 0 1
...

...
...

. . .
...

...
...

0 0 0 . . . 1 0 1
0 0 0 . . . −1 1 1
0 0 0 . . . 0 −1 2


(41)

Multiplying on the left by the determinant 1 matrix

1 0 0 . . . 0 0 0
1 1 0 . . . 0 0 0
1 1 1 . . . 0 0 0
...

...
...

. . .
...

...
...

1 1 1 . . . 1 0 0
1 1 1 . . . 1 1 0
1 1 1 . . . 1 1 1


. (42)

we obtain 

1 0 0 . . . 0 0 1
0 1 0 . . . 0 0 2
0 0 1 . . . 0 0 3
...

...
...

. . .
...

...
...

0 0 0 . . . 1 0 N − 3
0 0 0 . . . 0 1 N − 2
0 0 0 . . . 0 0 N


(43)

whose column space is an index N sublattice of ZN−1. It
follows that instead of N − 1 Chern numbers, the invari-
ant of these N bands reduces to a single ZN invariant.
The intuition is similar to the 2-band case. The row vec-
tor (1, . . . , 1) provides the map ZN−1 → ZN , so we can
interpret the ZN invariant as the total number of Weyl
points

∑
i ei − ei+1 mod N (see Sec. IV E). The result

for general permutations is more complicated, but can
be worked out on a case-by-case basis by computing the
Smith normal form [103].

VI. CONCLUSION

We have presented a novel topological classification
scheme for gapped non-Hermitian systems, which gener-
alizes existing schemes and finds new types of topological
invariants. In particular, we find 1D invariants with val-
ues in braid groups, and 2D invariants with values in ZN
instead of the expected collection of N − 1 independent
Chern numbers. We provided a detailed pedagogical ex-
planation of how this arises from the mathematical phe-
nomenon of the action of π1 on π2. We interpreted these
classification results in terms of Weyl points and excep-
tional rings, and connected them to a previously reported
nodal braiding in non-Hermitian systems. We illustrate
these results using the familiar physics of nematic liq-
uids, and also describe connections to fragile topology of
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real Hermitian models. Finally, we describe how these in-
variants are computed, and we illustrate this in a simple
computational model.

As we have explained, models representing any of the
reported classes can easily be constructed using Weyl
points and exceptional rings. This would allow the cre-
ation of lattice models in order to experimentally probe
edge state phenomena associated with these novel invari-
ants, e.g. in optical lattices or synthetic dimension lat-
tices [104]. Then one could extend the bulk-edge cor-
respondence to this generalized classification and novel
invariants, providing a clearer understanding of the bulk-
edge correspondence in non-Hermitian systems.

Appendix A: Homotopy groups of (S2 × S1)/Z2

In this appendix, we study the maps Π1 and Π2 intro-
duced in Sec. III B and use them to formalize some claims
about the homotopy groups of X = (S2×S1)/Z2. In par-
ticular, we can gain some intuition about the homotopy
groups by relating X to S1 and to RP 2. Furthermore,
the covering space structure alone is insufficient to com-
pletely determine π1(X), whereas these calculations do
determine π1(X).

Recall that Π1 : X → S1 and Π2 : X → RP 2 are
the natural projections from X. Both S1 and RP 2 have
necessarily forgotten the ordering of the eigenvalues and
eigenvectors. Note that once one fixes an ordering on
the eigenvectors, an ordering is also determined on the
eigenvalues (and vice versa). Thus the map Π2 is a fiber
bundle with fiber S1, and the map Π1 is a fiber bundle
with fiber S2. We can formally write this as

S2 X S1

S1 X RP 2

Π1

Π2

(A1)

From a general property of fiber bundles, we obtain the
long exact sequences [71]

. . . πm(S2) πm(X) πm(S1)

πm−1(S2) . . .

(A2)

. . . πm(S1) πm(X) πm(RP 2)

πm−1(S1) . . .

(A3)

It follows from the exactness of the sequence in Eq. (A2)
and from π1(S2) = 0 = π0(S2) that πm(X)→ πm(S1) is
an isomorphism for m = 1, therefore the one-dimensional
invariant is given by the winding of the eigenvalues in
UConf2(C). Furthermore, we find using the exact se-
quence in Eq. (A3) and using π2,3,...(S

1) = 0 that
πm(X) → πm(RP 2) is an isomorphism for m > 2. For
m = 2, this map is still an isomorphism because the map
π1(S1) = Z→ π1(X) = Z is the inclusion of the even in-
tegers. This observation also implies that for m = 1,
the map is a reduction modulo 2, i.e. π1(RP 2) = Z2

remembers the parity of the winding of the unordered
eigenvalues.

We remark that a covering space is a special case of a
fiber bundle, one whose fiber is discrete. Applying the
long exact sequence to S2 × S1 → (S2 × S1)/Z2 repro-
duces the result that the covering map induces an isomor-
phism in π2 and an inclusion in π1, and in fact tells us
that π1(X) surjects onto Z2 with kernel π1(S2×S1) = Z.
However, one is unable to determine the extension type
from this information alone, which is one reason it is ben-
eficial to study the fiber bundles Π1 and Π2.
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Bzdušek, “Non-abelian band topology in noninteracting
metals,” Science 365, 1273–1277 (2019).

[69] Apoorv Tiwari and Tomáš Bzdušek, “Non-abelian
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